Society for Neuroscience - Search

Skip Navigation

  • join logo Join
  • hands shaped like a yellow heart icon Give
  • advocate logo Advocate
  • publish logo Publish
  • Icon with thought bubbles Learn
Shop Sign In
SfN Logo 2025
  • Membership
    • Learn About Membership
      • Individual Member Benefits
      • Institutional Program Member Benefits
      • Sustaining Associate Member Benefits
      • Get Involved at SfN
    • Become a Member
      • Sponsorship Information for New Members
      • Membership Categories & Fees
      • Membership Fees for Developing Countries
      • Renew Individual Membership
    • Member Resources
      • Automatic Renewals
      • Frequently Asked Questions
      • Individual Member Directory
      • Member Obituaries and Memorial Donations
    • Learn About Local Chapters
      • Start or Reactivate a Chapter
      • Resources for Chapters
      • Submit Annual Report
      • Chapter Directory
      • Frequently Asked Questions
  • Meetings
    • Meetings Overview
    • Neuroscience 2025
      • Presenter Resources
      • Itinerary Planner and Mobile App
      • Sessions and Events
      • Registration
      • Housing and Travel
      • Exhibits
      • Advertising and Sponsorship
      • FAQs
    • Global Events
      • SfN Virtual Events
    • Past and Future Annual Meetings
      • Neuroscience 2024
      • Neuroscience 2023
      • Search Past Annual Meeting Abstracts
      • Attendance Statistics
    • Meeting Policies and Guidelines
      • Code of Conduct at SfN Events
      • Growth and Opportunity Strategy
      • Photography & Recording Policy
      • Presenter Guidelines and Policies for SfN Events
    • Meeting Awards
      • Trainee Professional Development Award
      • International Travel Awards
      • FENS Member Awards to SfN Annual Meeting
      • IBRO Member Awards to SfN Annual Meeting
      • JNS Member Awards to SfN Annual Meeting
  • Careers
    • Careers Overview
    • Institutional Program (IP) Directory
    • NeuroJobs Career Center
      • Job Seekers
      • Employers
    • 2025 Graduate School Fair
    • Career Tools and Resources
      • Neuronline
      • Neurobiology of Disease Workshop
      • Responsible Conduct of Research Short Courses
      • Neuroscience Departments and Program Workshop
      • Global Funding Sources
    • Higher Education and Training
      • Core Competencies
      • Neuroscience Training Program Survey
    • Awards
      • Outstanding Career and Research Achievements
      • Early Career
  • Initiatives
    • Initiatives Overview
    • Awards
      • 2025 Award Recipients
      • Awards and Prizes FAQ
      • Trainee Professional Development Award
    • Neuroscience Scholars Program
    • Neuronline
      • Webinars
      • Articles
      • Videos
      • Podcasts
      • Collections
    • Resources to Stay Connected
      • SfN Zoom Backgrounds
    • Community
    • Women and Neuroscience
      • Increasing Women in Neuroscience (IWiN) Courses & Toolkit
      • Celebration of Women in Neuroscience Event
      • Awards
    • Animals in Research
      • Support for Members and Institutions
      • Tools and Resources
      • Resources for Medical Students
    • Public Education Programs
      • Resources for Educators
      • Brain Awareness Video Contest
      • Life of a Neuron Exhibit
  • Advocacy
    • Advocacy Overview
    • Advocacy Response
    • Advocacy Network
      • The NeuroAdvocate Challenge
      • Advocacy Action Center
      • Advocacy Best Practices
      • Advocacy Network News
      • Advocacy Training Seminars
    • US Advocacy Programs
      • Capitol Hill Day
      • Connect with Policymakers
      • Early Career Policy Ambassadors
      • Partner with a Local Chapter
      • Engage the Media
    • Global Advocacy Programs
      • Global Neuroscience Initiatives
      • Global Funding
      • North American Programs
    • Science Funding
      • Advocacy Videos
      • Advocacy Resources
      • US Neuroscience Initiatives
      • Funding Priorities and Processes
    • Policy Positions
      • Statements and Testimony
      • Sign-On Letters
  • Outreach
    • Outreach Overview
    • BrainFacts.org
    • Find a Neuroscientist
    • Brain Awareness Campaign
      • Webinar: The ABC's of BAW
      • How to Get Involved
    • Awards
      • Award for Education in Neuroscience
      • Next Generation Award
      • Chapter of the Year Award
      • Science Educator Award
  • Publications
    • Publications Overview
    • SfN News
    • JNeurosci
    • eNeuro
    • SfN Nexus
    • Neuroscience Quarterly
    • Annual Report
    • History of Neuroscience Autobiographical Chapters
  • About
    • About Overview
    • Mission and Strategic Plan
    • What We Do
      • Annual Report
      • Bylaws
      • Resolutions to the Bylaws
      • Environmental Commitment
      • Strategic Partners
      • History of SfN
    • SfN 50th Anniversary Celebration
    • NIH Public Health Service-Supported Funding Financial Conflict of Interest Policy
    • Volunteer
      • SfN Council
      • SfN Presidents
      • Committees
      • Elections
      • Call for Nominations
    • Professional Conduct
      • SfN Ethics Policy
      • Guidelines for Responsible Conduct Regarding Scientific Communication
      • Code of Conduct at SfN Events
      • Commitment to Scientific Integrity
      • Neuronline Digital Learning Community Guidelines
    • History of Neuroscience
      • Autobiographical Chapters
      • Autobiographical Videos of Prominent Neuroscientists
      • Classic Papers
      • Neuroscience History Resources
      • Robert Doty's Chapter on Neuroscience
    • Careers and Staff
      • Staff List
  1. Search

