Filter
-
(203)
-
(175)
-
(7)
-
(184)
-
(64)
-
(10)
-
(251)
-
(89)
-
(1)
-
(48)
-
(287)
-
(16)
-
(34)
-
(787)
-
(43)
-
(13)
-
(1210)
-
(381)
-
(462)
-
(427)
3401 - 3410
of 6909 results
-
High molecular weight hyaluronan (HMWH), a well-established treatment for osteoarthritis pain, is anti-hyperalgesic in preclinical models of inflammatory and neuropathic pain. HMWH-induced anti-hyperalgesia is mediated by its action at cluster of differentiation 44 (CD44), the cognate hyaluronan receptor, which can signal via phosphoinositide 3-kinase (PI3K), a large family of kinases involved in diverse cell functions. We demonstrate that intrathecal administration of an oligodeoxynucleotide (ODN) antisense to mRNA for PI3Kγ (a class I PI3K isoform) expressed in dorsal root ganglia (DRG), and intradermal administration of a PI3Kγ selective inhibitor (AS605240), markedly attenuates HMWH-induced anti-prostaglandin E2 (PGE2) hyperalgesia, in male and female rats. Intradermal administration of inhibitors of mTOR (Rapamycin) and Protein Kinase B (AKT; AKT inhibitor IV), signaling molecules downstream of PI3Kγ, also attenuates HMWH-induced anti-hyperalgesia. In vitro patch-clamp electrophysiology experiments on...Aug 20, 2021