Filter
-
(10)
21 - 30
of 68 results
-
Subventricular zone (SVZ) neurogenesis continuously provides new GABA- and dopamine (DA)-containing interneurons for the olfactory bulb (OB) in most adult mammals. DAergic interneurons are located in the glomerular layer (GL) where they participate in the processing of sensory inputs. To examine whether adult neurogenesis might contribute to regeneration after circuit injury in mice, we induce DAergic neuronal loss by injecting 6-hydroxydopamine (6-OHDA) in the dorsal GL or in the right substantia nigra pars compacta. We found that a 6-OHDA treatment of the OB produces olfactory deficits and local inflammation and partially decreases the number of neurons expressing the enzyme tyrosine hydroxylase (TH) near the injected site. Blockade of inflammation by minocycline treatment immediately after the 6-OHDA administration rescued neither TH+ interneuron number nor the olfactory deficits, suggesting that the olfactory impairments are most likely linked to TH+ cell death and not to microglial activation. TH+ int...Oct 22, 2014
-
The editors depend heavily on outside reviewers in forming opinions about papers submitted to JNeurosci and would like to formally thank the following individuals for their help during the past year. Gloster B. Aaron Nobuhito Abe Aman Aberra Jose Francisco Abisambra Alfonso Abizaid Karina P.Dec 15, 2021
-
Wnt/β-catenin is a neuroprotective pathway regulating cell fate commitment in the CNS and many vital functions of neurons and glia. Its dysregulation is linked to a number of neurodegenerative diseases. Wnt/β-catenin is also a repressor of HIV transcription in multiple cell types, including astrocytes, which are dysregulated in HIV-associated neurocognitive disorder. Given that HIV proteins can overcome host restriction factors and that perturbations of Wnt/β-catenin signaling can compromise astrocyte function, we evaluated the impact of HIV transactivator of transcription (Tat) on Wnt/β-catenin signaling in astrocytes. HIV clade B Tat, in primary progenitor-derived astrocytes and U87MG cells, inhibited Wnt/β-catenin signaling as demonstrated by its inhibition of active β-catenin, TOPflash reporter activity, and Axin-2 (a downstream target of Wnt/β-catenin signaling). Point mutations in either the core region (K41A) or the cysteine-rich region (C30G) of Tat abrogated its ability to inhibit β-catenin signal...Nov 14, 2012
-
Spontaneous brain activity builds the foundation for human cognitive processing during external demands. Neuroimaging studies based on functional magnetic resonance imaging (fMRI) identified specific characteristics of spontaneous (intrinsic) brain dynamics to be associated with individual differences in general cognitive ability, i.e., intelligence. However, fMRI research is inherently limited by low temporal resolution, thus, preventing conclusions about neural fluctuations within the range of milliseconds. Here, we used resting-state electroencephalographical (EEG) recordings from 144 healthy adults to test whether individual differences in intelligence (Raven’s Advanced Progressive Matrices scores) can be predicted from the complexity of temporally highly resolved intrinsic brain signals. We compared different operationalizations of brain signal complexity (multiscale entropy, Shannon entropy, Fuzzy entropy, and specific characteristics of microstates) regarding their relation to intelligence. The resu...Feb 1, 2023
-
Human immunodeficiency virus-associated neurological disease (HAND) still causes significant morbidity, despite success reducing viral loads with combination antiretroviral therapy. The dopamine (DA) system is particularly vulnerable in HAND. We hypothesize that early, “reversible” DAergic synaptic dysfunction occurs long before DAergic neuron loss. As such, aging human immunodeficiency virus (HIV)-infected individuals may be vulnerable to other age-related neurodegenerative diseases like Parkinson's disease (PD), underscoring the need to understand shared molecular targets in HAND and PD. Previously, we reported that the neurotoxic HIV-1 transactivating factor (Tat) acutely disrupts mitochondrial and endoplasmic reticulum calcium homeostasis via ryanodine receptor (RyR) activation. Here, we further report that Tat disrupts DA transporter (DAT) activity and function, resulting in increased plasma membrane (PM) DAT and increased DAT V max, without changes in K m or total DAT protein. Tat also increases calp...Oct 20, 2010
-
