Society for Neuroscience - Search

Skip Navigation

  • join logo Join
  • give logo Give
  • advocate logo Advocate
  • publish logo Publish
  • Icon with thought bubbles Learn
Shop Sign In
SfN Logo 2025
  • Membership
    • Learn About Membership
      • Individual Member Benefits
      • Institutional Program Member Benefits
      • Sustaining Associate Member Benefits
      • Get Involved at SfN
    • Become a Member
      • Sponsorship Information for New Members
      • Membership Categories & Fees
      • Membership Fees for Developing Countries
      • Renew Individual Membership
    • Member Resources
      • Automatic Renewals
      • Frequently Asked Questions
      • Individual Member Directory
      • Member Obituaries and Memorial Donations
    • Learn About Local Chapters
      • Start or Reactivate a Chapter
      • Resources for Chapters
      • Submit Annual Report
      • Chapter Directory
      • Frequently Asked Questions
  • Meetings
    • Meetings Overview
    • Neuroscience 2025
      • Call for Abstracts
      • Sessions and Events
      • Registration
      • Housing and Travel
      • Exhibits
      • Dates and Deadlines
      • Advertising and Sponsorship
      • FAQs
    • Global Events
      • SfN Virtual Events
    • Past and Future Annual Meetings
      • Neuroscience 2024
      • Neuroscience 2023
      • Search Past Annual Meeting Abstracts
      • Attendance Statistics
    • Meeting Policies and Guidelines
      • Code of Conduct at SfN Events
      • Guidelines for Participating in SfN Events
      • Photography & Recording Policy
      • Presenter Guidelines and Policies for SfN Events
    • Meeting Awards
      • Trainee Professional Development Award
      • International Travel Awards
      • FENS Member Awards to SfN Annual Meeting
      • IBRO Member Awards to SfN Annual Meeting
      • JNS Member Awards to SfN Annual Meeting
  • Careers
    • Careers Overview
    • Institutional Program (IP) Directory
    • NeuroJobs Career Center
      • Job Seekers
      • Employers
    • 2025 Graduate School Fair
    • Career Tools and Resources
      • Neuronline
      • Neurobiology of Disease Workshop
      • Responsible Conduct of Research Short Courses
      • Global Funding Sources
    • Higher Education and Training
      • Core Competencies
      • Neuroscience Training Program Survey
    • Awards
      • Outstanding Career and Research Achievements
      • Early Career
  • Initiatives
    • Initiatives Overview
    • Awards
      • 2024 Award Recipients
      • Awards and Prizes FAQ
      • Trainee Professional Development Award
    • Neuroscience Scholars Program
    • Neuronline
      • Attend
      • Read
      • Watch
      • Listen
      • Collections
    • Resources to Stay Connected
      • SfN Zoom Backgrounds
    • Diversity Initiatives
    • Women and Neuroscience
      • Increasing Women in Neuroscience (IWiN) Courses & Toolkit
      • Celebration of Women in Neuroscience Event
      • Awards
    • Animals in Research
      • Support for Members and Institutions
      • Tools and Resources
      • Resources for Medical Students
    • Public Education Programs
      • Resources for Educators
      • Brain Awareness Video Contest
      • Life of a Neuron Exhibit
  • Advocacy
    • Advocacy Overview
    • Advocacy Response
    • Advocacy Network
      • The NeuroAdvocate Challenge
      • Advocacy Action Center
      • Advocacy Best Practices
      • Advocacy Network News
      • Advocacy Training Seminars
    • US Advocacy Programs
      • Capitol Hill Day
      • Connect with Policymakers
      • Early Career Policy Ambassadors
      • Partner with a Local Chapter
      • Engage the Media
    • Global Advocacy Programs
      • Global Neuroscience Initiatives
      • Global Funding
      • North American Programs
    • Science Funding
      • Advocacy Videos
      • Advocacy Resources
      • US Neuroscience Initiatives
      • Funding Priorities and Processes
    • Policy Positions
      • Statements and Testimony
      • Sign-On Letters
  • Outreach
    • Outreach Overview
    • BrainFacts.org
    • Find a Neuroscientist
    • Brain Awareness Campaign
      • Webinar: The ABC's of BAW
      • How to Get Involved
    • Awards
      • Award for Education in Neuroscience
      • Next Generation Award
      • Chapter of the Year Award
      • Science Educator Award
  • Publications
    • Publications Overview
    • SfN News
    • JNeurosci
    • eNeuro
    • SfN Nexus
    • Neuroscience Quarterly
    • Annual Report
    • History of Neuroscience Autobiographical Chapters
  • About
    • About Overview
    • Mission and Strategic Plan
    • What We Do
      • Annual Report
      • Bylaws
      • Resolutions to the Bylaws
      • Environmental Commitment
      • Strategic Partners
      • History of SfN
    • SfN 50th Anniversary Celebration
    • NIH Public Health Service-Supported Funding Financial Conflict of Interest Policy
    • Volunteer
      • SfN Council
      • SfN Presidents
      • Committees
      • Elections
      • Call for Nominations
    • Professional Conduct
      • SfN Ethics Policy
      • Guidelines for Responsible Conduct Regarding Scientific Communication
      • Code of Conduct at SfN Events
      • Commitment to Scientific Integrity
      • Neuronline Digital Learning Community Guidelines
    • History of Neuroscience
      • Autobiographical Chapters
      • Autobiographical Videos of Prominent Neuroscientists
      • Classic Papers
      • Neuroscience History Resources
      • Robert Doty's Chapter on Neuroscience
    • Careers and Staff
      • Staff List
  1. Search