Filter

  • (2)
  • (1)
  • (3)
  • (6)
  • (8)
  • (1)
  • (574)
  • (3)
  • (2)
  • (8)
Filter
141 - 150 of 892 results
  • High-THC Cannabis Smoke Impairs Incidental Memory Capacity in Spontaneous Tests of Novelty Preference for Objects and Odors in Male Rats | eNeuro
    Working memory is an executive function that orchestrates the use of limited amounts of information, referred to as working memory capacity, in cognitive functions. Cannabis exposure impairs working memory in humans; however, it is unclear whether Cannabis facilitates or impairs rodent working memory and working memory capacity. The conflicting literature in rodent models may be at least partly because of the use of drug exposure paradigms that do not closely mirror patterns of human Cannabis use. Here, we used an incidental memory capacity paradigm where a novelty preference is assessed after a short delay in spontaneous recognition-based tests. Either object or odor-based stimuli were used in test variations with sets of identical [identical stimuli test (IST)] and different [different stimuli test (DST)] stimuli (three or six) for low-memory and high-memory loads, respectively. Additionally, we developed a human-machine hybrid behavioral quantification approach which supplements stopwatch-based scoring ...
    Dec 1, 2023 Ilne L. Barnard
  • ERK-Dependent Modulation of Cerebellar Synaptic Plasticity after Chronic Δ9-Tetrahydrocannabinol Exposure | Journal of Neuroscience
    Chronic exposure to Δ9-tetrahydrocannabinol (THC) induces tolerance to cannabinoid-induced locomotor effects, which are mediated by cannabinoid receptors (CB1Rs) located in motor control regions, including the cerebellum. There is substantial evidence of cerebellar CB1R molecular adaptation and modifications in receptor signaling after prolonged cannabinoid exposure. However, very little is known about the effects of chronic cannabinoid administration on cerebellar synaptic plasticity, which may contribute to the development of cannabinoid behavioral tolerance. In the cerebellar cortex, activation of CB1R inhibits excitatory synaptic transmission at parallel fiber (PF)–Purkinje cell (PC) synapses by decreasing neurotransmitter release. Our study aimed to investigate the neurophysiological adaptive responses occurring at cerebellar PF-PC cell synapses after repeated THC exposure. In THC-tolerant mice, an increase of the basal release probability was found at PF-PC synapses, in parallel with a facilitation ...
    May 24, 2006 Raffaella Tonini
  • Presynaptic Homeostatic Plasticity Rescues Long-Term Depression after Chronic Δ9-Tetrahydrocannabinol Exposure | Journal of Neuroscience
    Alterations of long-term synaptic plasticity have been proposed to participate in the development of addiction. To preserve synaptic functions, homeostatic processes must be engaged after exposure to abused drugs. At the mouse cortico-accumbens synapses, a single in vivo injection of Δ9-tetrahydrocannabinol (THC) suppresses endocannabinoid-mediated long-term depression. Using biochemical and electrophysiological approaches, we now report that 1 week of repeated in vivo THC treatment reduces the coupling efficiency of cannabinoid CB1 receptors (CB1Rs) to Gi/o transduction proteins, as well as CB1R-mediated inhibition of excitatory synaptic transmission at the excitatory synapses between the prefrontal cortex and the nucleus accumbens (NAc). Nonetheless, we found that cortico-accumbens synapses unexpectedly express normal long-term depression because of a reversible switch in its underlying mechanisms. The present data show that, in THC-treated mice, long-term depression is expressed because a presynaptic mG...
    Dec 14, 2005 Susana Mato
  • Abstract
    Disruption of protein--protein coupling between PTEN and 5-HT2C receptor suppresses marijuana-rewarding effects.
    The widespread distribution of the tumor suppressor PTEN (phosphatase and tensin homologue deleted on chromosome 10) in adult brain suggests its important role in a broad range of brain function, but the exact role remains largely unknown. Here we show evidence supporting a direct protein-protein coupling of PTEN with the 3L4F motif in the third intracellular loop of 5-HT2c receptor (5-HT2cR) in PC12 cells. We then design the membrane permeable peptide Tat-3L4F that is able to penetrate the blood brain barrier to disrupt the protein-protein coupling between PTEN and 5-HT2cR in the brain. Systemic Tat-3L4F or the 5-HT2cR agonist Ro600175 (3 mg/kg) suppresses the increased firing rate of VTA (ventral tegmental area) dopamine neurons induced by delta-9-tetrahydrocannabinol (THC), the psychoactive ingredient of marijuana. Using the conditioned place preference paradigm for behavioural testing, we further show that systemic Tat-3L4F or Ro600175 (3 mg/kg) block the rewarding effects of THC, which is abolished by...
