Society for Neuroscience - Search

Skip Navigation

  • join logo Join
  • hands shaped like a yellow heart icon Give
  • advocate logo Advocate
  • publish logo Publish
  • Icon with thought bubbles Learn
Shop Sign In
SfN Logo 2025
  • Membership
    • Learn About Membership
      • Individual Member Benefits
      • Institutional Program Member Benefits
      • Sustaining Associate Member Benefits
      • Get Involved at SfN
    • Become a Member
      • Sponsorship Information for New Members
      • Membership Categories & Fees
      • Membership Fees for Developing Countries
      • Renew Individual Membership
    • Member Resources
      • Automatic Renewals
      • Frequently Asked Questions
      • Individual Member Directory
      • Member Obituaries and Memorial Donations
    • Learn About Local Chapters
      • Start or Reactivate a Chapter
      • Resources for Chapters
      • Submit Annual Report
      • Chapter Directory
      • Frequently Asked Questions
  • Meetings
    • Meetings Overview
    • Neuroscience 2025
      • Presenter Resources
      • Itinerary Planner and Mobile App
      • Virtual Component
      • Sessions and Events
      • Registration
      • Housing and Travel
      • Exhibits
      • FAQs
    • Global Events
      • SfN Virtual Events
    • Past and Future Annual Meetings
      • Neuroscience 2024
      • Neuroscience 2023
      • Search Past Annual Meeting Abstracts
      • Attendance Statistics
    • Meeting Policies and Guidelines
      • Code of Conduct at SfN Events
      • Growth and Opportunity Strategy
      • Photography & Recording Policy
      • Presenter Guidelines and Policies for SfN Events
    • Meeting Awards
      • Trainee Professional Development Award
      • International Travel Awards
      • FENS Member Awards to SfN Annual Meeting
      • IBRO Member Awards to SfN Annual Meeting
      • JNS Member Awards to SfN Annual Meeting
  • Careers
    • Careers Overview
    • Institutional Program (IP) Directory
    • NeuroJobs Career Center
      • Job Seekers
      • Employers
    • 2025 Graduate School Fair
    • Career Tools and Resources
      • Neuronline
      • Neurobiology of Disease Workshop
      • Responsible Conduct of Research Short Courses
      • Neuroscience Departments and Program Workshop
      • Global Funding Sources
    • Higher Education and Training
      • Core Competencies
      • Neuroscience Training Program Survey
    • Awards
      • Outstanding Career and Research Achievements
      • Early Career
  • Initiatives
    • Initiatives Overview
    • Awards
      • 2025 Award Recipients
      • Awards and Prizes FAQ
      • Trainee Professional Development Award
    • Neuroscience Scholars Program
    • Neuronline
      • Webinars
      • Articles
      • Videos
      • Podcasts
      • Collections
    • Resources to Stay Connected
      • SfN Zoom Backgrounds
    • Community
    • Women and Neuroscience
      • Increasing Women in Neuroscience (IWiN) Courses & Toolkit
      • Celebration of Women in Neuroscience Event
      • Awards
    • Animals in Research
      • Support for Members and Institutions
      • Tools and Resources
      • Resources for Medical Students
    • Public Education Programs
      • Resources for Educators
      • Brain Awareness Video Contest
      • Life of a Neuron Exhibit
  • Advocacy
    • Advocacy Overview
    • Advocacy Response
    • Advocacy Network
      • The NeuroAdvocate Challenge
      • Advocacy Action Center
      • Advocacy Best Practices
      • Advocacy Network News
      • Advocacy Training Seminars
    • US Advocacy Programs
      • Capitol Hill Day
      • Connect with Policymakers
      • Early Career Policy Ambassadors
      • Partner with a Local Chapter
      • Engage the Media
    • Global Advocacy Programs
      • Global Neuroscience Initiatives
      • Global Funding
      • North American Programs
    • Science Funding
      • Advocacy Videos
      • Advocacy Resources
      • US Neuroscience Initiatives
      • Funding Priorities and Processes
    • Policy Positions
      • Statements and Testimony
      • Sign-On Letters
  • Outreach
    • Outreach Overview
    • BrainFacts.org
    • Find a Neuroscientist
    • Brain Awareness Campaign
      • Webinar: The ABC's of BAW
      • How to Get Involved
    • Awards
      • Award for Education in Neuroscience
      • Next Generation Award
      • Chapter of the Year Award
      • Science Educator Award
  • Publications
    • Publications Overview
    • SfN News
    • JNeurosci
    • eNeuro
    • SfN Nexus
    • Neuroscience Quarterly
    • Annual Report
    • History of Neuroscience Autobiographical Chapters
  • About
    • About Overview
    • Mission and Strategic Plan
    • What We Do
      • Annual Report
      • Bylaws
      • Resolutions to the Bylaws
      • Environmental Commitment
      • Strategic Partners
      • History of SfN
    • SfN 50th Anniversary Celebration
    • NIH Public Health Service-Supported Funding Financial Conflict of Interest Policy
    • Volunteer
      • SfN Council
      • SfN Presidents
      • Committees
      • Elections
      • Call for Nominations
    • Professional Conduct
      • SfN Ethics Policy
      • Guidelines for Responsible Conduct Regarding Scientific Communication
      • Code of Conduct at SfN Events
      • Commitment to Scientific Integrity
      • Neuronline Digital Learning Community Guidelines
    • History of Neuroscience
      • Autobiographical Chapters
      • Autobiographical Videos of Prominent Neuroscientists
      • Classic Papers
      • Neuroscience History Resources
      • Robert Doty's Chapter on Neuroscience
    • Careers and Staff
      • Staff List
  1. Search