Filter

  • (2)
  • (4)
  • (4)
  • (5)
  • (6)
  • (17)
  • (4495)
  • (15)
  • (7)
  • (15)
Filter
461 - 470 of 19679 results
  • Abstract
    Replacement of GAP-43 and CAP-23 induces spinal cord axon regeneration.
    In vivo , peripheral nerve injury enables adult dorsal root ganglion (DRG) neurons to support regeneration of their spinal cord axons (Richardson & Issa, Nature 309:79,1984. It is not known which of the genes induced by this injury are needed for regeneration. In vitro, combined expression of GAP-43 and CAP-23, two prominent growth cone proteins, can mimic peripheral nerve injury in triggering the extension of long axons by adult DRG neurons (Bomze et. al, this volume). To determine whether replacement of these two proteins is sufficient to induce regeneration in vivo, we made bilateral dorsal column lesions that sever the central axons of DRG neurons in wild-type mice and in transgenic animals expressing both GAP-43 and CAP-23. A segment of peripheral nerve (sciatic) was resected on one side and grafted into the lesion site. After 1-4 months, diI was introduced into the distal end of the graft to retrogradely label the cell bodies of those axons that had regenerated into the graft. DRG subjected to the pe...
    Nov 6, 2000
  • Abstract
    The role of the axon in dynamic firing properties of motoneuron models.
    Previous attempts to model motoneuron action potentials, spike frequency adaptation, and steady-state repetitive discharge behavior have relied on geometrically simple models that do not explicitly represent the myelinated axon of the neuron. However, there is evidence that action potential initiation (API), from current injection into the cell body or excitatory synaptic input, takes place not in the cell body or initial segment, but in a node of the myelinated axon. The goal of this study was to develop motoneuron models that represent the complete neuronal architecture, and the ion channel type and density in the different neural elements. The models consisted of a myelinated axon, initial segment, soma, and either a three-dimensional branching dendritic tree or a single equivalent tapering cylinder. The nodes of the axon had fast sodium (INa), persistant sodium (INap), slow potassium, and leakage (IL) channels. The initial segment had INa, INap, delayed rectifier potassium (IKdr), and IL channels. The ...
    Nov 6, 2000
  • Functional Regrowth of Norepinephrine Axons in the Adult Mouse Brain Following Injury | eNeuro
    It is widely believed that axons in the central nervous system of adult mammals do not regrow following injury. This failure is thought, at least in part, to underlie the limited recovery of function following injury to the brain or spinal cord. Some studies of fixed tissue have suggested that, counter to dogma, norepinephrine (NE) axons regrow following brain injury. Here, we have used in vivo two-photon microscopy in layer 1 of the primary somatosensory cortex in transgenic mice harboring a fluorophore selectively expressed in NE neurons. This protocol allowed us to explore the dynamic nature of NE axons following injury with the selective NE axon toxin N -(2-chloroethyl)- N -ethyl-2-bromobenzylamine (DSP4). Following DSP4, NE axons were massively depleted and then slowly and partially recovered their density over a period of weeks. This regrowth was dominated by new axons entering the imaged volume. There was almost no contribution from local sprouting from spared NE axons. Regrown axons did not appear ...
    Jan 1, 2025 Patrick Cooke
  • Functional Regrowth of Norepinephrine Axons in the Adult Mouse Brain Following Injury | eNeuro
    It is widely believed that axons in the central nervous system of adult mammals do not regrow following injury. This failure is thought, at least in part, to underlie the limited recovery of function following injury to the brain or spinal cord. Some studies of fixed tissue have suggested that, counter to dogma, norepinephrine (NE) axons regrow following brain injury. Here, we have used in vivo two-photon microscopy in layer 1 of the primary somatosensory cortex in transgenic mice harboring a fluorophore selectively expressed in NE neurons. This protocol allowed us to explore the dynamic nature of NE axons following injury with the selective NE axon toxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4). Following DSP4, NE axons were massively depleted and then slowly and partially recovered their density over a period of weeks. This regrowth was dominated by new axons entering the imaged volume. There was almost no contribution from local sprouting from spared NE axons. Regrown axons did not appear to ...
