Society for Neuroscience - Search

Skip Navigation

  • join logo Join
  • hands shaped like a yellow heart icon Give
  • advocate logo Advocate
  • publish logo Publish
  • Icon with thought bubbles Learn
Shop Sign In
SfN Logo 2025
  • Membership
    • Learn About Membership
      • Individual Member Benefits
      • Institutional Program Member Benefits
      • Sustaining Associate Member Benefits
      • Get Involved at SfN
    • Become a Member
      • Sponsorship Information for New Members
      • Membership Categories & Fees
      • Membership Fees for Developing Countries
      • Renew Individual Membership
    • Member Resources
      • Automatic Renewals
      • Frequently Asked Questions
      • Individual Member Directory
      • Member Obituaries and Memorial Donations
    • Learn About Local Chapters
      • Start or Reactivate a Chapter
      • Resources for Chapters
      • Submit Annual Report
      • Chapter Directory
      • Frequently Asked Questions
  • Meetings
    • Meetings Overview
    • Neuroscience 2025
      • Presenter Resources
      • Itinerary Planner and Mobile App
      • Virtual Component
      • Sessions and Events
      • Registration
      • Housing and Travel
      • Exhibits
      • FAQs
    • Global Events
      • SfN Virtual Events
    • Past and Future Annual Meetings
      • Neuroscience 2024
      • Neuroscience 2023
      • Search Past Annual Meeting Abstracts
      • Attendance Statistics
    • Meeting Policies and Guidelines
      • Code of Conduct at SfN Events
      • Growth and Opportunity Strategy
      • Photography & Recording Policy
      • Presenter Guidelines and Policies for SfN Events
    • Meeting Awards
      • Trainee Professional Development Award
      • International Travel Awards
      • FENS Member Awards to SfN Annual Meeting
      • IBRO Member Awards to SfN Annual Meeting
      • JNS Member Awards to SfN Annual Meeting
  • Careers
    • Careers Overview
    • Institutional Program (IP) Directory
    • NeuroJobs Career Center
      • Job Seekers
      • Employers
    • 2025 Graduate School Fair
    • Career Tools and Resources
      • Neuronline
      • Neurobiology of Disease Workshop
      • Responsible Conduct of Research Short Courses
      • Neuroscience Departments and Program Workshop
      • Global Funding Sources
    • Higher Education and Training
      • Core Competencies
      • Neuroscience Training Program Survey
    • Awards
      • Outstanding Career and Research Achievements
      • Early Career
  • Initiatives
    • Initiatives Overview
    • Awards
      • 2025 Award Recipients
      • Awards and Prizes FAQ
      • Trainee Professional Development Award
    • Neuroscience Scholars Program
    • Neuronline
      • Webinars
      • Articles
      • Videos
      • Podcasts
      • Collections
    • Resources to Stay Connected
      • SfN Zoom Backgrounds
    • Community
    • Women and Neuroscience
      • Increasing Women in Neuroscience (IWiN) Courses & Toolkit
      • Celebration of Women in Neuroscience Event
      • Awards
    • Animals in Research
      • Support for Members and Institutions
      • Tools and Resources
      • Resources for Medical Students
    • Public Education Programs
      • Resources for Educators
      • Brain Awareness Video Contest
      • Life of a Neuron Exhibit
  • Advocacy
    • Advocacy Overview
    • Advocacy Response
    • Advocacy Network
      • The NeuroAdvocate Challenge
      • Advocacy Action Center
      • Advocacy Best Practices
      • Advocacy Network News
      • Advocacy Training Seminars
    • US Advocacy Programs
      • Capitol Hill Day
      • Connect with Policymakers
      • Early Career Policy Ambassadors
      • Partner with a Local Chapter
      • Engage the Media
    • Global Advocacy Programs
      • Global Neuroscience Initiatives
      • Global Funding
      • North American Programs
    • Science Funding
      • Advocacy Videos
      • Advocacy Resources
      • US Neuroscience Initiatives
      • Funding Priorities and Processes
    • Policy Positions
      • Statements and Testimony
      • Sign-On Letters
  • Outreach
    • Outreach Overview
    • BrainFacts.org
    • Find a Neuroscientist
    • Brain Awareness Campaign
      • Webinar: The ABC's of BAW
      • How to Get Involved
    • Awards
      • Award for Education in Neuroscience
      • Next Generation Award
      • Chapter of the Year Award
      • Science Educator Award
  • Publications
    • Publications Overview
    • SfN News
    • JNeurosci
    • eNeuro
    • SfN Nexus
    • Neuroscience Quarterly
    • Annual Report
    • History of Neuroscience Autobiographical Chapters
  • About
    • About Overview
    • Mission and Strategic Plan
    • What We Do
      • Annual Report
      • Bylaws
      • Resolutions to the Bylaws
      • Environmental Commitment
      • Strategic Partners
      • History of SfN
    • SfN 50th Anniversary Celebration
    • NIH Public Health Service-Supported Funding Financial Conflict of Interest Policy
    • Volunteer
      • SfN Council
      • SfN Presidents
      • Committees
      • Elections
      • Call for Nominations
    • Professional Conduct
      • SfN Ethics Policy
      • Guidelines for Responsible Conduct Regarding Scientific Communication
      • Code of Conduct at SfN Events
      • Commitment to Scientific Integrity
      • Neuronline Digital Learning Community Guidelines
    • History of Neuroscience
      • Autobiographical Chapters
      • Autobiographical Videos of Prominent Neuroscientists
      • Classic Papers
      • Neuroscience History Resources
      • Robert Doty's Chapter on Neuroscience
    • Careers and Staff
      • Staff List
  1. Search

