Society for Neuroscience - Search

Skip Navigation

  • join logo Join
  • give logo Give
  • advocate logo Advocate
  • publish logo Publish
Shop Sign In
SfN Logo 2025
  • Membership
    • Learn About Membership
      • Individual Member Benefits
      • Institutional Program Member Benefits
      • Sustaining Associate Member Benefits
      • Get Involved at SfN
    • Become a Member
      • Sponsorship Information for New Members
      • Membership Categories & Fees
      • Membership Fees for Developing Countries
      • Renew Individual Membership
    • Member Resources
      • Automatic Renewals
      • Frequently Asked Questions
      • Individual Member Directory
      • Member Obituaries and Memorial Donations
    • Learn About Local Chapters
      • Start or Reactivate a Chapter
      • Resources for Chapters
      • Submit Annual Report
      • Chapter Directory
      • Frequently Asked Questions
  • Meetings
    • Meetings Overview
    • Neuroscience 2025
      • Call for Abstracts
      • Sessions and Events
      • Registration
      • Housing and Travel
      • Exhibits
      • Dates and Deadlines
      • FAQs
    • Global Events
      • SfN Virtual Events
    • Past and Future Annual Meetings
      • Neuroscience 2024
      • Neuroscience 2023
      • Search Past Annual Meeting Abstracts
      • Attendance Statistics
    • Meeting Policies and Guidelines
      • Code of Conduct at SfN Events
      • Guidelines for Participating in SfN Events
      • Photography & Recording Policy
      • Presenter Guidelines and Policies for SfN Events
    • Meeting Awards
      • Trainee Professional Development Award
      • International Travel Awards
      • FENS Member Awards to SfN Annual Meeting
      • IBRO Member Awards to SfN Annual Meeting
      • JNS Member Awards to SfN Annual Meeting
  • Careers
    • Careers Overview
    • Institutional Program (IP) Directory
    • NeuroJobs Career Center
      • Job Seekers
      • Employers
    • 2025 Graduate School Fair
    • Career Tools and Resources
      • Neuronline
      • Neurobiology of Disease Workshop
      • Scientific Short Courses
      • Responsible Conduct of Research Short Courses
      • Global Funding Sources
    • Higher Education and Training
      • Core Competencies
      • Neuroscience Training Program Survey
    • Awards
      • Outstanding Career and Research Achievements
      • Early Career
  • Initiatives
    • Initiatives Overview
    • Awards
      • 2024 Award Recipients
      • Awards and Prizes FAQ
      • Trainee Professional Development Award
    • Neuroscience Scholars Program
    • Neuronline
      • Scientific Rigor and Reproducibility
    • Resources to Stay Connected
      • SfN Zoom Backgrounds
    • Diversity Initiatives
    • Women and Neuroscience
      • Increasing Women in Neuroscience (IWiN) Courses & Toolkit
      • Celebration of Women in Neuroscience Event
      • Awards
    • Animals in Research
      • Support for Members and Institutions
      • Tools and Resources
      • Resources for Medical Students
    • Public Education Programs
      • Resources for Educators
      • Brain Awareness Video Contest
      • Life of a Neuron Exhibit
  • Advocacy
    • Advocacy Overview
    • Advocacy Response
    • Advocacy Network
      • The NeuroAdvocate Challenge
      • Advocacy Action Center
      • Advocacy Best Practices
      • Advocacy Network News
      • Advocacy Training Seminars
    • US Advocacy Programs
      • Capitol Hill Day
      • Connect with Policymakers
      • Early Career Policy Ambassadors
      • Partner with a Local Chapter
      • Engage the Media
    • Global Advocacy Programs
      • Global Neuroscience Initiatives
      • Global Funding
      • North American Programs
    • Science Funding
      • Advocacy Videos
      • Advocacy Resources
      • US Neuroscience Initiatives
      • Funding Priorities and Processes
    • Policy Positions
      • Statements and Testimony
      • Sign-On Letters
  • Outreach
    • Outreach Overview
    • BrainFacts.org
    • Find a Neuroscientist
    • Brain Awareness Campaign
      • Webinar: The ABC's of BAW
      • How to Get Involved
    • Awards
      • Award for Education in Neuroscience
      • Next Generation Award
      • Chapter of the Year Award
      • Science Educator Award
  • Publications
    • Publications Overview
    • SfN News
    • JNeurosci
    • eNeuro
    • SfN Nexus
    • Neuroscience Quarterly
    • Annual Report
    • History of Neuroscience Autobiographical Chapters
  • About
    • About Overview
    • Mission and Strategic Plan
    • What We Do
      • Annual Report
      • Bylaws
      • Resolutions to the Bylaws
      • Environmental Commitment
      • Strategic Partners
      • History of SfN
    • SfN 50th Anniversary Celebration
    • NIH Public Health Service-Supported Funding Financial Conflict of Interest Policy
    • Volunteer
      • SfN Council
      • SfN Presidents
      • Committees
      • Elections
      • Call for Nominations
    • Professional Conduct
      • SfN Ethics Policy
      • Guidelines for Responsible Conduct Regarding Scientific Communication
      • Code of Conduct at SfN Events
      • Commitment to Scientific Integrity
      • Neuronline Digital Learning Community Guidelines
    • History of Neuroscience
      • Autobiographical Chapters
      • Autobiographical Videos of Prominent Neuroscientists
      • Classic Papers
      • Neuroscience History Resources
      • Robert Doty's Chapter on Neuroscience
    • Careers and Staff
      • Staff List
  1. Search

