Filter
-
(203)
-
(176)
-
(8)
-
(188)
-
(66)
-
(10)
-
(252)
-
(89)
-
(1)
-
(49)
-
(287)
-
(16)
-
(35)
-
(794)
-
(43)
-
(14)
-
(1210)
-
(394)
-
(463)
-
(434)
5751 - 5760
of 7019 results
-
To avoid information loss, the auditory system must adapt the broad dynamic range of natural sounds to the restricted dynamic range of auditory nerve fibers. How it solves this dynamic range problem is not fully understood. Recent electrophysiological studies showed that dynamic-range adaptation occurs at the auditory nerve level, but the amount of adaptation found was insufficient to prevent information loss. We used the physiological MATLAB Auditory Periphery model to study the contribution of efferent reflexes to dynamic range adaptation. Simulating the healthy human auditory periphery provided adaptation predictions that suggest that the acoustic reflex shifts rate-level functions toward a given context level and the medial olivocochlear reflex sharpens the response of nerve fibers around that context level. A simulator of hearing was created to decode model-predicted firing of the auditory nerve back into an acoustic signal, for use in psychophysical tasks. Speech reception thresholds in noise obtaine...Sep 7, 2022