Society for Neuroscience - Search

Skip Navigation

  • join logo Join
  • give logo Give
  • advocate logo Advocate
  • publish logo Publish
Shop Sign In
SfN Logo 2025
  • Membership
    • Learn About Membership
      • Individual Member Benefits
      • Institutional Program Member Benefits
      • Sustaining Associate Member Benefits
      • Get Involved at SfN
    • Become a Member
      • Sponsorship Information for New Members
      • Membership Categories & Fees
      • Membership Fees for Developing Countries
      • Renew Individual Membership
    • Member Resources
      • Automatic Renewals
      • Frequently Asked Questions
      • Individual Member Directory
      • Member Obituaries and Memorial Donations
    • Learn About Local Chapters
      • Start or Reactivate a Chapter
      • Resources for Chapters
      • Submit Annual Report
      • Chapter Directory
      • Frequently Asked Questions
  • Meetings
    • Meetings Overview
    • Neuroscience 2025
      • Call for Abstracts
      • Sessions and Events
      • Registration
      • Housing and Travel
      • Exhibits
      • Dates and Deadlines
      • FAQs
    • Global Events
      • SfN Virtual Events
    • Past and Future Annual Meetings
      • Neuroscience 2024
      • Neuroscience 2023
      • Search Past Annual Meeting Abstracts
      • Attendance Statistics
    • Meeting Policies and Guidelines
      • Code of Conduct at SfN Events
      • Guidelines for Participating in SfN Events
      • Photography & Recording Policy
      • Presenter Guidelines and Policies for SfN Events
    • Meeting Awards
      • Trainee Professional Development Award
      • International Travel Awards
      • FENS Member Awards to SfN Annual Meeting
      • IBRO Member Awards to SfN Annual Meeting
      • JNS Member Awards to SfN Annual Meeting
  • Careers
    • Careers Overview
    • Institutional Program (IP) Directory
    • NeuroJobs Career Center
      • Job Seekers
      • Employers
    • 2025 Graduate School Fair
    • Career Tools and Resources
      • Neuronline
      • Neurobiology of Disease Workshop
      • Scientific Short Courses
      • Responsible Conduct of Research Short Courses
      • Global Funding Sources
    • Higher Education and Training
      • Core Competencies
      • Neuroscience Training Program Survey
    • Awards
      • Outstanding Career and Research Achievements
      • Early Career
  • Initiatives
    • Initiatives Overview
    • Awards
      • 2024 Award Recipients
      • Awards and Prizes FAQ
      • Trainee Professional Development Award
    • Neuroscience Scholars Program
    • Neuronline
      • Scientific Rigor and Reproducibility
    • Resources to Stay Connected
      • SfN Zoom Backgrounds
    • Diversity Initiatives
    • Women and Neuroscience
      • Increasing Women in Neuroscience (IWiN) Courses & Toolkit
      • Celebration of Women in Neuroscience Event
      • Awards
    • Animals in Research
      • Support for Members and Institutions
      • Tools and Resources
      • Resources for Medical Students
    • Public Education Programs
      • Resources for Educators
      • Brain Awareness Video Contest
      • Life of a Neuron Exhibit
  • Advocacy
    • Advocacy Overview
    • Advocacy Response
    • Advocacy Network
      • The NeuroAdvocate Challenge
      • Advocacy Action Center
      • Advocacy Best Practices
      • Advocacy Network News
      • Advocacy Training Seminars
    • US Advocacy Programs
      • Capitol Hill Day
      • Connect with Policymakers
      • Early Career Policy Ambassadors
      • Partner with a Local Chapter
      • Engage the Media
    • Global Advocacy Programs
      • Global Neuroscience Initiatives
      • Global Funding
      • North American Programs
    • Science Funding
      • Advocacy Videos
      • Advocacy Resources
      • US Neuroscience Initiatives
      • Funding Priorities and Processes
    • Policy Positions
      • Statements and Testimony
      • Sign-On Letters
  • Outreach
    • Outreach Overview
    • BrainFacts.org
    • Find a Neuroscientist
    • Brain Awareness Campaign
      • Webinar: The ABC's of BAW
      • How to Get Involved
    • Awards
      • Award for Education in Neuroscience
      • Next Generation Award
      • Chapter of the Year Award
      • Science Educator Award
  • Publications
    • Publications Overview
    • SfN News
    • JNeurosci
    • eNeuro
    • SfN Nexus
    • Neuroscience Quarterly
    • Annual Report
    • History of Neuroscience Autobiographical Chapters
  • About
    • About Overview
    • Mission and Strategic Plan
    • What We Do
      • Annual Report
      • Bylaws
      • Resolutions to the Bylaws
      • Environmental Commitment
      • Strategic Partners
      • History of SfN
    • SfN 50th Anniversary Celebration
    • NIH Public Health Service-Supported Funding Financial Conflict of Interest Policy
    • Volunteer
      • SfN Council
      • SfN Presidents
      • Committees
      • Elections
      • Call for Nominations
    • Professional Conduct
      • SfN Ethics Policy
      • Guidelines for Responsible Conduct Regarding Scientific Communication
      • Code of Conduct at SfN Events
      • Commitment to Scientific Integrity
      • Neuronline Digital Learning Community Guidelines
    • History of Neuroscience
      • Autobiographical Chapters
      • Autobiographical Videos of Prominent Neuroscientists
      • Classic Papers
      • Neuroscience History Resources
      • Robert Doty's Chapter on Neuroscience
    • Careers and Staff
      • Staff List
  1. Search

