Filter
-
(2)
-
(1)
-
(3)
-
(6)
-
(8)
-
(1)
-
(574)
-
(3)
-
(2)
-
(8)
711 - 720
of 892 results
-
Hemopressin is a short, nine amino acid peptide (H-Pro-Val-Asn-Phe-Lys-Leu-Leu-Ser-His-OH) isolated from rat brain that behaves as an inverse agonist at the cannabinoid receptor CB1, and is shown here to inhibit agonist-induced receptor internalization in a heterologous cell model. Since this peptide occurs naturally in the rodent brain, we determined its effect on appetite, an established central target of cannabinoid signaling. Hemopressin dose-dependently decreases night-time food intake in normal male rats and mice, as well as in obese ob / ob male mice, when administered centrally or systemically, without causing any obvious adverse side effects. The normal, behavioral satiety sequence is maintained in male mice fasted overnight, though refeeding is attenuated. The anorectic effect is absent in CB1 receptor null mutant male mice, and hemopressin can block CB1 agonist-induced hyperphagia in male rats, providing strong evidence for antagonism of the CB1 receptor in vivo . We speculate that hemopressin m...May 26, 2010
-
P/Q-type (Cav2.1) calcium channels support a host of Ca2+-driven neuronal functions in the mammalian brain. Alternative splicing of the main α1A(α12.1) subunit of these channels may thereby represent a rich strategy for tuning the functional profile of diverse neurobiological processes. Here, we applied a recently developed “transcript-scanning” method for systematic determination of splice variant transcripts of the human α12.1 gene. This screen identified seven loci of variation, which together have never been fully defined in humans. Genomic sequence analysis clarified the splicing mechanisms underlying the observed variation. Electrophysiological characterization and a novel analytical paradigm, termed strength–current analysis, revealed that one focus of variation, involving combinatorial inclusion and exclusion of exons 43 and 44, exerted a primary effect on current amplitude and a corollary effect on Ca2+-dependent channel inactivation. These findings significantly expand the anticipated scope of fu...Dec 1, 2002
-
Nicotine use increases the risk for subsequent abuse of other addictive drugs, but the biological basis underlying this risk remains largely unknown. Interactions between nicotine and other drugs of abuse may arise from nicotine-induced neural adaptations in the mesolimbic dopamine (DA) system, a common pathway for the reinforcing effects of many addictive substances. Previous work identified nicotine-induced neuroadaptations that alter inhibitory transmission in the ventral tegmental area (VTA). Here, we test whether nicotine-induced dysregulation of GABAergic signaling within the VTA increases the vulnerability for benzodiazepine abuse that has been reported in smokers. We demonstrate in rats that nicotine exposure dysregulates diazepam-induced inhibition of VTA GABA neurons and increases diazepam consumption. In VTA GABA neurons, nicotine impaired KCC2-mediated chloride extrusion, depolarized the GABAA reversal potential, and shifted the pharmacological effect of diazepam on GABA neurons from inhibition...Mar 1, 2020
-
Cannabinoids, the primary active agent in drugs of abuse such as marijuana and hashish, tend to generate a distorted sense of time. Here we study the effect of cannabinoids on the brain's circadian clock, the suprachiasmatic nucleus (SCN), using patch clamp and cell-attached electrophysiological recordings, RT-PCR, immunocytochemistry, and behavioral analysis. The SCN showed strong expression of the cannabinoid receptor CB1R, as detected with RT-PCR. SCN neurons, including those using GABA as a transmitter, and axons within the SCN, expressed CB1R immunoreactivity. Behaviorally, cannabinoids did not alter the endogenous free-running circadian rhythm in the mouse brain, but did attenuate the ability of the circadian clock to entrain to light zeitgebers. In the absence of light, infusion of the CB1R antagonist AM251 caused a modest phase shift, suggesting endocannabinoid modulation of clock timing. Interestingly, cannabinoids had no effect on glutamate release from the retinohypothalamic projection, suggesti...Jul 28, 2010
-
The opioid crisis has resulted in an unprecedented number of neonates born with prenatal opioid exposure (POE); however, the long-term effects of POE on offspring behavior and neurodevelopment remain relatively unknown. The advantages and disadvantages of the various preclinical POE models developed over the last several decades are discussed in the context of clinical and translational relevance. Although considerable and important variability exists among preclinical models of POE, the examination of these preclinical models has revealed that opioid exposure during the prenatal period contributes to maladaptive behavioral development as offspring mature including an altered responsiveness to rewarding drugs and increased pain response. The present review summarizes key findings demonstrating the impact of POE on offspring drug self-administration (SA), drug consumption, the reinforcing properties of drugs, drug tolerance, and other reward-related behaviors such as hypersensitivity to pain. Potential unde...Nov 1, 2020