    Nov 14, 2005
  • Abstract
    Cannabidiol elevates the ratio of feedforward to feedback inhibition to dampen hippocampal activity propagation
    Cannabis sativa L. derivatives are emerging as therapeutics for some forms of epilepsy, with one formulation being FDA approved (Devinsky et al., 2017, 2018). Cannabidiol (CBD) administration to patients with certain treatment-resistant epilepsies signi...
    Oct 23, 2019
  • Abstract
    Sex differences on the developmental effects of chronic inhaled marijuana: A multimodal MRI study
    As it is the case worldwide, marijuana (cannabis) use in the United States and Canada is highly prevalent and societal views of its use are changing rapidly, as are the policies that govern the legality of its recreational and medical use. With the rece...
    Oct 23, 2019
  • Abstract
    Increased sensation seeking behavior is associated with caudate volumes in male adolescent marijuana users
    Marijuana (MJ) is one of the most commonly used drugs among adolescents with an estimated 1.6 million adolescents between the ages of 12 to 17 reporting past month MJ use. Chronic MJ use has been associated with altered neurodevelopmental and behavioral...
    Oct 23, 2019
  • Abstract
    Cannabidiol attenuates behavioral and epileptiform deficits in a mouse model of CDKL5 developmental disorder
    Cyclin-dependent-kinase-like 5 (CDKL5) mutation and loss of function result in a range of autistic-like behaviors, neurodevelopmental deficits, and often refractory seizures. Recent clinical studies with cannabidiol have shown efficacy in suppressing se...
    Oct 21, 2019
  • Abstract
    Fear memory extinction is enhanced by cannabidiol when given during acquisition in female mice
    Cannabidiol (CBD) is reported to have therapeutic potential for psychiatric conditions that affect learning and memory, including anxiety and post-traumatic stress disorders. Pre-clinical contextual fear-learning and memory experiments in rodents have c...
    Oct 20, 2019
  • Cannabidiol inhibition of murine primary nociceptors: Tight binding to slow inactivated states of Nav1.8 channels | Journal of Neuroscience
    The non-psychoactive phytocannabinoid cannabidiol (CBD) has been shown to have analgesic effects in animal studies but little is known about its mechanism of action. We examined effects of CBD on intrinsic excitability of primary pain-sensing neurons. Studying acutely-dissociated capsaicin-sensitive mouse DRG neurons at 37°C, we found that CBD effectively inhibited repetitive action potential firing, from 15-20 action potentials evoked by 1-s current injections in control to 1-3 action potentials with 2 μM CBD. Reduction of repetitive firing was accompanied by reduction of action potential height, widening of action potentials, reduction of the afterhyperpolarization, and increased propensity to enter depolarization block. Voltage clamp experiments showed that CBD inhibited both TTX-sensitive (TTX-S) and TTX-resistant (TTX-R) sodium currents in a use-dependent manner. CBD showed strong state-dependent inhibition of TTX-R channels, with fast binding to inactivated channels during depolarizations and slow un...
    Jun 15, 2021 Han-Xiong Bear Zhang
  • Previous
  • 13
  • 14
  • 15
  • 16
  • 17
  • Next

Featured

  • SfN Selects Kevin B. Marvel, PhD, as Next Executive Director
  • Read the Neuroscience Quarterly - Fall 2025
  • Renew your SfN Membership Today!
SfN Websites
  • BrainFacts.org logo
  • eNeuro logo
  • JNeurosci logo
  • Neuronline logo
Engage with SfN
  • join Join
  • give Give
  • advocate Advocate
  • publish Publish
Quick Links
  • SfN News
  • For Press
  • Global Events
  • Contact Us
  • Advertise
  • Code of Conduct
  • Jobs at SfN
  • SfN Store
  • Social Media
Follow SfN
  • BlueSky logo
  • Facebook logo
  • Instagram logo
  • LinkedIn logo

  • Threads logo
  • X Logo
  • YouTube logo
SfN logo with "SfN" in a blue box next to Society for Neuroscience in red text and the SfN tag line that reads "Advancing the understanding of the brain and nervous system"
1121 14th Street NW, Suite 1010, Washington, D.C. 20005
(202) 962-4000 | 1-888-985-9246
  • Accessibility Policy
  • Disclaimer
  • Privacy Notice
  • Contact Us

Copyright ©
Society for Neuroscience