Filter

  • (2)
  • (1)
  • (3)
  • (6)
  • (8)
  • (1)
  • (574)
  • (3)
  • (2)
  • (8)
Filter
821 - 830 of 892 results
  • Proteolytic Stress Causes Heat Shock Protein Induction, Tau Ubiquitination, and the Recruitment of Ubiquitin to Tau-Positive Aggregates in Oligodendrocytes in Culture | Journal of Neuroscience
    Molecular chaperones and the ubiquitin-proteasome system are participants in the defense against unfolded proteins and provide an effective protein quality control system that is essential for cellular functions and survival. Ubiquitinated tau-positive inclusion bodies containing the small heat shock protein αB-crystallin in oligodendrocytes are consistent features of a variety of neurodegenerative diseases, and defects in the proteasome system might contribute to the aggregation process. Oligodendrocytes, the myelin-forming cells of the CNS, are specifically sensitive to stress situations. Here we can show that in cultured rat brain oligodendrocytes proteasomal inhibition by MG-132 or lactacystin caused apoptotic cell death and the induction of heat shock proteins in a time- and concentration-dependent manner. Specifically, αB-crystallin was upregulated, and ubiquitinated proteins accumulated. After incubation with MG-132 the tau was dephosphorylated, which enhanced its microtubule-binding capacity. Prote...
    Jun 23, 2004 Olaf Goldbaum
  • Functional Mapping of the Auditory Midbrain during Mate Call Reception | Journal of Neuroscience
    We examined patterns of neural activity as assayed by changes in gene expression to localize representation of acoustic mating signals in the auditory midbrain of frogs. We exposed wild-caught male Physalaemus pustulosus to conspecific mating calls that vary in their behavioral salience, nonsalient mating calls, or no sound. We measured expression of the immediate early gene egr-1 (also called ZENK, zif 268, NGFI -A, and krox -24) throughout the torus semicircularis, the auditory midbrain homolog of the inferior colliculus. Differential egr-1 induction in response to the acoustic stimuli occurred in the laminar, midline, and principal nuclei of the torus semicircularis, whereas the ventral region did not show significant effects of stimulus. The laminar nucleus differentially responded to conspecific mating calls compared with nonsalient mating calls, whereas the midline and principal nuclei responded preferentially to one of two conspecific calls. These responses were not explained by simple acoustic prop...
    Dec 15, 2004 Kim L. Hoke
  • Complex Formation between the Postsynaptic Scaffolding Protein Gephyrin, Profilin, and Mena: A Possible Link to the Microfilament System | Journal of Neuroscience
    Gephyrin is an essential component of the postsynaptic cortical protein network of inhibitory synapses. Gephyrin-based scaffolds participate in the assembly as well as the dynamics of receptor clusters by connecting the cytoplasmic domains of glycine and GABAA receptor polypeptides to two cytoskeletal systems, microtubules and microfilaments. Although there is evidence for a physical linkage between gephyrin and microtubules, the interaction between gephyrin and microfilaments is not well understood so far. Here, we show that neuronal gephyrin interacts directly with key regulators of microfilament dynamics, profilin I and neuronal profilin IIa, and with microfilament adaptors of the mammalian enabled (Mena)/vasodilator stimulated phosphoprotein (VASP) family, including neuronal Mena. Profilin and Mena/VASP coprecipitate with gephyrin from tissue and cells, and complex formation requires the E-domain of gephyrin, not the proline-rich central domain. Consequently, gephyrin is not a ligand for the proline-bi...
    Sep 10, 2003 Torsten Giesemann
  • Presynaptic, Activity-Dependent Modulation of Cannabinoid Type 1 Receptor-Mediated Inhibition of GABA Release | Journal of Neuroscience