Filter

  • (10)
Filter
41 - 50 of 68 results
  • Neural and Behavioral Correlates of Extended Training during Sleep Deprivation in Humans: Evidence for Local, Task-Specific Effects | Journal of Neuroscience
    Recent work has demonstrated that behavioral manipulations targeting specific cortical areas during prolonged wakefulness lead to a region-specific homeostatic increase in theta activity (5–9 Hz), suggesting that theta waves could represent transient neuronal OFF periods (local sleep). In awake rats, the occurrence of an OFF period in a brain area relevant for behavior results in performance errors. Here we investigated the potential relationship between local sleep events and negative behavioral outcomes in humans. Volunteers participated in two prolonged wakefulness experiments (24 h), each including 12 h of practice with either a driving simulation (DS) game or a battery of tasks based on executive functions (EFs). Multiple high-density EEG recordings were obtained during each experiment, both in quiet rest conditions and during execution of two behavioral tests, a response inhibition test and a motor test, aimed at assessing changes in impulse control and visuomotor performance, respectively. In addit...
    Mar 18, 2015 Giulio Bernardi
  • Individual Differences in Novelty Seeking Predict Subsequent Vulnerability to Social Defeat through a Differential Epigenetic Regulation of Brain-Derived Neurotrophic Factor Expression | Journal of Neuroscience
    Some personality traits, including novelty seeking, are good predictors of vulnerability to stress-related mood disorders in both humans and rodents. While high-novelty-seeking rats [high responders (HRs)] are vulnerable to the induction of depressive-like symptoms by social defeat stress, low-novelty-seeking rats [low responders (LRs)] are not. Here, we show that such individual differences are critically regulated by hippocampal BDNF. While LR animals exhibited an increase in BDNF levels following social defeat, HR individuals did not. This difference in hippocampal BDNF expression promoted the vulnerability of HR and the resilience of LR rats. Indeed, preventing activation of BDNF signaling by infusing the BDNF scavenger TrkB-Fc into the dentate gyrus of the hippocampus of LR rats led to social defeat-induced social avoidance, whereas its activation in HR rats by the TrkB agonist 7,8-dihydroxyflavone promoted social approach. Along with the changes in BDNF expression following defeat, we report in LR an...
    Jul 3, 2013 Florian Duclot
  • Phosphatidylinositol-4,5-Bisphosphate Regulates NMDA Receptor Activity through α-Actinin | Journal of Neuroscience
    Phosphatidylinositol-4,5-bisphosphate (PIP2) has been shown to regulate many ion channels, transporters, and other signaling proteins, but it is not known whether it also regulates neurotransmitter-gated channels. The NMDA receptors (NMDARs) are gated by glutamate and serve as a critical control point in synaptic function. Here we demonstrate that PIP2 supports NMDAR activity. In Xenopus oocytes, overexpression of phospholipase Cγ (PLCγ) or preincubation with 10 μm wortmannin markedly reduced NMDA currents. Stimulation of the epidermal growth factor receptor (EGFR) promoted the formation of an immunocomplex between PLCγ and NMDAR subunits. Stimulation of EGFR or the PLCβ-coupled M1 acetylcholine receptor produced a robust transient inhibition of NMDA currents. Wortmannin application blocked the recovery of NMDA currents from the inhibition. Using mutagenesis, we identified the structural elements on NMDAR intracellular tails that transduce the receptor-mediated inhibition, which pinpoint to the binding sit...
    May 16, 2007 Ioannis E. Michailidis
  • Vesicle-Mediated Transport and Release of CCL21 in Endangered Neurons: A Possible Explanation for Microglia Activation Remote from a Primary Lesion | Journal of Neuroscience
