Society for Neuroscience - Search

Skip Navigation

  • join logo Join
  • hands shaped like a yellow heart icon Give
  • advocate logo Advocate
  • publish logo Publish
  • Icon with thought bubbles Learn
Shop Sign In
SfN Logo 2025
  • Membership
    • Learn About Membership
      • Individual Member Benefits
      • Institutional Program Member Benefits
      • Sustaining Associate Member Benefits
      • Get Involved at SfN
    • Become a Member
      • Sponsorship Information for New Members
      • Membership Categories & Fees
      • Membership Fees for Developing Countries
      • Renew Individual Membership
    • Member Resources
      • Automatic Renewals
      • Frequently Asked Questions
      • Individual Member Directory
      • Member Obituaries and Memorial Donations
    • Learn About Local Chapters
      • Start or Reactivate a Chapter
      • Resources for Chapters
      • Submit Annual Report
      • Chapter Directory
      • Frequently Asked Questions
  • Meetings
    • Meetings Overview
    • Neuroscience 2025
      • Call for Abstracts
      • Sessions and Events
      • Registration
      • Housing and Travel
      • Exhibits
      • Dates and Deadlines
      • Advertising and Sponsorship
      • FAQs
    • Global Events
      • SfN Virtual Events
    • Past and Future Annual Meetings
      • Neuroscience 2024
      • Neuroscience 2023
      • Search Past Annual Meeting Abstracts
      • Attendance Statistics
    • Meeting Policies and Guidelines
      • Code of Conduct at SfN Events
      • Guidelines for Participating in SfN Events
      • Photography & Recording Policy
      • Presenter Guidelines and Policies for SfN Events
    • Meeting Awards
      • Trainee Professional Development Award
      • International Travel Awards
      • FENS Member Awards to SfN Annual Meeting
      • IBRO Member Awards to SfN Annual Meeting
      • JNS Member Awards to SfN Annual Meeting
  • Careers
    • Careers Overview
    • Institutional Program (IP) Directory
    • NeuroJobs Career Center
      • Job Seekers
      • Employers
    • 2025 Graduate School Fair
    • Career Tools and Resources
      • Neuronline
      • Neurobiology of Disease Workshop
      • Responsible Conduct of Research Short Courses
      • Neuroscience Departments and Program Workshop
      • Global Funding Sources
    • Higher Education and Training
      • Core Competencies
      • Neuroscience Training Program Survey
    • Awards
      • Outstanding Career and Research Achievements
      • Early Career
  • Initiatives
    • Initiatives Overview
    • Awards
      • 2024 Award Recipients
      • Awards and Prizes FAQ
      • Trainee Professional Development Award
    • Neuroscience Scholars Program
    • Neuronline
      • Webinars
      • Articles
      • Videos
      • Podcasts
      • Collections
    • Resources to Stay Connected
      • SfN Zoom Backgrounds
    • Community
    • Women and Neuroscience
      • Increasing Women in Neuroscience (IWiN) Courses & Toolkit
      • Celebration of Women in Neuroscience Event
      • Awards
    • Animals in Research
      • Support for Members and Institutions
      • Tools and Resources
      • Resources for Medical Students
    • Public Education Programs
      • Resources for Educators
      • Brain Awareness Video Contest
      • Life of a Neuron Exhibit
  • Advocacy
    • Advocacy Overview
    • Advocacy Response
    • Advocacy Network
      • The NeuroAdvocate Challenge
      • Advocacy Action Center
      • Advocacy Best Practices
      • Advocacy Network News
      • Advocacy Training Seminars
    • US Advocacy Programs
      • Capitol Hill Day
      • Connect with Policymakers
      • Early Career Policy Ambassadors
      • Partner with a Local Chapter
      • Engage the Media
    • Global Advocacy Programs
      • Global Neuroscience Initiatives
      • Global Funding
      • North American Programs
    • Science Funding
      • Advocacy Videos
      • Advocacy Resources
      • US Neuroscience Initiatives
      • Funding Priorities and Processes
    • Policy Positions
      • Statements and Testimony
      • Sign-On Letters
  • Outreach
    • Outreach Overview
    • BrainFacts.org
    • Find a Neuroscientist
    • Brain Awareness Campaign
      • Webinar: The ABC's of BAW
      • How to Get Involved
    • Awards
      • Award for Education in Neuroscience
      • Next Generation Award
      • Chapter of the Year Award
      • Science Educator Award
  • Publications
    • Publications Overview
    • SfN News
    • JNeurosci
    • eNeuro
    • SfN Nexus
    • Neuroscience Quarterly
    • Annual Report
    • History of Neuroscience Autobiographical Chapters
  • About
    • About Overview
    • Mission and Strategic Plan
    • What We Do
      • Annual Report
      • Bylaws
      • Resolutions to the Bylaws
      • Environmental Commitment
      • Strategic Partners
      • History of SfN
    • SfN 50th Anniversary Celebration
    • NIH Public Health Service-Supported Funding Financial Conflict of Interest Policy
    • Volunteer
      • SfN Council
      • SfN Presidents
      • Committees
      • Elections
      • Call for Nominations
    • Professional Conduct
      • SfN Ethics Policy
      • Guidelines for Responsible Conduct Regarding Scientific Communication
      • Code of Conduct at SfN Events
      • Commitment to Scientific Integrity
      • Neuronline Digital Learning Community Guidelines
    • History of Neuroscience
      • Autobiographical Chapters
      • Autobiographical Videos of Prominent Neuroscientists
      • Classic Papers
      • Neuroscience History Resources
      • Robert Doty's Chapter on Neuroscience
    • Careers and Staff
      • Staff List
  1. Search