    Endocannabinoid signaling couples activity-dependent rises in postsynaptic Ca2+ levels to decreased presynaptic GABA release. Here, we present evidence from paired recording experiments that cannabinoid-mediated inhibition of GABA release depends on the firing rates of the presynaptic interneurons. Low-frequency action potentials in post hoc identified cholecystokinin-positive CA1 basket cells elicited IPSCs in the postsynaptic pyramidal cells that, as expected, were fully abolished by the exogenous application of the cannabinoid receptor agonist WIN55,212-2 [ R -(+)-(2,3-dihydro-5-methyl-3-[(4-morpholinyl)methyl]pyrol[1,2,3-de]-1,4-benzoxazin-6-yl)(1-naphthalenyl) methanone monomethanesulfonate] at 5 μm. However, the presynaptic basket cells recovered from the cannabinoid agonist-induced inhibition of GABA release when the presynaptic firing rate was increased to ≥20 Hz. Pharmacological experiments showed that the recovered transmission was exclusively dependent on presynaptic N-type Ca2+ channels. Furthe...
    Feb 1, 2006 Csaba Földy
  • Regulation of Neuronal mRNA Translation by CaM-Kinase I Phosphorylation of eIF4GII | Journal of Neuroscience
    Ca2+/calmodulin-dependent kinases (CaMKs) are essential for neuronal development and plasticity, processes requiring de novo protein synthesis. Roles for CaMKs in modulating gene transcription are well established, but their involvement in mRNA translation is evolving. Here we report that activity-dependent translational initiation in cultured rat hippocampal neurons is enhanced by CaMKI-mediated phosphorylation of Ser1156 in eukaryotic initiation factor eIF4GII (4GII). Treatment with bicuculline or gabazine to enhance neuronal activity promotes recruitment of wild-type 4GII, but not the 4GII S1156A mutant or 4GI, to the heterotrimeric eIF4F (4F) complex that assembles at the 5′ cap structure (m7GTP) of mRNA to initiate ribosomal scanning. Recruitment of 4GII to 4F is suppressed by pharmacological inhibition (STO-609) of CaM kinase kinase, the upstream activator of CaMKI. Post hoc in vitro CaMKI phosphorylation assays confirm that activity promotes phosphorylation of S1156 in transfected 4GII in neurons. C...
    Apr 18, 2012 Taasin Srivastava
  • Occurrence and Biosynthesis of Endogenous Cannabinoid Precursor,N-Arachidonoyl Phosphatidylethanolamine, in Rat Brain | Journal of Neuroscience
    It has been suggested that anandamide ( N -arachidonoylethanolamine), an endogenous cannabinoid substance, may be produced through Ca2+-stimulated hydrolysis of the phosphatidylethanolamine (PE) derivative N -arachidonoyl PE. The presence of N -arachidonoyl PE in adult brain tissue and the enzyme pathways that underlie its biosynthesis are, however, still undetermined. We report here that rat brain tissue contains both anandamide (11 ± 7 pmol/gm wet tissue) and N -arachidonoyl PE (22 ± 16 pmol/gm), as assessed by gas chromatography/mass spectrometry. We describe a N -acyltransferase activity in brain that catalyzes the biosynthesis of N -arachidonoyl PE by transferring an arachidonate group from the sn -1 carbon of phospholipids to the amino group of PE. We also show that sn -1 arachidonoyl phospholipids are present in brain, where they constitute ∼0.5% of total phospholipids. N -acyltransferase activity is Ca2+ dependent and is enriched in brain and testis. Within the brain, N -acyltransferase activity is...
    Feb 15, 1997 Hugues Cadas
  • Impulsive Personality Predicts Dopamine-Dependent Changes in Frontostriatal Activity during Component Processes of Working Memory | Journal of Neuroscience
    Dopaminergic drugs affect a variety of cognitive processes, but the direction and extent of effects vary across individuals and tasks. Paradoxical effects are observed, by which the same drug causes cognitive enhancing as well as adverse effects. Here, we demonstrate that individual differences in impulsive personality account for the contrasting effects of dopaminergic drugs on working memory and associated frontostriatal activity. We observed that the dopamine D2 receptor agonist bromocriptine improved the flexible updating (switching) of relevant information in working memory in high-impulsive subjects, but not in low-impulsive subjects. These behavioral effects in high-impulsive subjects accompanied dissociable effects on frontostriatal activity. Bromocriptine modulated the striatum during switching but not during distraction from relevant information in working memory. Conversely, the lateral frontal cortex was modulated by bromocriptine during distraction but not during switching. The present results...
    May 16, 2007 Roshan Cools
  • Synaptotagmin-7 Enhances Facilitation of Cav2.1 Calcium Channels | eNeuro