Filter

  • (3)
Filter
-9 - 0 of 15 results
  • Abstract
    C9ORF72 ALS patient motor neuron cultures exhibit protein-level dysregulation in mitochondrial cristae organization complexes
    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease affecting upper and lower motor neurons (MNs). While ALS is largely sporadic, intronic G4C2 repeats in C9ORF72 (C9-ALS) have been identified in a significant subset of famili...
    Nov 15, 2016
  • Abstract
    Proteomic analysis of motor neurons from induced pluripotent stem cells: ALS and SMA
    Amyotrophic lateral sclerosis (ALS) is an adult onset neurodegenerative condition in which loss of upper and lower motor neurons occurs, while Spinal Muscular Atrophy (SMA) affects only the lower motor neurons and occurs in infants and young children. I...
    Nov 15, 2016
  • Abstract
    The ultrastructural organization of the insulin knockout mouse brain.
    We have shown the synthesis of insulin by neurons in the brain in vivo and in vitro. Deltour et. al. showed insulin mRNA within the mouse brain (Proc.Natl.Acad. Sci. 90:527-531,1993). We demonstrated that neuron synthesized insulin [I((n)] promotes axonal growth and neurofilament distribution. The mouse expresses insulin I and II, codified by two genes. We studied the neuronal ultrastructure on the hippocampus and olfactory bulb in the 36 hrs old mouse in which the genes for insulin were knockout [I(-/-)] (Dr. J. Jami, INSERM, Paris, France). I(-/-) mice were diagnosed by the presence of glycosuria and negative pancreatic insulin immunoreaction (IMN). Control animals [I(+/+)] showed urine glucose of <10 mg/dl and positive pancreatic IMN. The neurons showed I(n) immunoreaction within the rough endoplasmic reticulum (RER), Golgi apparatus, soma, axons and dendrites. The neurons of the I(-/-) showed no I(n) immunoreaction. I(-/-) neuronal ultrastructure showed cell disorganization characterized by: swellin...
    Nov 7, 2000
  • AMPA Receptor Current Density, Not Desensitization, Predicts Selective Motoneuron Vulnerability | Journal of Neuroscience
    Spinal motoneurons are more susceptible to AMPA receptor-mediated injury than are other spinal neurons, a property that has been implicated in their selective degeneration in amyotrophic lateral sclerosis (ALS). The aim of this study was to determine whether this difference in vulnerability between motoneurons and other spinal neurons can be attributed to a difference in AMPA receptor desensitization and/or to a difference in density of functional AMPA receptors. Spinal motoneurons and dorsal horn neurons were isolated from embryonic rats and cultured on spinal astrocytes. Single-cell RT-PCR quantification of the relative abundance of the flip and flop isoforms of the AMPA receptor subunits, which are known to affect receptor desensitization, did not reveal any difference between the two cell populations. Examination of AMPA receptor desensitization by patch-clamp electrophysiological measurements on nucleated and outside-out patches and in the whole-cell mode also yielded similar results for the two cell ...
    Oct 1, 2000 Wim Vandenberghe
  • Disease Modeling with Human Neurons Reveals LMNB1 Dysregulation Underlying DYT1 Dystonia | Journal of Neuroscience