-
Cannabinoid, dopamine (DA), and opiate receptor pathways play integrative roles in emotional learning, associative memory, and sensory perception. Modulation of cannabinoid CB1 receptor transmission within the medial prefrontal cortex (mPFC) regulates the emotional valence of both rewarding and aversive experiences. Furthermore, CB1 receptor substrates functionally interact with opiate-related motivational processing circuits, particularly in the context of reward-related learning and memory. Considerable evidence demonstrates functional interactions between CB1 and DA signaling pathways during the processing of motivationally salient information. However, the role of mPFC CB1 receptor transmission in the modulation of behavioral opiate-reward processing is not currently known. Using an unbiased conditioned place preference paradigm with rats, we examined the role of intra-mPFC CB1 transmission during opiate reward learning. We report that activation or inhibition of CB1 transmission within the prelimbic c...Sep 25, 2013
-
The present study was designed to explore the relationship between the cannabinoid and opioid receptors in animal models of opioid-induced reinforcement. The acute administration of SR141716A, a selective central cannabinoid CB1 receptor antagonist, blocked heroin self-administration in rats, as well as morphine-induced place preference and morphine self-administration in mice. Morphine-dependent animals injected with SR141716A exhibited a partial opiate-like withdrawal syndrome that had limited consequences on operant responses for food and induced place aversion. These effects were associated with morphine-induced changes in the expression of CB1 receptor mRNA in specific nuclei of the reward circuit, including dorsal caudate putamen, nucleus accumbens, and septum. Additionally, the opioid antagonist naloxone precipitated a mild cannabinoid-like withdrawal syndrome in cannabinoid-dependent rats and blocked cannabinoid self-administration in mice. Neither SR141716A nor naloxone produced any intrinsic effe...Jul 15, 2001
-
Primary cilia are essential for CNS development. In the mouse, they play a critical role in patterning the spinal cord and telencephalon via the regulation of Hedgehog/Gli signaling. However, despite the frequent disruption of this signaling pathway in human forebrain malformations, the role of primary cilia in forebrain morphogenesis has been little investigated outside the telencephalon. Here we studied development of the diencephalon, hypothalamus and eyes in mutant mice in which the Ftm/Rpgrip1l ciliopathy gene is disrupted. At the end of gestation, Ftm −/− fetuses displayed anophthalmia, a reduction of the ventral hypothalamus and a disorganization of diencephalic nuclei and axonal tracts. In Ftm −/− embryos, we found that the ventral forebrain structures and the rostral thalamus were missing. Optic vesicles formed but lacked the optic cups. In Ftm −/− embryos, Sonic hedgehog ( Shh ) expression was virtually lost in the ventral forebrain but maintained in the zona limitans intrathalamica (ZLI), the mi...Mar 27, 2019
-
We characterized the pharmacological properties of the anandamide transport inhibitor N -(4-hydroxyphenyl)-arachidonamide (AM404) in rats and investigated the effects of this drug on behavioral responses associated with activation of dopamine D2 family receptors. Rat brain slices accumulated [3H]anandamide via a high-affinity transport mechanism that was blocked by AM404. When administered alone in vivo , AM404 caused a mild and slow-developing hypokinesia that was significant 60 min after intracerebroventricular injection of the drug and was reversed by the CB1 cannabinoid receptor antagonist SR141716A. AM404 produced no significant catalepsy or analgesia, two typical effects of direct-acting cannabinoid agonists. However, AM404 prevented the stereotypic yawning produced by systemic administration of a low dose of apomorphine, an effect that was dose-dependent and blocked by SR141716A. Furthermore, AM404 reduced the stimulation of motor behaviors elicited by the selective D2family receptor agonist quinpir...May 1, 2000
-
Prenatal ethanol exposure (PE) leads to increased addiction risk which could be mediated by enhanced excitatory synaptic strength in ventral tegmental area (VTA) dopamine (DA) neurons. Previous studies have shown that PE enhances excitatory synaptic strength by facilitating an anti-Hebbian form of long-term potentiation (LTP). In this study, we investigated the effect of PE on endocannabinoid-mediated long-term depression (eCB-LTD) in VTA DA neurons. Rats were exposed to moderate (3 g/kg/d) or high (6 g/kg/d) levels of ethanol during gestation. Whole-cell recordings were conducted in male offspring between 4 and 10 weeks old. We found that PE led to increased amphetamine self-administration. Both moderate and high levels of PE persistently reduced low-frequency stimulation-induced eCB-LTD. Furthermore, action potential-independent glutamate release was regulated by tonic eCB signaling in PE animals. Mechanistic studies for impaired eCB-LTD revealed that PE downregulated CB1 receptor function. Interestingl...Jun 14, 2017