Society for Neuroscience - Search

Skip Navigation

  • join logo Join
  • hands shaped like a yellow heart icon Give
  • advocate logo Advocate
  • publish logo Publish
  • Icon with thought bubbles Learn
Shop Sign In
SfN Logo 2025
  • Membership
    • Learn About Membership
      • Individual Member Benefits
      • Institutional Program Member Benefits
      • Sustaining Associate Member Benefits
      • Get Involved at SfN
    • Become a Member
      • Sponsorship Information for New Members
      • Membership Categories & Fees
      • Membership Fees for Developing Countries
      • Renew Individual Membership
    • Member Resources
      • Automatic Renewals
      • Frequently Asked Questions
      • Individual Member Directory
      • Member Obituaries and Memorial Donations
    • Learn About Local Chapters
      • Start or Reactivate a Chapter
      • Resources for Chapters
      • Submit Annual Report
      • Chapter Directory
      • Frequently Asked Questions
  • Meetings
    • Meetings Overview
    • Neuroscience 2025
      • Presenter Resources
      • Itinerary Planner and Mobile App
      • Sessions and Events
      • Registration
      • Housing and Travel
      • Exhibits
      • Advertising and Sponsorship
      • FAQs
    • Global Events
      • SfN Virtual Events
    • Past and Future Annual Meetings
      • Neuroscience 2024
      • Neuroscience 2023
      • Search Past Annual Meeting Abstracts
      • Attendance Statistics
    • Meeting Policies and Guidelines
      • Code of Conduct at SfN Events
      • Growth and Opportunity Strategy
      • Photography & Recording Policy
      • Presenter Guidelines and Policies for SfN Events
    • Meeting Awards
      • Trainee Professional Development Award
      • International Travel Awards
      • FENS Member Awards to SfN Annual Meeting
      • IBRO Member Awards to SfN Annual Meeting
      • JNS Member Awards to SfN Annual Meeting
  • Careers
    • Careers Overview
    • Institutional Program (IP) Directory
    • NeuroJobs Career Center
      • Job Seekers
      • Employers
    • 2025 Graduate School Fair
    • Career Tools and Resources
      • Neuronline
      • Neurobiology of Disease Workshop
      • Responsible Conduct of Research Short Courses
      • Neuroscience Departments and Program Workshop
      • Global Funding Sources
    • Higher Education and Training
      • Core Competencies
      • Neuroscience Training Program Survey
    • Awards
      • Outstanding Career and Research Achievements
      • Early Career
  • Initiatives
    • Initiatives Overview
    • Awards
      • 2024 Award Recipients
      • Awards and Prizes FAQ
      • Trainee Professional Development Award
    • Neuroscience Scholars Program
    • Neuronline
      • Webinars
      • Articles
      • Videos
      • Podcasts
      • Collections
    • Resources to Stay Connected
      • SfN Zoom Backgrounds
    • Community
    • Women and Neuroscience
      • Increasing Women in Neuroscience (IWiN) Courses & Toolkit
      • Celebration of Women in Neuroscience Event
      • Awards
    • Animals in Research
      • Support for Members and Institutions
      • Tools and Resources
      • Resources for Medical Students
    • Public Education Programs
      • Resources for Educators
      • Brain Awareness Video Contest
      • Life of a Neuron Exhibit
  • Advocacy
    • Advocacy Overview
    • Advocacy Response
    • Advocacy Network
      • The NeuroAdvocate Challenge
      • Advocacy Action Center
      • Advocacy Best Practices
      • Advocacy Network News
      • Advocacy Training Seminars
    • US Advocacy Programs
      • Capitol Hill Day
      • Connect with Policymakers
      • Early Career Policy Ambassadors
      • Partner with a Local Chapter
      • Engage the Media
    • Global Advocacy Programs
      • Global Neuroscience Initiatives
      • Global Funding
      • North American Programs
    • Science Funding
      • Advocacy Videos
      • Advocacy Resources
      • US Neuroscience Initiatives
      • Funding Priorities and Processes
    • Policy Positions
      • Statements and Testimony
      • Sign-On Letters
  • Outreach
    • Outreach Overview
    • BrainFacts.org
    • Find a Neuroscientist
    • Brain Awareness Campaign
      • Webinar: The ABC's of BAW
      • How to Get Involved
    • Awards
      • Award for Education in Neuroscience
      • Next Generation Award
      • Chapter of the Year Award
      • Science Educator Award
  • Publications
    • Publications Overview
    • SfN News
    • JNeurosci
    • eNeuro
    • SfN Nexus
    • Neuroscience Quarterly
    • Annual Report
    • History of Neuroscience Autobiographical Chapters
  • About
    • About Overview
    • Mission and Strategic Plan
    • What We Do
      • Annual Report
      • Bylaws
      • Resolutions to the Bylaws
      • Environmental Commitment
      • Strategic Partners
      • History of SfN
    • SfN 50th Anniversary Celebration
    • NIH Public Health Service-Supported Funding Financial Conflict of Interest Policy
    • Volunteer
      • SfN Council
      • SfN Presidents
      • Committees
      • Elections
      • Call for Nominations
    • Professional Conduct
      • SfN Ethics Policy
      • Guidelines for Responsible Conduct Regarding Scientific Communication
      • Code of Conduct at SfN Events
      • Commitment to Scientific Integrity
      • Neuronline Digital Learning Community Guidelines
    • History of Neuroscience
      • Autobiographical Chapters
      • Autobiographical Videos of Prominent Neuroscientists
      • Classic Papers
      • Neuroscience History Resources
      • Robert Doty's Chapter on Neuroscience
    • Careers and Staff
      • Staff List
  1. Search