The simultaneous recording and analysis of electroencephalography (EEG) and fMRI data in human systems, cognitive and clinical neurosciences is rapidly evolving and has received substantial attention. The significance of multimodal brain imaging is documented by a steadily increasing number of laboratories now using simultaneous EEG-fMRI aiming to achieve both high temporal and spatial resolution of human brain function. Due to recent developments in technical and algorithmic instrumentation, the rate-limiting step in multimodal studies has shifted from data acquisition to analytic aspects. Here, we introduce and compare different methods for data integration and identify the benefits that come with each approach, guiding the reader toward an understanding and informed selection of the integration approach most suitable for addressing a particular research question.May 2, 2012
-
Slo2 Na+-activated potassium channels are widely expressed in neurons and other cells, such as kidney, heart, and skeletal muscle. Although their important physiological roles continue to be appreciated, molecular determinants responsible for sensing intracellular Na+ remain unknown. Here we report identification of an Na+ regulatory site, similar to an Na+ coordination motif described in Kir channels, localized in the RCK2 domain of Slo2.2 channels. Molecular simulations of the homology-modeled Slo2.2 RCK2 domain provided structural insights into the organization of this Na+ coordination site. Furthermore, free energy calculations reproduced the experimentally derived monovalent cation selectivity. Our results suggest that Slo2.2 and Kir channels share a similar mechanism to coordinate Na+. The localization of an Na+ sensor within the RCK2 domain of Slo2.2 further supports the role of RCK (regulators of conductance of K+) domains of Slo channels in coupling ion sensing to channel gating.Jun 2, 2010
-
An ultrastructural examination of mRNA within adult rat CA1 hippocampal dendrites was conducted using two different methods. The messages for the α and β forms of the calcium–calmodulin-dependent protein kinase II were localized in ultracryosections using silver-intensified gold detection of isoform-specific oligonucleotide probes. Labeling for both isoforms was observed within the cell bodies and proximal dendrites of pyramidal neurons, but only the α form was observed in more distal dendrites. Unfortunately, the morphological preservation of the tissue was not sufficient to determine the localization of labeling relative to subcellular features such as denritic spines. To address this issue, a preembedding peroxidase-based method was developed, resulting in better preservation of the neuropil. The total population of polyadenylated [poly(A)] mRNA was localized in hippocampus using a biotinylated poly(dT) probe. Poly(A) mRNA was present in the nucleus and throughout the cell body of all hippocampal cells ...Dec 1, 1996
-
We recorded hippocampal place cells in two spatial environments: a training environment in which rats underwent fear conditioning and a neutral control environment. Fear conditioning caused many place cells to alter (or remap) their preferred firing locations in the training environment, whereas most cells remained stable in the control environment. This finding indicates that aversive reinforcement can induce place cell remapping even when the environment itself remains unchanged. Furthermore, contextual fear conditioning caused significantly more remapping of place cells than auditory fear conditioning, suggesting that place cell remapping was related to the rat's learned fear of the environment. These results suggest that one possible function of place cell remapping may be to generate new spatial representations of a single environment, which could help the animal to discriminate among different motivational contexts within that environment.Aug 4, 2004
-
Previous neuroimaging investigations in attention-deficit/hyperactivity disorder (ADHD) have separately identified distributed structural and functional deficits, but interconnections between these deficits have not been explored. To unite these modalities in a common model, we used joint independent component analysis, a multivariate, multimodal method that identifies cohesive components that span modalities. Based on recent network models of ADHD, we hypothesized that altered relationships between large-scale networks, in particular, default mode network (DMN) and task-positive networks (TPNs), would co-occur with structural abnormalities in cognitive regulation regions. For 756 human participants in the ADHD-200 sample, we produced gray and white matter volume maps with voxel-based morphometry, as well as whole-brain functional connectomes. Joint independent component analysis was performed, and the resulting transmodal components were tested for differential expression in ADHD versus healthy controls. ...Dec 10, 2014