Society for Neuroscience - Search

Skip Navigation

  • join logo Join
  • give logo Give
  • advocate logo Advocate
  • publish logo Publish
  • Icon with thought bubbles Learn
Shop Sign In
SfN Logo 2025
  • Membership
    • Learn About Membership
      • Individual Member Benefits
      • Institutional Program Member Benefits
      • Sustaining Associate Member Benefits
      • Get Involved at SfN
    • Become a Member
      • Sponsorship Information for New Members
      • Membership Categories & Fees
      • Membership Fees for Developing Countries
      • Renew Individual Membership
    • Member Resources
      • Automatic Renewals
      • Frequently Asked Questions
      • Individual Member Directory
      • Member Obituaries and Memorial Donations
    • Learn About Local Chapters
      • Start or Reactivate a Chapter
      • Resources for Chapters
      • Submit Annual Report
      • Chapter Directory
      • Frequently Asked Questions
  • Meetings
    • Meetings Overview
    • Neuroscience 2025
      • Call for Abstracts
      • Sessions and Events
      • Registration
      • Housing and Travel
      • Exhibits
      • Dates and Deadlines
      • Advertising and Sponsorship
      • FAQs
    • Global Events
      • SfN Virtual Events
    • Past and Future Annual Meetings
      • Neuroscience 2024
      • Neuroscience 2023
      • Search Past Annual Meeting Abstracts
      • Attendance Statistics
    • Meeting Policies and Guidelines
      • Code of Conduct at SfN Events
      • Guidelines for Participating in SfN Events
      • Photography & Recording Policy
      • Presenter Guidelines and Policies for SfN Events
    • Meeting Awards
      • Trainee Professional Development Award
      • International Travel Awards
      • FENS Member Awards to SfN Annual Meeting
      • IBRO Member Awards to SfN Annual Meeting
      • JNS Member Awards to SfN Annual Meeting
  • Careers
    • Careers Overview
    • Institutional Program (IP) Directory
    • NeuroJobs Career Center
      • Job Seekers
      • Employers
    • 2025 Graduate School Fair
    • Career Tools and Resources
      • Neuronline
      • Neurobiology of Disease Workshop
      • Responsible Conduct of Research Short Courses
      • Global Funding Sources
    • Higher Education and Training
      • Core Competencies
      • Neuroscience Training Program Survey
    • Awards
      • Outstanding Career and Research Achievements
      • Early Career
  • Initiatives
    • Initiatives Overview
    • Awards
      • 2024 Award Recipients
      • Awards and Prizes FAQ
      • Trainee Professional Development Award
    • Neuroscience Scholars Program
    • Neuronline
      • Attend
      • Read
      • Watch
      • Listen
      • Collections
    • Resources to Stay Connected
      • SfN Zoom Backgrounds
    • Diversity Initiatives
    • Women and Neuroscience
      • Increasing Women in Neuroscience (IWiN) Courses & Toolkit
      • Celebration of Women in Neuroscience Event
      • Awards
    • Animals in Research
      • Support for Members and Institutions
      • Tools and Resources
      • Resources for Medical Students
    • Public Education Programs
      • Resources for Educators
      • Brain Awareness Video Contest
      • Life of a Neuron Exhibit
  • Advocacy
    • Advocacy Overview
    • Advocacy Response
    • Advocacy Network
      • The NeuroAdvocate Challenge
      • Advocacy Action Center
      • Advocacy Best Practices
      • Advocacy Network News
      • Advocacy Training Seminars
    • US Advocacy Programs
      • Capitol Hill Day
      • Connect with Policymakers
      • Early Career Policy Ambassadors
      • Partner with a Local Chapter
      • Engage the Media
    • Global Advocacy Programs
      • Global Neuroscience Initiatives
      • Global Funding
      • North American Programs
    • Science Funding
      • Advocacy Videos
      • Advocacy Resources
      • US Neuroscience Initiatives
      • Funding Priorities and Processes
    • Policy Positions
      • Statements and Testimony
      • Sign-On Letters
  • Outreach
    • Outreach Overview
    • BrainFacts.org
    • Find a Neuroscientist
    • Brain Awareness Campaign
      • Webinar: The ABC's of BAW
      • How to Get Involved
    • Awards
      • Award for Education in Neuroscience
      • Next Generation Award
      • Chapter of the Year Award
      • Science Educator Award
  • Publications
    • Publications Overview
    • SfN News
    • JNeurosci
    • eNeuro
    • SfN Nexus
    • Neuroscience Quarterly
    • Annual Report
    • History of Neuroscience Autobiographical Chapters
  • About
    • About Overview
    • Mission and Strategic Plan
    • What We Do
      • Annual Report
      • Bylaws
      • Resolutions to the Bylaws
      • Environmental Commitment
      • Strategic Partners
      • History of SfN
    • SfN 50th Anniversary Celebration
    • NIH Public Health Service-Supported Funding Financial Conflict of Interest Policy
    • Volunteer
      • SfN Council
      • SfN Presidents
      • Committees
      • Elections
      • Call for Nominations
    • Professional Conduct
      • SfN Ethics Policy
      • Guidelines for Responsible Conduct Regarding Scientific Communication
      • Code of Conduct at SfN Events
      • Commitment to Scientific Integrity
      • Neuronline Digital Learning Community Guidelines
    • History of Neuroscience
      • Autobiographical Chapters
      • Autobiographical Videos of Prominent Neuroscientists
      • Classic Papers
      • Neuroscience History Resources
      • Robert Doty's Chapter on Neuroscience
    • Careers and Staff
      • Staff List
  1. Search