Filter

  • (2)
  • (1)
  • (3)
  • (6)
  • (8)
  • (1)
  • (574)
  • (3)
  • (2)
  • (8)
Filter
581 - 590 of 892 results
  • Drug-Induced Alterations of Endocannabinoid-Mediated Plasticity in Brain Reward Regions | Journal of Neuroscience
    The endocannabinoid (eCB) system has emerged as one of the most important mediators of physiological and pathological reward-related synaptic plasticity. eCBs are retrograde messengers that provide feedback inhibition, resulting in the suppression of neurotransmitter release at both excitatory and inhibitory synapses, and they serve a critical role in the spatiotemporal regulation of both short- and long-term synaptic plasticity that supports adaptive learning of reward-motivated behaviors. However, mechanisms of eCB-mediated synaptic plasticity in reward areas of the brain are impaired following exposure to drugs of abuse. Because of this, it is theorized that maladaptive eCB signaling may contribute to the development and maintenance of addiction-related behavior. Here we review various forms of eCB-mediated synaptic plasticity present in regions of the brain involved in reward and reinforcement and explore the potential physiological relevance of maladaptive eCB signaling to addiction vulnerability.
    Oct 5, 2016 Natalie E. Zlebnik
  • Involvement of Cannabinoid Receptors in the Regulation of Neurotransmitter Release in the Rodent Striatum: A Combined Immunochemical and Pharmacological Analysis | Journal of Neuroscience
    Despite the profound effect of cannabinoids on motor function, and their therapeutic potential in Parkinson's and Huntington's diseases, the cellular and subcellular distributions of striatal CB1 receptors are not well defined. Here, we show that CB1 receptors are primarily located on GABAergic (vesicular GABA transporter-positive) and glutamatergic [vesicular glutamate transporter-1 (VGLUT-1)- and VGLUT-2-positive] striatal nerve terminals and are present in the presynaptic active zone, in the postsynaptic density, as well as in the extrasynaptic membrane. Both the nonselective agonist [WIN55212][1]-2 \[( R )-(+)-[2,3-dihydro-5-methyl-3[(4-morpholinyl)methyl] pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl)methanone mesylate salt\] (EC50, 32 nm) and the CB1-selective agonist ACEA [ N -(2-chloroethyl)-5Z,8Z,11Z,14Z-eicosatetraenamide] inhibited [3H]GABA release from rat striatal slices. The effect of these agonists was prevented by the CB1-selective antagonists SR141716A \[ N -(piperidin-1-yl)-5-(4-chl...
    Mar 16, 2005 Attila Köfalvi
  • Abstract
    Heavy cannabis use associated with Wernicke's encephalopathy
    Cannabis use accounts for more than 149,000 hospital visits annually. As more states legalize recreational Cannabis, side effects that are currently rare will become increasingly more common. Here, we present a rare case of Cannabis-induced hyperemesis ...
    Oct 20, 2019
  • Abstract
    Characterization of tau in human frontal cortex on a neuropathological cohort of tauopathies.
    Familial frontotemporal dementia (FTD) can be caused by mutations in the tau gene on chromosome 17 (FTDP 17). One of the proposed mechanisms for tau mutations is a shift in expression of 4R tau vs. 3R tau. In progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD), there is mainly 4R tau brain pathology. We examined the prevalence of tau mutations and levels of tau protein and 4R tau/3R tau mRNA in frontal cortex from brains of the Massachusetts Alzheimer’s Disease Research Center, representing 17 FTD, 21 PSP, 5 CBD, 15 Alzheimer’s disease (AD) and 16 control cases. Two tau gene mutations were found among the FTD brains. One case carried the P301L mutation and one had a new tau mutation, V248L. Total tau protein levels, by ELISA, were decreased among FTD (63 µg/g) and AD (67 µg/g) cases as compared to controls (80 µg/g). Total tau mRNA levels, by quantitative PCR, were lower in FTD (537 x 103 molecules/µg cDNA) and PSP (550 x 103 molecules/µg cDNA) than in controls (992 x 103 molecules/µg ...
    Nov 14, 2005
  • Cannabinoid Receptor 1 Is Required for Neurodevelopment of Striosome-Dendron Bouquets | eNeuro