    DYT1 dystonia is a hereditary neurologic movement disorder characterized by uncontrollable muscle contractions. It is caused by a heterozygous mutation in Torsin A ( TOR1A ), a gene encoding a membrane-embedded ATPase. While animal models provide insights into disease mechanisms, significant species-dependent differences exist since animals with the identical heterozygous mutation fail to show pathology. Here, we model DYT1 by using human patient-specific cholinergic motor neurons (MNs) that are generated through either direct conversion of patients' skin fibroblasts or differentiation of induced pluripotent stem cells (iPSCs). These human MNs with the heterozygous TOR1A mutation show reduced neurite length and branches, markedly thickened nuclear lamina, disrupted nuclear morphology, and impaired nucleocytoplasmic transport (NCT) of mRNAs and proteins, whereas they lack the perinuclear “blebs” that are often observed in animal models. Furthermore, we uncover that the nuclear lamina protein LMNB1 is upregu...
    Mar 3, 2021 Baojin Ding
  • Assembling a Coculture System to Prepare Highly Pure Induced Pluripotent Stem Cell-Derived Neurons at Late Maturation Stages | eNeuro
    Generation of human induced pluripotent stem cell (hiPSC)-derived motor neurons (MNs) offers an unprecedented approach to modeling movement disorders such as dystonia and amyotrophic lateral sclerosis. However, achieving survival poses a significant challenge when culturing induced MNs, especially when aiming to reach late maturation stages. Utilizing hiPSC-derived motor neurons and primary mouse astrocytes, we assembled two types of coculture systems: direct coculturing of neurons with astrocytes and indirect coculture using culture inserts that physically separate neurons and astrocytes. Both systems significantly enhance neuron survival. Compared with these two systems, no significant differences in neurodevelopment, maturation, and survival within 3 weeks, allowing to prepare neurons at maturation stages. Using the indirect coculture system, we obtained highly pure MNs at the late mature stage from hiPSCs. Transcriptomic studies of hiPSC-derived MNs showed a typical neurodevelopmental switch in gene ex...
    Jul 1, 2024 Masuma Akter
  • Deletion of Sod1 in Motor Neurons Exacerbates Age-Related Changes in Axons and Neuromuscular Junctions in Mice | eNeuro
    Whole-body knock-out of Cu,Zn superoxide dismutase (Sod1KO) results in accelerated, age-related loss of muscle mass and function associated with neuromuscular junction (NMJ) breakdown similar to sarcopenia. In order to determine whether altered redox in motor neurons underlies this phenotype, an inducible neuron-specific deletion of Sod1 (i-mnSod1KO) was compared with wild-type (WT) mice of different ages (adult, mid-age, and old) and whole-body Sod1KO mice. Nerve oxidative damage, motor neuron numbers and structural changes to neurons and NMJ were examined. Tamoxifen-induced deletion of neuronal Sod1 from two months of age. No specific effect of a lack of neuronal Sod1 was seen on markers of nerve oxidation (electron paramagnetic resonance of an in vivo spin probe, protein carbonyl, or protein 3-nitrotyrosine contents). i-mnSod1KO mice showed increased denervated NMJ, reduced numbers of large axons and increased number of small axons compared with old WT mice. A large proportion of the innervated NMJs in ...
    Mar 1, 2023 N. Pollock
  • Synaptic Input and ACh Modulation Regulate Dendritic Ca2+ Spike Duration in Pyramidal Neurons, Directly Affecting Their Somatic Output | Journal of Neuroscience
    Nonlinear synaptic integration in dendrites is a fundamental aspect of neural computation. One such key mechanism is the Ca2+ spike at the apical tuft of pyramidal neurons. Characterized by a plateau potential sustained for tens of milliseconds, the Ca2+ spike amplifies excitatory input, facilitates somatic action potentials (APs), and promotes synaptic plasticity. Despite its essential role, the mechanisms regulating it are largely unknown. Using a compartmental model of a layer 5 pyramidal cell (L5PC), we explored the plateau and termination phases of the Ca2+ spike under input current perturbations, long-step current-injections, and variations in the dendritic high-voltage-activated Ca2+ conductance (that occur during cholinergic modulation). We found that, surprisingly, timed excitatory input can shorten the Ca2+ spike duration while inhibitory input can either elongate or terminate it. A significant elongation also occurs when the high-voltage-activated Ca2+ channels (CaHVA) conductance is increased. ...