Filter

  • (43)
  • (35)
  • (14)
  • (2)
  • (1)
  • (22)
  • (2)
  • (91)
  • (1)
  • (1)
  • (115)
  • (2)
  • (2)
  • (6061)
  • (72)
  • (71)
  • (96)
Filter
271 - 280 of 33799 results
  • Abstract
    Loop and linear connections in high-order human occipito-temporal cortex.
    Although a large number of categories and category classes represented along the ventral stream have been found in the human visual system, it has been difficult to outline the anatomical circuitry underlying the receptive field properties of object selective neurons due to the lack of non-invasive techniques. Here, the relationship between functional activity and neuronal connectivity across the striate and extrastriate cortical areas were investigated. Neuronal connections between areas of different receptive field properties were assessed in vivo using the Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) in combination with functional magnetic resonance imaging (fMRI). DTI in conjunction with functional MRI was performed using a 3 Tesla whole body scanner (Trio, Siemens). Functional imaging scans were used to localize retinotopic and non-retinotopic visual areas in healthy human volunteers. BOLD contrast was obtained using gradient-echo echo-planar imaging (EPI) sequence (30 axial slices of 2-mm thi...
    Oct 24, 2004
  • Magnocellular Pathway Impairment in Schizophrenia: Evidence from Functional Magnetic Resonance Imaging | Journal of Neuroscience
    Sensory processing deficits in schizophrenia have been documented for several decades, but their underlying neurophysiological substrates are still poorly understood. In the visual system, the pattern of pathophysiology reported in several studies is suggestive of dysfunction within the magnocellular visual pathway beginning in early sensory cortex or even subcortically. The present study used functional magnetic resonance imaging to investigate further the neurophysiological bases of visual processing deficits in schizophrenia and in particular the potential role of magnocellular stream dysfunction. Sinusoidal gratings systematically varying in spatial frequency content were presented to subjects at low and high levels of contrast to differentially bias activity in magnocellular and parvocellular pathways based on well established differences in neuronal response profiles. Hemodynamic responses elicited by different spatial frequencies were mapped over the occipital lobe and then over the entire brain. Re...
    Jul 23, 2008 Antígona Martínez
  • Motion Processing in the Macaque: Revisited with Functional Magnetic Resonance Imaging | Journal of Neuroscience
    A great deal is known about the response properties of single neurons processing sensory information. In contrast, less is understood about the collective characteristics of networks of neurons that may underlie sensory capacities of animals. We used functional magnetic resonance imaging to study the emergent properties of populations of neurons processing motion across different brain areas. Using a visual adaptation paradigm, we localized a distributed network of visual areas that process information about the direction of motion as expected from single-cell recording studies. However, we found an apparent discrepancy between the directional signals in certain visual areas as measured with blood oxygenation level-dependent imaging compared with an estimate based on the spiking of single neurons. We propose a hypothesis that may account for this difference based on the postulate that neuronal selectivity is a function of the state of adaptation. Consequently, neurons classically thought to lack informatio...
    Nov 1, 2001 Andreas S. Tolias
  • Abstract
    Does chronic exposure to marijuana alter brain structure and function: A magnetic resonance imaging study in adult female mice
    As it is the case worldwide, marijuana (cannabis) use in the United States and Canada is highly prevalent and societal views of its use are changing rapidly, as are the policies that govern the legality of its recreational and medical use. With the rece...
    Oct 23, 2019
  • Abstract
    In silico electromagnetic and electrophysiological modelling of neuronal current imaging using ultra-low field nuclear magnetic resonance
    The feasibility of non-invasive imaging of neuronal currents (NCI) in the brain by means of Nuclear Magnetic Resonance (NMR) techniques has been debated for more than a decade. NCI cannot be easily applied at high Larmor fields (>1T) due to (i) the rela...
    Nov 5, 2018
  • Abstract
    A comparison of alpha-chloralose and propofol as anaesthetic regimes for blood-oxygen level dependent functional magnetic resonance imaging