    Whenever neurons in the CNS are injured, microglia become activated. In addition to local activation, microglia remote from the primary lesion site are stimulated. Because this so-called secondary activation of microglia is instrumental for long-term changes after neuronal injury, it is important to understand how microglia activity is controlled. The remote activation of microglia implies that the activating signals are transported along neuronal projections. However, the identity of these signals has not yet been identified. It is shown here that glutamate-treated neurons rapidly express and release the chemokine CCL21. We also provide evidence that neuronal CCL21 is packed in vesicles and transported throughout neuronal processes to reach presynaptic structures. Chemotaxis assays show that functional CCL21 is released from endangered neurons and activate microglia via the chemokine receptor CXCR3. Based on these findings, we suggest that neuronal CCL21 is important in directed neuron-microglia signaling...
    Aug 17, 2005 Eiko K. de Jong
  • Resting-State Functional Connectivity Emerges from Structurally and Dynamically Shaped Slow Linear Fluctuations | Journal of Neuroscience
    Brain fluctuations at rest are not random but are structured in spatial patterns of correlated activity across different brain areas. The question of how resting-state functional connectivity (FC) emerges from the brain's anatomical connections has motivated several experimental and computational studies to understand structure–function relationships. However, the mechanistic origin of resting state is obscured by large-scale models' complexity, and a close structure–function relation is still an open problem. Thus, a realistic but simple enough description of relevant brain dynamics is needed. Here, we derived a dynamic mean field model that consistently summarizes the realistic dynamics of a detailed spiking and conductance-based synaptic large-scale network, in which connectivity is constrained by diffusion imaging data from human subjects. The dynamic mean field approximates the ensemble dynamics, whose temporal evolution is dominated by the longest time scale of the system. With this reduction, we dem...
    Jul 3, 2013 Gustavo Deco
  • Netrin-1 Induces Axon Branching in Developing Cortical Neurons by Frequency-Dependent Calcium Signaling Pathways | Journal of Neuroscience
    A single axon can innervate multiple targets by collateral branching. Axon branching is thus essential for establishing CNS connectivity. However, surprisingly little is known about the mechanisms by which branching is regulated. Axons often stop elongating before branches develop and anatomical and molecular data suggest that axon branching occurs independent of axon outgrowth. We found that netrin-1 dramatically increases cortical axon branching. Here, we sought to identify intracellular signaling components involved in netrin-1-induced axon branching. Using live cell imaging of dissociated developing cortical neurons, we show that netrin-1 rapidly increases the frequency of repetitive calcium transients. These transients are often restricted to small regions of the axon. Simultaneous imaging of calcium activity and development of axon branches revealed that Ca2+ transients coincide spatially and temporally with protrusion of branches from the axon. Remarkably, fully formed branches with motile growth co...
    Jul 13, 2005 Fangjun Tang
  • Mutation of Critical GIRK Subunit Residues Disrupts N- and C-Termini Association and Channel Function | Journal of Neuroscience
    The subfamily of G-protein-linked inwardly rectifying potassium channels (GIRKs) is coupled to G-protein receptors throughout the CNS and in the heart. We used mutational analysis to address the role of a specific hydrophobic region of the GIRK1 subunit. Deletion of the GIRK1 C-terminal residues 330-384, as well as the point mutation I331R, resulted in a decrease in channel function when coexpressed with GIRK4 in oocytes and in COS-7 cells. Surface protein expression of GIRK1 I331R coexpressed with GIRK4 was comparable with wild type, indicating that subunits assemble and are correctly localized to the membrane. Subsequent mutation of homologous residues in both the GIRK4 subunit and Kir2.1 (Gβγ-independent inward rectifier) also resulted in a decrease in channel function. Intracellular domain associations resulted in the coimmunoprecipitation of the GIRK1 N and C termini and GIRK4 N and C termini. The point mutation I331R in the GIRK1 C terminus or L337R in the GIRK4 C terminus decreased the association b...
    Feb 16, 2005 Radmila Sarac
  • Erythropoietin Is a Paracrine Mediator of Ischemic Tolerance in the Brain: Evidence from an In Vitro Model | Journal of Neuroscience
