Filter
-
(10)
31 - 40
of 68 results
-
Loss of function of galactosylceramidase lysosomal activity causes demyelination and vulnerability of various neuronal populations in Krabbe disease. Psychosine, a lipid-raft-associated sphingolipid that accumulates in this disease, is thought to trigger these abnormalities. Myelin-free in vitro analyses showed that psychosine inhibited fast axonal transport through the activation of axonal PP1 and GSK3β in the axon. Abnormal levels of activated GSK3β and abnormally phosphorylated kinesin light chains were found in nerve samples from a mouse model of Krabbe disease. Administration of GSK3β inhibitors significantly ameliorated transport defects in vitro and in vivo in peripheral axons of the mutant mouse. This study identifies psychosine as a pathogenic sphingolipid able to block fast axonal transport and is the first to provide a molecular mechanism underlying dying-back degeneration in this genetic leukodystrophy.Jun 12, 2013
-
Human brain structure topography is thought to be related in part to functional specialization. However, the extent of such relationships is unclear. Here, using a data-driven, multimodal approach for studying brain structure across the lifespan ( N = 484, n = 260 females), we demonstrate that numerous structural networks, covering the entire brain, follow a functionally meaningful architecture. These gray matter networks (GMNs) emerge from the covariation of gray matter volume and cortical area at the population level. We further reveal fine-grained anatomical signatures of functional connectivity. For example, within the cerebellum, a structural separation emerges between lobules that are functionally connected to distinct, mainly sensorimotor, cognitive and limbic regions of the cerebral cortex and subcortex. Structural modes of variation also replicate the fine-grained functional architecture seen in eight well defined visual areas in both task and resting-state fMRI. Furthermore, our study shows a str...Jul 31, 2019
-
Leucine-rich repeat kinase 2 (LRRK2) is the single most common genetic cause of both familial and sporadic Parkinson's disease (PD), both of which share pathogenetic and neurologic similarities with human immunodeficiency virus 1 (HIV-1)-associated neurocognitive disorders (HAND). Pathologic LRRK2 activity may also contribute to neuroinflammation, because microglia lacking LRRK2 exposed to proinflammatory stimuli have attenuated responses. Because microglial activation is a hallmark of HIV-1 neuropathology, we have investigated the role of LRRK2 activation using in vitro and in vivo models of HAND. We hypothesize that LRRK2 is a key modulator of microglial inflammatory responses, which play a pathogenic role in both HAND and PD, and that these responses may cause or exacerbate neuronal damage in these diseases. The HIV-1 Tat protein is a potent neurotoxin produced during HAND that induces activation of primary microglia in culture and long-lasting neuroinflammation and neurotoxicity when injected into the ...Apr 1, 2015
-
Transient brain insults, including status epilepticus (SE), can trigger a period of epileptogenesis during which functional and structural reorganization of neuronal networks occurs resulting in the onset of focal epileptic seizures. In recent years, mechanisms that regulate the dynamic transcription of individual genes during epileptogenesis and thereby contribute to the development of a hyperexcitable neuronal network have been elucidated. Our own results have shown early growth response 1 (Egr1) to transiently increase expression of the T-type voltage-dependent Ca2+ channel (VDCC) subunit CaV3.2, a key proepileptogenic protein. However, epileptogenesis involves complex and dynamic transcriptomic alterations; and so far, our understanding of the transcriptional control mechanism of gene regulatory networks that act in the same processes is limited. Here, we have analyzed whether Egr1 acts as a key transcriptional regulator for genes contributing to the development of hyperexcitability during epileptogene...Apr 24, 2019
-
Although vascular endothelial growth factor (VEGFA-165) is primarily known for its role in angiogenesis, it also plays important neurotrophic and neuroprotective roles for spinal motor neurons. VEGFA-165 signals by activating its receptor tyrosine kinase VEGF receptor-2 (VEGFR-2). Because another growth/trophic factor that signals via a receptor tyrosine kinase (brain derived neurotrophic factor) elicits a long-lasting facilitation of respiratory motor activity in the phrenic nerve, we tested the hypothesis that VEGFA-165 elicits similar phrenic motor facilitation (pMF). Using immunohistochemistry and retrograde labeling techniques, we demonstrate that VEGFA-165 and VEGFR-2 are expressed in identified phrenic motor neurons. Furthermore, intrathecal VEGFA-165 administration at C4 elicits long-lasting pMF; intraspinal VEGFA-165 increased integrated phrenic nerve burst amplitude for at least 90 min after injection (53.1 ± 5.0% at 90 min; p < 0.001). Intrathecal VEGFA-165 increased phosphorylation (and presume...May 25, 2011
-
