Filter
-
(43)
-
(35)
-
(14)
-
(2)
-
(1)
-
(22)
-
(2)
-
(91)
-
(1)
-
(1)
-
(115)
-
(2)
-
(2)
-
(6061)
-
(72)
-
(71)
-
(96)
2151 - 2160
of 33815 results
-
The causal relationship between gut microbiota (GM) and white matter injury and communication remains unclear. We aimed to scrutinize the plausible causal impact of GM on white matter hyperintensities (WMHs), white matter microstructure, white matter connectivity, and multiple neurological diseases via Mendelian randomization study. We identified four WMH-related bacterial taxa, including class Melainabacteria , order Gastranaerophilales , family Alcaligenaceae , and genus Ruminiclostridium 6 . In addition, three bacterial taxa were discovered that have consistent effect on multiple aspects of white matter microstructure. Furthermore, we found 12 strong associations between genetic liability in GM and white matter connectivity. Among these bacterial taxa, the family Clostridiaceae 1 demonstrated a protective effect against ischemic stroke (IS). The genus Barnesiella showed protective effect on IS and small vessel stroke while posed a risk effect on neuromyelitis optica spectrum disorder (NMOSD), as well as...Sep 1, 2025
-
Young healthy participants spontaneously use different strategies in a virtual radial maze, an adaptation of a task typically used with rodents. Functional magnetic resonance imaging confirmed previously that people who used spatial memory strategies showed increased activity in the hippocampus, whereas response strategies were associated with activity in the caudate nucleus. Here, voxel based morphometry was used to identify brain regions covarying with the navigational strategies used by individuals. Results showed that spatial learners had significantly more gray matter in the hippocampus and less gray matter in the caudate nucleus compared with response learners. Furthermore, the gray matter in the hippocampus was negatively correlated to the gray matter in the caudate nucleus, suggesting a competitive interaction between these two brain areas. In a second analysis, the gray matter of regions known to be anatomically connected to the hippocampus, such as the amygdala, parahippocampal, perirhinal, entor...Sep 19, 2007
-
Alterations in motivated behavior are a hallmark of attention-deficit/hyperactivity disorder (ADHD), one of the most common psychiatric disorders in children and adolescents. The orbitofrontal cortex (OFC) plays a key role in controlling goal-directed behavior, but the link between OFC dysfunction and behavioral deficits in ADHD, particularly in adolescence, remains poorly understood. Here we used advanced high-resolution functional magnetic resonance imaging (fMRI) of the human OFC in adolescents with ADHD and typically developing (TD) controls ( N = 39, age 12–16, all male except for one female per group) to study reward-related OFC responses and how they relate to behavioral dysfunction in ADHD. During fMRI data acquisition, participants performed a simple decision-making task, allowing us to image expectation-related responses to small and large monetary outcomes. Across all participants, we observed significant signal increases to large versus small expected rewards in the OFC. These responses were si...Jul 25, 2018
-
Past investigations on stem cell-mediated recovery after stroke have limited their focus on the extent and morphological development of the ischemic lesion itself over time or on the integration capacity of the stem cell graft ex vivo . However, an assessment of the long-term functional and structural improvement in vivo is essential to reliably quantify the regenerative capacity of cell implantation after stroke. We induced ischemic stroke in nude mice and implanted human neural stem cells (H9 derived) into the ipsilateral cortex in the acute phase. Functional and structural connectivity changes of the sensorimotor network were noninvasively monitored using magnetic resonance imaging for 3 months after stem cell implantation. A sharp decrease of the functional sensorimotor network extended even to the contralateral hemisphere, persisting for the whole 12 weeks of observation. In mice with stem cell implantation, functional networks were stabilized early on, pointing to a paracrine effect as an early suppo...Feb 14, 2018
-
In the past years, claims of cognitive and attentional function of the cerebellum have first been raised but were later refuted. One reason for this controversy might be that attentional deficits only occur when specific cerebellar structures are affected. To further elucidate this matter and to determine which cerebellar regions might be involved in deficits of covert visual attention, we used new brain imaging tools of lesion mapping that allow a direct comparison with control patients. A total of 26 patients with unilateral right-sided cerebellar infarcts were tested on a covert visual attention task. Eight (31%) patients showed markedly slowed responses, especially in trials in which an invalid cue necessitated reorienting of the focus of attention for target detection. Compared with the 18 patients who performed within the range of healthy control subjects, only the impaired patients had lesions of cerebellar vermal structures such as the pyramid. We suggest that these midcerebellar regions are indire...Mar 10, 2010