    Dec 26, 2024 Patrick Cooke
  • The MAP3Ks DLK and LZK Direct Diverse Responses to Axon Damage in Zebrafish Peripheral Neurons | Journal of Neuroscience
    Mitogen-activated protein kinase kinase kinases (MAP3Ks) dual leucine kinase (DLK) and leucine zipper kinase (LZK) are essential mediators of axon damage responses, but their responses are varied, complex, and incompletely understood. To characterize their functions in axon injury, we generated zebrafish mutants of each gene, labeled motor neurons (MNs) and touch-sensing neurons in live zebrafish, precisely cut their axons with a laser, and assessed the ability of mutant axons to regenerate in larvae, before sex is apparent in zebrafish. DLK and LZK were required redundantly and cell autonomously for axon regeneration in MNs but not in larval Rohon–Beard (RB) or adult dorsal root ganglion (DRG) sensory neurons. Surprisingly, in dlk lzk double mutants, the spared branches of wounded RB axons grew excessively, suggesting that these kinases inhibit regenerative sprouting in damaged axons. Uninjured trigeminal sensory axons also grew excessively in mutants when neighboring neurons were ablated, indicating that...
    Aug 10, 2022 Kadidia Pemba Adula
  • Mitotic Motor KIFC1 Is an Organizer of Microtubules in the Axon | Journal of Neuroscience
    KIFC1 (also called HSET or kinesin-14a) is best known as a multifunctional motor protein essential for mitosis. The present studies are the first to explore KIFC1 in terminally postmitotic neurons. Using RNA interference to partially deplete KIFC1 from rat neurons (from animals of either gender) in culture, pharmacologic agents that inhibit KIFC1, and expression of mutant KIFC1 constructs, we demonstrate critical roles for KIFC1 in regulating axonal growth and retraction as well as growth cone morphology. Experimental manipulations of KIFC1 elicit morphological changes in the axon as well as changes in the organization, distribution, and polarity orientation of its microtubules. Together, the results indicate a mechanism by which KIFC1 binds to microtubules in the axon and slides them into alignment in an ATP-dependent fashion and then cross-links them in an ATP-independent fashion to oppose their subsequent sliding by other motors. SIGNIFICANCE STATEMENT Here, we establish that KIFC1, a molecular motor w...
    May 15, 2019 Hemalatha Muralidharan
  • A Preprocessing Toolbox for 2-Photon Subcellular Calcium Imaging | eNeuro
    Recording the spiking activity from subcellular compartments of neurons such as axons and dendrites during mouse behavior with 2-photon calcium imaging is increasingly common yet remains challenging due to low signal-to-noise, inaccurate region-of-interest (ROI) identification, movement artifacts, and difficulty in grouping ROIs from the same neuron. To address these issues, we present a computationally efficient preprocessing pipeline for subcellular signal detection, movement artifact identification, and ROI grouping. For subcellular signal detection, we capture the frequency profile of calcium transient dynamics by applying fast Fourier transform (FFT) on smoothed time-series calcium traces collected from axon ROIs. We then apply bandpass filtering methods (e.g., 0.05–0.12 Hz) to select ROIs that contain frequencies that match the power band of transients. To remove motion artifacts from z -plane movement, we apply principal component analysis on all calcium traces and use a bottom-up segmentation chang...
    May 1, 2025 Anqi Jiang
  • A preprocessing toolbox for 2-photon subcellular calcium imaging | eNeuro