    Voltage-gated calcium channel Cav2.1 undergoes Ca2+-dependent facilitation and inactivation, which are important in short-term synaptic plasticity. In presynaptic terminals, Cav2.1 forms large protein complexes that include synaptotagmins. Synaptotagmin-7 (Syt-7) is essential to mediate short-term synaptic plasticity in many synapses. Here, based on evidence that Cav2.1 and Syt-7 are both required for short-term synaptic facilitation, we investigated the direct interaction of Syt-7 with Cav2.1 and probed its regulation of Cav2.1 function. We found that Syt-7 binds specifically to the α1A subunit of Cav2.1 through interaction with the synaptic-protein interaction (synprint) site. Surprisingly, this interaction enhances facilitation in paired-pulse protocols and accelerates the onset of facilitation. Syt-7α induces a depolarizing shift in the voltage dependence of activation of Cav2.1 and slows Ca2+-dependent inactivation, whereas Syt-7β and Syt-7γ have smaller effects. Our results identify an unexpected, is...
    May 1, 2022 Alaeddine Djillani
  • Reduced Striatal Dopamine Transporter Density in Abstinent Methamphetamine and Methcathinone Users: Evidence from Positron Emission Tomography Studies with [11C]WIN-35,428 | Journal of Neuroscience
    Methamphetamine and methcathinone are psychostimulant drugs with high potential for abuse. In animals, methamphetamine and related drugs are known to damage brain dopamine (DA) neurons, and this damage has recently been shown to be detectable in living nonhuman primates by means of positron emission tomography (PET) with [11C]WIN-35,428, a DA transporter (DAT) ligand. The present studies determined whether living humans with a history of methamphetamine or methcathinone abuse showed evidence of lasting decrements in brain DAT density. PET studies were performed in 10 control subjects, six abstinent methamphetamine users, four abstinent methcathinone users, and three patients with Parkinson’s disease (PD). On average, subjects had abstained from amphetamine use for ∼3 years. Before PET studies, all subjects underwent urine and blood toxicology screens to rule out recent drug use. Compared with controls, abstinent methamphetamine and methcathinone users had significant decreases in DAT density in the caudate...
    Oct 15, 1998 Una D. McCann
  • Nipping Cue Reactivity in the Bud: Baclofen Prevents Limbic Activation Elicited by Subliminal Drug Cues | Journal of Neuroscience
    Relapse is a widely recognized and difficult to treat feature of the addictions. Substantial evidence implicates cue-triggered activation of the mesolimbic dopamine system as an important contributing factor. Even drug cues presented outside of conscious awareness (i.e., subliminally) produce robust activation within this circuitry, indicating the sensitivity and vulnerability of the brain to potentially problematic reward signals. Because pharmacological agents that prevent these early cue-induced responses could play an important role in relapse prevention, we examined whether baclofen—a GABAB receptor agonist that reduces mesolimbic dopamine release and conditioned drug responses in laboratory animals—could inhibit mesolimbic activation elicited by subliminal cocaine cues in cocaine-dependent individuals. Twenty cocaine-dependent participants were randomized to receive baclofen (60 mg/d; 20 mg t.i.d.) or placebo. Event-related BOLD fMRI and a backward-masking paradigm were used to examine the effects of...
    Apr 2, 2014 Kimberly A. Young
  • Previous
  • 81
  • 82
  • 83
  • 84
  • 85
  • Next

Featured

  • SfN Selects Kevin B. Marvel, PhD, as Next Executive Director
  • Read the Neuroscience Quarterly - Fall 2025
  • Renew your SfN Membership Today!
SfN Websites
  • BrainFacts.org logo
  • eNeuro logo
  • JNeurosci logo
  • Neuronline logo
Engage with SfN
  • join Join
  • give Give
  • advocate Advocate
  • publish Publish
Quick Links
  • SfN News
  • For Press
  • Global Events
  • Contact Us
  • Advertise
  • Code of Conduct
  • Jobs at SfN
  • SfN Store
  • Social Media
Follow SfN
  • BlueSky logo
  • Facebook logo
  • Instagram logo
  • LinkedIn logo

  • Threads logo
  • X Logo
  • YouTube logo
SfN logo with "SfN" in a blue box next to Society for Neuroscience in red text and the SfN tag line that reads "Advancing the understanding of the brain and nervous system"
1121 14th Street NW, Suite 1010, Washington, D.C. 20005
(202) 962-4000 | 1-888-985-9246
  • Accessibility Policy
  • Disclaimer
  • Privacy Notice
  • Contact Us

Copyright ©
Society for Neuroscience