Olfactory receptor neurons in the lobster express a nonselective cation channel that is activated by intracellular Na+ and carries a substantial part of the depolarizing receptor current. Here, we show that phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and phosphatidylinositol 4-phosphate [PI(4)P] applied to the intracellular face of cell-free patches activate the channel in the absence of Na+and that antibodies against the respective phospholipids irreversibly inhibit the evoked activity. Further, we show that applying PI(4,5)P2 or PI(4)P in the presence of Na+ decreases the concentration of Na+ required to activate the channel from an EC50 of 74 to 22 mm for PI(4,5)P2 and to 29 mm for PI(4)P, respectively. Na+-gated channel activity was irreversibly inhibited by monoclonal antibodies against PI(4,5)P2 and PI(4)P in patches never exposed to exogenous phosphatidylinositols, suggesting that endogenous inositol phospholipids are required for the activation of the channel by intracellular Na+. Our finding...Apr 15, 1999
-
The establishment of functional retinal circuits in the mammalian retina depends critically on the proper generation and assembly of six classes of neurons, five of which consist of two or more subtypes that differ in morphologies, physiological properties, and/or sublaminar positions. How these diverse neuronal types and subtypes arise during retinogenesis still remains largely to be defined at the molecular level. Here we show that all four family members of the early B-cell factor (Ebf) helix-loop-helix transcription factors are similarly expressed during mouse retinogenesis in several neuronal types and subtypes including ganglion, amacrine, bipolar, and horizontal cells, and that their expression in ganglion cells depends on the ganglion cell specification factor Brn3b. Misexpressed Ebfs bias retinal precursors toward the fates of non-AII glycinergic amacrine, type 2 OFF-cone bipolar and horizontal cells, whereas a dominant-negative Ebf suppresses the differentiation of these cells as well as ganglion...Sep 8, 2010
-
The transient receptor potential melastatin 8 (TRPM8) ion channel is a major sensor of environmental cold temperatures. It is activated by cold and chemical agonists, such as menthol and icilin. The activation of these channels both by cold and cooling agents requires the presence of the membrane phospholipid phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. The mechanism of TRPM8 activation by physical and chemical factors is unknown, and the involvement of cellular signaling pathways has been considered. Here we have characterized the gating mechanism of the rat TRPM8 reconstituted in planar lipid bilayers and its activation by different stimuli. In this system, the influence of cellular signaling pathways can be excluded. We found that TRPM8 activated by cold exhibits steep temperature dependence [temperature coefficient ( Q 10) of ∼40], and the channel openings are accompanied by large changes in entropy and enthalpy, suggesting a substantial conformation change. TRPM8 channel behavior upon menthol an...Sep 15, 2010
-
Tau pathology was recently identified as a key driver of disease progression and an attractive therapeutic target in Alzheimer's disease (AD). Selenomethionine (Se-Met), a major bioactive form of selenium (Se) in organisms with significant antioxidant capacity, reduced the levels of total tau and hyperphosphorylated tau and ameliorated cognitive deficits in younger triple transgenic AD (3xTg-AD) mice. Whether Se-Met has a similar effect on tau pathology and the specific mechanism of action in older 3xTg-AD mice remains unknown. Autophagy is a major self-degradative process to maintain cellular homeostasis and function. Autophagic dysfunction has been implicated in the pathogenesis of multiple age-dependent diseases, including AD. Modulation of autophagy has been shown to retard the accumulation of misfolded and aggregated proteins and to delay the progression of AD. Here, we found that 3xTg-AD mice showed significant improvement in cognitive ability after a 3-month treatment with Se-Met beginning at 8 mont...Mar 1, 2017
-
Aquaporins are known as water channels; however, an additional ion channel function has been observed for several including aquaporin-1 (AQP1). Using primary cultures of rat choroid plexus, a brain tissue that secretes CSF and abundantly expresses AQP1, we confirmed the ion channel function of AQP1 and assessed its functional relevance. The cGMP-gated cationic conductance associated with AQP1 is activated by an endogenous receptor guanylate cyclase for atrial natriuretic peptide (ANP). Fluid transport assays with confluent polarized choroid plexus cultures showed that AQP1 current activation by 4.5 μm ANP decreases the normal basal-to-apical fluid transport in the choroid plexus; conversely, AQP1 block with 500 μm Cd2+ restores fluid transport. The cGMP-gated conductance in the choroid plexus is lost with targeted knockdown of AQP1 by small interfering RNA (siRNA), as confirmed by immunocytochemistry and whole-cell patch electrophysiology of transiently transfected cells identified by enhanced green fluore...Jul 26, 2006