Filter

  • (2)
  • (4)
  • (4)
  • (5)
  • (6)
  • (17)
  • (4495)
  • (15)
  • (7)
  • (15)
Filter
471 - 480 of 19679 results
  • Regional differences in microtubule dynamics in the axon | Journal of Neuroscience
    We have used an indirect method to compare the dynamic properties of microtubules (MTs) in the main shaft and distal regions of the axon. Individual MTs are staggered along the length of the axon and consist of a labile domain situated at the plus end of a stable domain (Baas and Black, 1990). As a result of this organization and the plus-end- distal orientation of axonal MTs, the most distal region of the axon consists entirely of labile domains, while the main shaft consists of a mixture of labile and stable domains. In this study, we wished to determine whether the labile domains extending into the distal axon differ in their dynamic properties from the labile domains terminating in the main shaft. To address this issue, we used immunoelectron microscopy to compare the tyrosination state of the labile domains terminating in these 2 axon regions. Because detyrosination is a polymerspecific modification of alpha-tubulin that accumulates with time, the levels of tyrosinated alpha-tubulin will be a reflecti...
    Feb 1, 1993 FJ Ahmad
  • Microtubule Stability Decreases Axon Elongation but Not Axoplasm Production | Journal of Neuroscience
    Microtubules are a primary cytoskeletal constituent of axons and growth cones. In addition to serving as a scaffolding for axon assembly, they also provide a means of transport of organelles that are essential for outgrowth and maintenance of synaptic function. Pharmacological manipulations that disrupt net assembly of microtubules also interfere with growth cone advance and axon extension. Less is known about the effects of disrupting microtubule dynamics without affecting net assembly. To investigate this, we studied the effects of low doses of nocodazole on axon extension and microtubule organization in rat superior cervical ganglion neurons. We report that 165–330 nm nocodazole significantly reduces axon extension rate and increases axon diameter without affecting the rate of production of axoplasm or microtubule polymer, and without decreasing the average length or number of microtubules. Two observations suggested that microtubule dynamics were depressed by this dose of nocodazole. First, this treatm...
    May 15, 1996 M. William Rochlin
  • Mitofusin2 Mutations Disrupt Axonal Mitochondrial Positioning and Promote Axon Degeneration | Journal of Neuroscience
    Alterations in mitochondrial dynamics (fission, fusion, and movement) are implicated in many neurodegenerative diseases, from rare genetic disorders such as Charcot-Marie-Tooth disease, to common conditions including Alzheimer's disease. However, the relationship between altered mitochondrial dynamics and neurodegeneration is incompletely understood. Here we show that disease associated MFN2 proteins suppressed both mitochondrial fusion and transport, and produced classic features of segmental axonal degeneration without cell body death, including neurofilament filled swellings, loss of calcium homeostasis, and accumulation of reactive oxygen species. By contrast, depletion of Opa1 suppressed mitochondrial fusion while sparing transport, and did not induce axonal degeneration. Axon degeneration induced by mutant MFN2 proteins correlated with the disruption of the proper mitochondrial positioning within axons, rather than loss of overall mitochondrial movement, or global mitochondrial dysfunction. We also f...
    Mar 21, 2012 Albert L. Misko
  • Abstract
    DCLK1 phosphorylates the microtubule-associated protein MAP7D1 to promote axon elongation in cortical neurons
    Doublecortin-like kinase 1 (DCLK1) is a neuronal serine-threonine protein kinase that is a closely related family protein of Doublecortin (DCX) originally identified as a causative gene product of human cortical malformation. DCLK1 contains the microtub...
    Nov 16, 2016
  • Abstract
    Enhancing neuronal activity by melanopsin/GPCR signaling promotes axon regeneration in the adult CNS