    Cannabinoid receptor 1 (CB1R) has strong effects on neurogenesis and axon pathfinding in the prenatal brain. Endocannabinoids that activate CB1R are abundant in the early postnatal brain and in mother’s milk, but few studies have investigated their function in newborns. We examined postnatal CB1R expression in the major striatonigral circuit from striosomes of the striatum to the dopamine-containing neurons of the substantia nigra. CB1R enrichment was first detectable between postnatal day (P)5 and P7, and this timing coincided with the formation of “striosome-dendron bouquets,” the elaborate anatomic structures by which striosomal neurons control dopaminergic cell activity through inhibitory synapses. In Cnr1−/− knock-out mice lacking CB1R expression, striosome-dendron bouquets were markedly disorganized by P11 and at adulthood, suggesting a postnatal pathfinding connectivity function for CB1R in connecting striosomal axons and dopaminergic neurons analogous to CB1R’s prenatal function in other brain regi...
    Mar 1, 2022 Jill R. Crittenden
  • Phencyclidine Increases Forebrain Monoamine Metabolism in Rats and Monkeys: Modulation by the Isomers of HA966 | Journal of Neuroscience
    The noncompetitive NMDA receptor antagonist phencyclidine (PCP) has psychotomimetic properties in humans and activates the frontal cortical dopamine innervation in rats, findings that have contributed to a hyperdopaminergic hypothesis of schizophrenia. In the present studies, the effects of the enantiomers of 3-amino-1-hydroxypyrrolid-2-one (HA966) on PCP-induced changes in monoamine metabolism in the forebrain of rats and monkeys were examined, because HA966 has been shown previously to attenuate stress- or drug-induced activation of dopamine systems. In rats, PCP (10 mg/kg, i.p.) potently activated dopamine (DA) turnover in the medial prefrontal cortex (PFC) and nucleus accumbens. Serotonin utilization was also increased in PFC. Pretreatment with either R-(+)HA966 (15 mg/kg, i.p.) or S-(−)HA966 (3 mg/kg, i.p.) partially blocked PCP-induced increases in PFC DA turnover, whereas neither enantiomer altered the effect of PCP on DA turnover in the nucleus accumbens or the PCP-induced increases in serotonin tu...
    Mar 1, 1997 J. David Jentsch
  • Abstract
    Personality traits, emotionality, and striatal dopamine D2 receptors in substance use disorder and obesity
    Self-constraint and emotionality are implicated in drug abuse and obesity, which may be due to an impaired dopaminergic system. We studied differences in personality traits between abusers of different drugs, obese, and healthy controls, and their assoc...
    Oct 20, 2019
  • Abstract
    Chronic stress-induced increase of adrenocortical serotonin transporter expression in rats: A glucocorticoid-dependent phenomenon
    Chronic restraint stress (CRS) has been shown to magnify acute stress-induced corticosterone (CORT) secretion in rats through a mechanism involving 5-HT7 receptors, and to increase the amount of 5-HT7 receptors and serotonin (5-HT) in the adrenal cortex...
    Oct 23, 2019
  • Abstract
    Development of a toolbox of genetically-encoded fluorescent sensors for endocannabinoids and neuropeptides
    Endocannabinoids (eCBs) and neuropeptides are essential signaling molecules in both nervous and endocrine system. By modulating on the related brain circuits, these molecules are the key regulators for many neural processes, including social behavior, s...
    Oct 22, 2019
  • Abstract
    Mitochondrial trafficking and clearance in tauopathies
    Mitochondria are an essential organelle supporting a wide range of cellular functions by producing ATP, maintaining Ca2+ homeostasis, generating reactive oxygen species and signalling apoptosis. Defects in mitostasis - maintaining healthy mitochondria -...
    Nov 5, 2018
  • Previous
  • 57
  • 58
  • 59
  • 60
  • 61
  • Next

Featured

  • SfN Selects Kevin B. Marvel, PhD, as Next Executive Director
  • Read the Neuroscience Quarterly - Fall 2025
  • Renew your SfN Membership Today!
SfN Websites
  • BrainFacts.org logo
  • eNeuro logo
  • JNeurosci logo
  • Neuronline logo
Engage with SfN
  • join Join
  • give Give
  • advocate Advocate
  • publish Publish
Quick Links
  • SfN News
  • For Press
  • Global Events
  • Contact Us
  • Advertise
  • Code of Conduct
  • Jobs at SfN
  • SfN Store
  • Social Media
Follow SfN
  • BlueSky logo
  • Facebook logo
  • Instagram logo
  • LinkedIn logo

  • Threads logo
  • X Logo
  • YouTube logo
SfN logo with "SfN" in a blue box next to Society for Neuroscience in red text and the SfN tag line that reads "Advancing the understanding of the brain and nervous system"
1121 14th Street NW, Suite 1010, Washington, D.C. 20005
(202) 962-4000 | 1-888-985-9246
  • Accessibility Policy
  • Disclaimer
  • Privacy Notice
  • Contact Us

Copyright ©
Society for Neuroscience