Filter
-
(2)
-
(1)
-
(3)
-
(6)
-
(8)
-
(1)
-
(574)
-
(3)
-
(2)
-
(8)
891 - 892
of 892 results
-
In the insular cortex, the primary gustatory area caudally adjoins the primary autonomic area that is involved in visceral sensory-motor integration. However, it has not been addressed whether neural activity in the gustatory insula (Gu-I) is coordinated with that in the autonomic insula (Au-I). We have demonstrated that TRPV1 activation in Gu-I induces theta-band synchronization between Gu-I and Au-I in rat slice preparations. Electron-microscopic immunohistochemistry revealed that TRPV1 immunoreactivity was much higher in Gu-I than in Au-I, and was mostly detected in dendritic spines receiving asymmetrical synapses. Whole-cell voltage-clamp recordings revealed that, in Gu-I, capsaicin-induced currents in layer 3 (L3) pyramidal cells (PCs) displayed no apparent desensitization, while those in layer 5 (L5) PCs displayed Ca2+-dependent desensitization, suggesting that L3 and L5 PCs respond differentially to TRPV1 activation. Voltage-sensitive dye imaging demonstrated that TRPV1 activation in Gu-I can alter ...Sep 26, 2012
-
Large-conductance Ca2+-activated K+ channels (BK, also called Maxi-K or Slo channels) are widespread in the vertebrate nervous system, but their functional roles in synaptic transmission in the mammalian brain are largely unknown. By combining electrophysiology and immunogold cytochemistry, we demonstrate the existence of functional BK channels in presynaptic terminals in the hippocampus and compare their functional roles in somata and terminals of CA3 pyramidal cells. Double-labeling immunogold analysis with BK channel and glutamate receptor antibodies indicated that BK channels are targeted to the presynaptic membrane facing the synaptic cleft in terminals of Schaffer collaterals in stratum radiatum. Whole-cell, intracellular, and field-potential recordings from CA1 pyramidal cells showed that the presynaptic BK channels are activated by calcium influx and can contribute to repolarization of the presynaptic action potential (AP) and negative feedback control of Ca2+ influx and transmitter release. This w...Dec 15, 2001