    During development, neuronal activity is essential for axon guidance and wiring. However, its function in axonal regeneration in the mature CNS remains elusive. We found that overexpression of the light-sensitive GPCR melanopsin in the retina enhanced n...
    Nov 14, 2016
  • Abstract
    Rhoa knockdown by pgp/rhoa sirna nanoparticle increases axon growth after spinal cord injury
    Spinal cord injury results in permanent disruption of axonal pathways that leads to loss of motor and sensory function. The long-term goal of our work is to develop neuron-specific polymeric micelle nanoparticles for combinatorial delivery of bioactive ...
    Nov 14, 2016
  • Abstract
    Influence of altered DNA methylation on axon growth capacity following preconditioning peripheral nerve injury
    Although mature CNS neurons do not spontaneously regenerate injured axons, conditioning injury (CI) to the peripheral branches of DRG sensory neurons can robustly upregulate regeneration-associated genes (RAGs) and thereby enhance central axon regenerat...
    Nov 13, 2016
  • Abstract
    Deep sequencing transcriptome of axoplasm from regenerating axon tips in the lamprey spinal cord
    Intra-axonal protein synthesis plays an important role in axon growth during development, in peripheral nerve regeneration and in vitro. Previous studies showed axons contain hundreds to thousands of mRNAs in their growth cones by microarray or next-gen...
    Nov 13, 2016
  • Abstract
    LPA pathway modulates intrinsic axon growth of intact CNS neurons after spinal cord injury
    Neurons in the adult central nervous system (CNS) are unable to regenerate after spinal cord injury (SCI) due to an inhibitory environment and a decreased intrinsic growth capacity. Modulating environmental inhibitors and their neuronal receptors such a...
    Nov 13, 2016
  • Identification of a Novel Axon Regeneration Role for Noncanonical Wnt Signaling in the Adult Retina after Injury | eNeuro
    Canonical and noncanonical Wnt signaling pathways are essential for development and maintenance of the CNS. Whereas the roles of canonical Wnt pathways in neuronal survival and axonal regeneration in adult CNS have been described, the functions of noncanonical Wnt pathways are not well understood. Furthermore, the role of noncanonical Wnt ligands in the adult retina has not been investigated. Noncanonical Wnt signaling shares receptors with canonical Wnt ligands but functions through calcium and c-Jun N-terminal kinase (JNK) signaling pathways. Noncanonical ligands, such as the prototypic ligand Wnt5a, have varying effects in the developing CNS, including inhibiting or promoting axonal growth. To identify a role for noncanonical Wnt signaling in the developed retina after injury, we characterized the effect of Wnt5a on neurite outgrowth in cultured retinal ganglion cell (RGC) neurons and on axonal regeneration in the injured optic nerve in the mouse. Endogenous Wnt5a was upregulated after injury and exogen...
    Jul 1, 2022 Ganeswara Rao Musada
  • Previous
  • 46
  • 47
  • 48
  • 49
  • 50
  • Next

Featured

  • Watch: The Inspiration Behind the Neuroscience 2025 Logo
  • Upcoming Webinar: JNeurosci Town Hall
  • Find a Roommate for Neuroscience 2025 in the Roommate Matching Forum
SfN Websites
  • BrainFacts.org logo
  • eNeuro logo
  • JNeurosci logo
  • Neuronline logo
Engage with SfN
  • join Join
  • give Give
  • advocate Advocate
  • publish Publish
Quick Links
  • SfN News
  • For Press
  • Global Events
  • Contact Us
  • Advertise
  • Code of Conduct
  • Jobs at SfN
  • SfN Store
  • Social Media
Follow SfN
  • BlueSky logo
  • Facebook logo
  • Instagram logo
  • LinkedIn logo

  • Threads logo
  • X Logo
  • YouTube logo
SfN logo with "SfN" in a blue box next to Society for Neuroscience in red text and the SfN tag line that reads "Advancing the understanding of the brain and nervous system"
1121 14th Street NW, Suite 1010, Washington, D.C. 20005
(202) 962-4000 | 1-888-985-9246
  • Accessibility Policy
  • Disclaimer
  • Privacy Notice
  • Contact Us

Copyright ©
Society for Neuroscience