-
Neuropsychological investigations of patients with Parkinson's disease, schizophrenia, or attention deficit disorder converge with psychopharmacological studies in animals and healthy volunteers to implicate dopamine (DA) pathways in timing. In parallel, single-cell recording and functional neuroimaging studies have highlighted the importance of basal ganglia, prefrontal cortex, and supplementary motor area (SMA) for timing. In a placebo-controlled, within-subject design, we combined event-related functional magnetic resonance imaging with a DA manipulation (acute phenylalanine/tyrosine depletion; APTD) in healthy volunteers to pinpoint the neuroanatomical and functional substrates of the DA modulation of timing. Behaviorally, APTD selectively impaired accuracy of perceptual timing, with no effect on performance of a color-control task matched for difficulty, working memory (WM), and attentional demands. Neurally, APTD attenuated timing-specific activity in the putamen and SMA. Notably, APTD-induced decrea...Nov 21, 2012
-
The blood–brain barrier is a highly selective anatomical and functional interface allowing a unique environment for neuro-glia networks. Blood–brain barrier dysfunction is common in most brain disorders and is associated with disease course and delayed complications. However, the mechanisms underlying blood–brain barrier opening are poorly understood. Here we demonstrate the role of the neurotransmitter glutamate in modulating early barrier permeability in vivo . Using intravital microscopy, we show that recurrent seizures and the associated excessive glutamate release lead to increased vascular permeability in the rat cerebral cortex, through activation of NMDA receptors. NMDA receptor antagonists reduce barrier permeability in the peri-ischemic brain, whereas neuronal activation using high-intensity magnetic stimulation increases barrier permeability and facilitates drug delivery. Finally, we conducted a double-blind clinical trial in patients with malignant glial tumors, using contrast-enhanced magnetic...Jul 20, 2016
-
Neural plasticity is crucial for understanding the experience-dependent reorganization of brain regulatory circuits and the pathophysiology of schizophrenia. An important circuit-level feature derived from functional magnetic resonance imaging (fMRI) is prefrontal-hippocampal seeded connectivity during working memory, the best established intermediate connectivity phenotype of schizophrenia risk to date. The phenotype is a promising marker for the effects of plasticity-enhancing interventions, such as high-frequency repetitive transcranial magnetic stimulation (rTMS), and can be studied in healthy volunteers in the absence of illness-related confounds, but the relationship to brain plasticity is unexplored. We recruited 39 healthy volunteers to investigate the effects of 5 Hz rTMS on prefrontal-hippocampal coupling during working memory and rest. In a randomized and sham-controlled experiment, neuronavigation-guided rTMS was applied to the right dorsolateral prefrontal cortex (DLPFC), and fMRI and function...Apr 17, 2013
-
Variation in gray matter (GM) and white matter (WM) volume of the adult human brain is primarily genetically determined. Moreover, total brain volume is positively correlated with general intelligence, and both share a common genetic origin. However, although genetic effects on morphology of specific GM areas in the brain have been studied, the heritability of focal WM is unknown. Similarly, it is unresolved whether there is a common genetic origin of focal GM and WM structures with intelligence. We explored the genetic influence on focal GM and WM densities in magnetic resonance brain images of 54 monozygotic and 58 dizygotic twin pairs and 34 of their siblings. For genetic analyses, we used structural equation modeling and voxel-based morphometry. To explore the common genetic origin of focal GM and WM areas with intelligence, we obtained cross-trait/cross-twin correlations in which the focal GM and WM densities of each twin are correlated with the psychometric intelligence quotient of his/her cotwin. Ge...Oct 4, 2006
-
The anterior intraparietal sulcus, and more specifically its horizontal segment (hIPS), is known to play a crucial role in the cognitive representation of numerical quantity. Whether the involvement of hIPS is restricted to the processing of numerical information or generalizes to non-numerical ordinal dimensions remains an open question. Using functional magnetic resonance imaging during comparison tasks, we demonstrate that the hIPS is equally responsive to numbers and letters, indicating that hIPS is also involved in the representation and processing of non-numerical ordinal series. This extends the numerical processing function of IPS into the realm of abstract knowledge processing.Aug 15, 2007