    Feb 16, 2022 Amir Dudai
  • Crossed Rhythmic Synaptic Input to Motoneurons during Selective Activation of the Contralateral Spinal Locomotor Network | Journal of Neuroscience
    To investigate the cellular mechanisms underlying locomotor-related left–right coordination, we monitored the crossed synaptic input to lumbar motoneurons during contralateral ventral root rhythmicity in the neonatal rat spinal cord in vitro . Using a longitudinal split-bath setup, one hemicord was kept in normal solution, whereas the contralateral hemicord was exposed to 5-HT and NMDA. With this approach, rhythmic bursting could be induced in the ventral roots on the agonist-exposed side, whereas the ventral roots on the agonist-free side remained silent. Intracellular recordings were made from L1–L3 motoneurons on the silent agonist-free side during rhythmic activity in the contralateral ventral roots. At the resting membrane potential, the typical crossed synaptic input was a rhythmic barrage of depolarizing IPSPs. This input modulated the frequency of spikes induced with depolarizing direct current by inhibiting firing in phase with the contralateral bursts. Intracellular chloride loading increased the...
    Dec 15, 1997 Ole Kjaerulff
  • A Novel Mode of Sympathetic Reflex Activation Mediated by the Enteric Nervous System | eNeuro
    Enteric viscerofugal neurons provide a pathway by which the enteric nervous system (ENS), otherwise confined to the gut wall, can activate sympathetic neurons in prevertebral ganglia. Firing transmitted through these pathways is currently considered fundamentally mechanosensory. The mouse colon generates a cyclical pattern of neurogenic contractile activity, called the colonic motor complex (CMC). Motor complexes involve a highly coordinated firing pattern in myenteric neurons with a frequency of ∼2 Hz. However, it remains unknown how viscerofugal neurons are activated and communicate with the sympathetic nervous system during this naturally-occurring motor pattern. Here, viscerofugal neurons were recorded extracellularly from rectal nerve trunks in isolated tube and flat-sheet preparations of mouse colon held at fixed circumferential length. In freshly dissected preparations, motor complexes were associated with bursts of viscerofugal firing at 2 Hz that aligned with 2-Hz smooth muscle voltage oscillation...
    Jul 1, 2020 T. J. Hibberd
  • Previous
  • 1
  • 2
  • Next

Featured

  • SfN Officers and Councilors Election is Now Open
  • Apply for the CNS Meeting Travel Awards before May 30
  • Apply for SfN Awards and Prizes before May 15
SfN Websites
  • BrainFacts.org logo
  • eNeuro logo
  • JNeurosci logo
  • Neuronline logo
Engage with SfN
  • join Join
  • give Give
  • advocate Advocate
  • publish Publish
Quick Links
  • SfN News
  • For Press
  • Global Events
  • Contact Us
  • Advertise
  • Code of Conduct
  • Jobs at SfN
  • SfN Store
  • Social Media
Follow SfN
  • BlueSky logo
  • Facebook logo
  • Instagram logo
  • LinkedIn logo

  • Threads logo
  • X Logo
  • YouTube logo
SfN logo with "SfN" in a blue box next to Society for Neuroscience in red text and the SfN tag line that reads "Advancing the understanding of the brain and nervous system"
1121 14th Street NW, Suite 1010, Washington, D.C. 20005
(202) 962-4000 | 1-888-985-9246
  • Accessibility Policy
  • Disclaimer
  • Privacy Notice
  • Contact Us

Copyright ©
Society for Neuroscience