    Most blood-oxygen level dependent functional magnetic resonance imaging (BOLD-fMRI) protocols measure neuronal activity under anaesthesia. Alpha-chloralose is the agent most frequently used for this. However, side-effects including acidosis and involunt...
    Nov 3, 2007
  • H. M.’s Medial Temporal Lobe Lesion: Findings from Magnetic Resonance Imaging | Journal of Neuroscience
    Although neuropsychological studies of the amnesic patient H. M. provide compelling evidence that normal memory function depends on the medial temporal lobe, the full extent of his surgical resection has not been elucidated. We conducted magnetic resonance imaging studies to specify precisely the extent of his bilateral resection and to document any other brain abnormalities. The MRI studies indicated that the lesion was bilaterally symmetrical and included the medial temporal polar cortex, most of the amygdaloid complex, most or all of the entorhinal cortex, and approximately half of the rostrocaudal extent of the intraventricular portion of the hippocampal formation (dentate gyrus, hippocampus, and subicular complex). The collateral sulcus was visible throughout much of the temporal lobe, indicating that portions of the ventral perirhinal cortex, located on the banks of the sulcus, were spared; the parahippocampal cortex (areas TF and TH) was largely intact. The rostrocaudal extent of the ablation was ∼5...
    May 15, 1997 Suzanne Corkin
  • Erratum for Martínez et al., Magnocellular Pathway Impairment in Schizophrenia: Evidence from Functional Magnetic Resonance Imaging | Journal of Neuroscience
    In the article “Magnocellular Pathway Impairment in Schizophrenia: Evidence from Functional Magnetic Resonance Imaging” by Antígona Martínez, Steven A. Hillyard, Elisa C. Dias, Donald J. Hagler Jr, Pamela D. Butler, David N. Guilfoyle, Maria Jalbrzikowski, Gail Silipo, and Daniel C. Javitt,
    Sep 10, 2008
  • Abstract
    A probabilistic atlas of the human lateral geniculate nucleus using ultra-high resolution 7T structural magnetic resonance imaging
    The lateral geniculate nucleus (LGN) is a key subcortical brain structure of the human visual system. Traditionally, non-invasive spatial mapping of the LGN proved challenging due to its small size and deep position within the brain. However, recent adv...
    Nov 3, 2018
  • Learning Alters the Tuning of Functional Magnetic Resonance Imaging Patterns for Visual Forms | Journal of Neuroscience
    Learning is thought to facilitate the recognition of objects by optimizing the tuning of visual neurons to behaviorally relevant features. However, the learning mechanisms that shape neural selectivity for visual forms in the human brain remain essentially unknown. Here, we combine behavioral and functional magnetic resonance imaging (fMRI) measurements to test the mechanisms that mediate enhanced behavioral sensitivity in the discrimination of visual forms after training. In particular, we used high-resolution fMRI and multivoxel pattern classification methods to investigate fine learning-dependent changes in neural preference for global forms. We measured the observers' choices when discriminating between concentric and radial patterns presented in noise before and after training. Similarly, we measured the choices of a pattern classifier when predicting each stimulus from fMRI activity. Comparing the performance of human observers and classifiers demonstrated that learning alters the observers' sensitiv...
    Oct 20, 2010 Jiaxiang Zhang
  • Previous
  • 26
  • 27
  • 28
  • 29
  • 30
  • Next

Featured

  • Apply to be a Neuronline Community Leader
  • The Neuroscience Meeting Planner is Now Available!
  • Register for the #SfN25 Mentorship Workshop, Nov. 14 in San Diego
SfN Websites
  • BrainFacts.org logo
  • eNeuro logo
  • JNeurosci logo
  • Neuronline logo
Engage with SfN
  • join Join
  • give Give
  • advocate Advocate
  • publish Publish
Quick Links
  • SfN News
  • For Press
  • Global Events
  • Contact Us
  • Advertise
  • Code of Conduct
  • Jobs at SfN
  • SfN Store
  • Social Media
Follow SfN
  • BlueSky logo
  • Facebook logo
  • Instagram logo
  • LinkedIn logo

  • Threads logo
  • X Logo
  • YouTube logo
SfN logo with "SfN" in a blue box next to Society for Neuroscience in red text and the SfN tag line that reads "Advancing the understanding of the brain and nervous system"
1121 14th Street NW, Suite 1010, Washington, D.C. 20005
(202) 962-4000 | 1-888-985-9246
  • Accessibility Policy
  • Disclaimer
  • Privacy Notice
  • Contact Us

Copyright ©
Society for Neuroscience