Filter
-
(222)
-
(175)
-
(7)
-
(184)
-
(66)
-
(10)
-
(253)
-
(91)
-
(1)
-
(48)
-
(413)
-
(16)
-
(34)
-
(782)
-
(44)
-
(13)
-
(172679)
-
(476)
-
(476)
-
(554)
981 - 990
of 222334 results
-
-
-
SfN News Advocacy Research & Journals News from SfNRead advocacy news from the week of May 6, 2016.May 6, 2016
-
Aversion modulation is a key component of hedonic processing, and its dysfunction is evident in psychiatric illnesses. The infralimbic cortex (IL) to nucleus accumbens shell (NAcSh) pathway is essential in hedonic processing in rodents but operates differentially across sex, with beta (20 Hz) oscillatory activity involved in learned aversion in male but not female rats. In this study, we used taste reactivity (TR) and electrophysiology to examine the role of high gamma (80 Hz) activity in affect modulation, specifically innate (quinine) and learned (conditioned taste aversion, CTA) aversion, in male and female Sprague-Dawley rats. Local field potential recordings (LFP) in males showed no changes in IL or NAcSh activity, or in IL-NAcSh functional connectivity, in the high gamma frequency band during innate or learned aversion. In contrast, in females, quinine elicited an increase in IL and NAcSh 80 Hz LFP activity and IL-NAcSh functional connectivity. Interestingly, LFP directionality analyses in females in...Aug 25, 2025
-
SfN News Meetings News from SfNPeer Review Week (September 19 – 25) is a global event celebrating the essential role that peer review plays in maintaining scientific quality. Check out SfN's resources »Sep 19, 2016
-
SfN News Careers Meetings Membership Training News from SfNFewer than 10 booths are left to reserve at the Graduate School Fair taking place at Neuroscience 2016. Register today »Jul 18, 2016
-
Older adults often have difficulty understanding speech in a noisy environment or with multiple speakers. In such situations, binaural hearing improves the signal-to-noise ratio. How does this binaural advantage change with increasing age? Using magnetoencephalography, we recorded cortical activity evoked by changes in interaural phase differences of amplitude-modulated tones. These responses occurred for frequencies up to 1225 Hz in young subjects but only up to 940 Hz in middle-aged and 760 Hz in older adults. Behavioral thresholds also decreased with increasing age but were more variable, likely because some older adults make effective use of compensatory mechanisms. The reduced frequency range for binaural hearing became significant in middle age, before decline in hearing sensation and the morphology of cortical responses, which became apparent only in the older subjects. This study provides evidence from human physiological data for the early onset of biological aging in binaural hearing.Oct 17, 2007
-
Previous research suggests that stress predisposes individuals to develop substance use disorders by disrupting the brain processing of rewards. Yet, how stressful experiences disrupt the brain processing of reward-related cues at the neuronal level is poorly understood. Intermittent social defeat (ISD) is a stress animal model that increases reward-seeking behavior, drug self-administration, and choice impulsivity up to several weeks after stress. We tested the hypothesis that ISD disrupts the neuronal encoding of reward cues in key areas of the brain that regulate reward-seeking. We examined in vivo neuronal dynamics in response to reward cues in the dorsal medial prefrontal cortex (dmPFC) and the ventral tegmental area (VTA) simultaneously, and longitudinally, in control and stressed Long–Evans male rats during a discriminative stimulus reward-seeking task. In the dmPFC, ISD decreased cue-evoked neuronal activity 1 and 15 d after stress, which indicates a long-term degradation of outcome anticipation-re...Jul 1, 2025
-
Extracellular recordings in freely moving mice, especially those with movable electrodes (microdrives), are crucial for understanding brain function. However, existing microdrives are often heavy, expensive, fragile, and unsuited for long-term studies with multichannel recordings. The OptoDrive is a new, lightweight (3.2 g), low-cost system for chronic neural recordings and optogenetic manipulation in mice. It features a detachable, 16-channel tungsten-wire electrode assembly with a 3 mm stroke (15 μm step displacement) and an integrated optical fiber. This system enables repeated implantation and explantation without surgery, requiring only gas anesthesia. The OptoDrive has demonstrated stable recordings from the lateral hypothalamus of freely behaving mice for nearly 1 month and successful optogenetic silencing of neuronal activity. In conclusion, OptoDrive offers a cost-effective, compact solution for long-term electrophysiology and optogenetics in freely moving mice.Jun 1, 2025
-