    In an in vitro model of cerebral ischemia (oxygen glucose deprivation, OGD) we investigated whether erythropoietin (EPO) plays a critical role in ischemic preconditioning. We found that EPO time and dose-dependently induced protection against OGD in rat primary cortical neurons. Protection was significant at 5 min and reached a maximum at 48 hr after EPO application. Protection was blocked by the coapplication of a soluble Epo receptor (sEpoR) or an antibody against EpoR (anti-EpoR). Medium transfer from OGD-treated astrocytes to untreated neurons induced protection against OGD in neurons, which was attenuated strongly by the application of sEpoR and anti-EpoR. In contrast, medium transfer from OGD-treated neurons to untreated neurons induced protection against OGD that did not involve EPO. In astrocytes the OGD enhanced the nuclear translocation of hypoxia-inducible factor 1 (HIF-1), the major transcription factor regulating EPO expression. Consequently, transcription of EPO-mRNA was increased in astrocyt...
    Dec 1, 2002 Karsten Ruscher
  • Mapping of the Sensory Innervation of the Mouse Lung by Specific Vagal and Dorsal Root Ganglion Neuronal Subsets | eNeuro
    The airways are densely innervated by sensory afferent nerves, whose activation regulates respiration and triggers defensive reflexes (e.g., cough, bronchospasm). Airway innervation is heterogeneous, and distinct afferent subsets have distinct functional responses. However, little is known of the innervation patterns of subsets within the lung. A neuroanatomical map is critical for understanding afferent activation under physiological and pathophysiological conditions. Here, we quantified the innervation of the mouse lung by vagal and dorsal root ganglion (DRG) sensory subsets defined by the expression of Pirt (all afferents), 5HT3 (vagal nodose afferents), Tac1 (tachykinergic afferents), and transient receptor potential vanilloid 1 channel (TRPV1; defensive/nociceptive afferents) using Cre-mediated reporter expression. We found that vagal afferents innervate almost all conducting airways and project into the alveolar region, whereas DRG afferents only innervate large airways. Of the two vagal ganglia, onl...
    Mar 1, 2022 Seol-Hee Kim
  • Structural and Single-Channel Results Indicate That the Rates of Ligand Binding Domain Closing and Opening Directly Impact AMPA Receptor Gating | Journal of Neuroscience
    At most excitatory central synapses, glutamate is released from presynaptic terminals and binds to postsynaptic AMPA receptors, initiating a series of conformational changes that result in ion channel opening. Efficient transmission at these synapses requires that glutamate binding to AMPA receptors results in rapid and near-synchronous opening of postsynaptic receptor channels. In addition, if the information encoded in the frequency of action potential discharge is to be transmitted faithfully, glutamate must dissociate from the receptor quickly, enabling the synapse to discriminate presynaptic action potentials that are spaced closely in time. The current view is that the efficacy of agonists is directly related to the extent to which ligand binding results in closure of the binding domain. For glutamate to dissociate from the receptor, however, the binding domain must open. Previously, we showed that mutations in glutamate receptor subunit 2 that should destabilize the closed conformation not only spe...
    Jan 23, 2008 Wei Zhang
  • Previous
  • 3
  • 4
  • 5
  • 6
  • 7
  • Next

Featured

  • How to Submit an Impactful Abstract for Neuroscience 2025
  • Apply for the CNS Meeting Travel Awards before May 30
  • 2025 Gruber Neuroscience Prize Awarded to Edward Chang
SfN Websites
  • BrainFacts.org logo
  • eNeuro logo
  • JNeurosci logo
  • Neuronline logo
Engage with SfN
  • join Join
  • give Give
  • advocate Advocate
  • publish Publish
Quick Links
  • SfN News
  • For Press
  • Global Events
  • Contact Us
  • Advertise
  • Code of Conduct
  • Jobs at SfN
  • SfN Store
  • Social Media
Follow SfN
  • BlueSky logo
  • Facebook logo
  • Instagram logo
  • LinkedIn logo

  • Threads logo
  • X Logo
  • YouTube logo
SfN logo with "SfN" in a blue box next to Society for Neuroscience in red text and the SfN tag line that reads "Advancing the understanding of the brain and nervous system"
1121 14th Street NW, Suite 1010, Washington, D.C. 20005
(202) 962-4000 | 1-888-985-9246
  • Accessibility Policy
  • Disclaimer
  • Privacy Notice
  • Contact Us

Copyright ©
Society for Neuroscience