    Recording the spiking activity from subcellular compartments of neurons such as axons and dendrites during mouse behavior with 2-photon calcium imaging is increasingly common yet remains challenging due to low signal-to-noise, inaccurate region-of-interest (ROI) identification, movement artifacts, and difficulty in grouping ROIs from the same neuron. To address these issues, we present a computationally efficient pre-processing pipeline for subcellular signal detection, movement artifact identification, and ROI grouping. For subcellular signal detection, we capture the frequency profile of calcium transient dynamics by applying Fast Fourier Transform (FFT) on smoothed time-series calcium traces collected from axon ROIs. We then apply band-pass filtering methods (e.g. 0.05 to 0.12 Hz) to select ROIs that contain frequencies that match the power band of transients. To remove motion artifacts from z-plane movement, we apply Principal Component Analysis on all calcium traces and use a Bottom-Up Segmentation ch...
    May 13, 2025 Anqi Jiang
  • Neurotrophins Support the Development of Diverse Sensory Axon Morphologies | Journal of Neuroscience
    The initial outgrowth of peripheral axons in developing embryos is thought to occur independently of neurotrophins. However, the degree to which peripheral neurons can extend axons and elaborate axonal arborizations in the absence of these molecules has not been studied directly because of exquisite survival requirements for neurotrophins at early developmental stages. We show here that embryonic sensory neurons from BAX-deficient mice survived indefinitely in the absence of neurotrophins, even in highly dissociated cultures, allowing assessment of cell autonomous axon outgrowth. At embryonic day 11 (E11)–E13, stages of rapid axon growth toward targets in vivo , Bax −/− sensory neurons cultured without neurotrophins were almost invariably unipolar and extended only a rudimentary axon. Addition of neurotrophins caused outgrowth of a second axon and a marked, dose-dependent elongation of both processes. Surprisingly, morphological responses to individual neurotrophins differed substantially. Neurotrophin-3 (...
    Feb 1, 1999 Stephen I. Lentz
  • The Axonal Glycolytic Pathway Contributes to Sensory Axon Extension and Growth Cone Dynamics | Journal of Neuroscience
    Understanding the bioenergetics of axon extension and maintenance has wide ranging implications for neurodevelopment and disease states. Glycolysis is a pathway consisting of ten enzymes and separated into preparatory and payoff phases, the latter producing ATP. Using embryonic chicken sensory neurons, we report that glycolytic enzymes are found through the axon and the growth cone. Pharmacological inhibition of glycolysis in the presence of NGF impairs axon extension and growth cone dynamics within minutes without affecting axon maintenance. Experiments using microfluidic chambers show the effect of inhibiting glycolysis on axon extension is local along distal axons and can be reversed by promoting mitochondrial respiration. Knock down of GAPDH simplifies growth cone morphology and is rescued by shRNA resistant GAPDH expression. Rescue of GAPDH using killer red (KR) fused to GAPDH followed by localized chromophore assisted light inactivation of KR-GAPDH in distal axons halts growth cone dynamics. Consider...
    Jun 17, 2021 Andrea Ketschek
  • Previous
  • 45
  • 46
  • 47
  • 48
  • 49
  • Next

Featured

  • Watch: The Inspiration Behind the Neuroscience 2025 Logo
  • Upcoming Webinar: JNeurosci Town Hall
  • Find a Roommate for Neuroscience 2025 in the Roommate Matching Forum
SfN Websites
  • BrainFacts.org logo
  • eNeuro logo
  • JNeurosci logo
  • Neuronline logo
Engage with SfN
  • join Join
  • give Give
  • advocate Advocate
  • publish Publish
Quick Links
  • SfN News
  • For Press
  • Global Events
  • Contact Us
  • Advertise
  • Code of Conduct
  • Jobs at SfN
  • SfN Store
  • Social Media
Follow SfN
  • BlueSky logo
  • Facebook logo
  • Instagram logo
  • LinkedIn logo

  • Threads logo
  • X Logo
  • YouTube logo
SfN logo with "SfN" in a blue box next to Society for Neuroscience in red text and the SfN tag line that reads "Advancing the understanding of the brain and nervous system"
1121 14th Street NW, Suite 1010, Washington, D.C. 20005
(202) 962-4000 | 1-888-985-9246
  • Accessibility Policy
  • Disclaimer
  • Privacy Notice
  • Contact Us

Copyright ©
Society for Neuroscience