Filter

  • (43)
  • (35)
  • (14)
  • (2)
  • (1)
  • (22)
  • (2)
  • (91)
  • (1)
  • (1)
  • (115)
  • (2)
  • (2)
  • (6061)
  • (72)
  • (71)
  • (96)
Filter
2051 - 2060 of 33815 results
  • Training-Induced Brain Structure Changes in the Elderly | Journal of Neuroscience
    It has been suggested that learning is associated with a transient and highly selective increase in brain gray matter in healthy young volunteers. It is not clear whether and to what extent the aging brain is still able to exhibit such structural plasticity. We built on our original study, now focusing on healthy senior citizens. We observed that elderly persons were able to learn three-ball cascade juggling, but with less proficiency compared with 20-year-old adolescents. Similar to the young group, gray-matter changes in the older brain related to skill acquisition were observed in area hMT/V5 (middle temporal area of the visual cortex). In addition, elderly volunteers who learned to juggle showed transient increases in gray matter in the hippocampus on the left side and in the nucleus accumbens bilaterally.
    Jul 9, 2008 Janina Boyke
  • Abstract
    An MRI-compatible, split-crank pedaling device to prevent motor compensation after stroke
    Motor compensation after stroke is a behavior in which the non-paretic limb performs tasks normally accomplished by the paretic limb. For example, stroke survivors with right hemiparesis often bear weight exclusively on the left leg when rising from a c...
    Nov 15, 2016
  • Abstract
    Functional MRI activity patterns in the action observation network for chronic stroke patients
    The action observation network(AON) is comprised of motor regions (inferior frontal gyrus, ventral premotor cortex, and posterior parietal cortex) that are active when we make an action and when we see someone else make a similar action. Previous studie...
    Nov 14, 2016
  • Inferior Frontal Gyrus Activation Predicts Individual Differences in Perceptual Learning of Cochlear-Implant Simulations | Journal of Neuroscience
    This study investigated the neural plasticity associated with perceptual learning of a cochlear implant (CI) simulation. Normal-hearing listeners were trained with vocoded and spectrally shifted speech simulating a CI while cortical responses were measured with functional magnetic resonance imaging (fMRI). A condition in which the vocoded speech was spectrally inverted provided a control for learnability and adaptation. Behavioral measures showed considerable individual variability both in the ability to learn to understand the degraded speech, and in phonological working memory capacity. Neurally, left-lateralized regions in superior temporal sulcus and inferior frontal gyrus (IFG) were sensitive to the learnability of the simulations, but only the activity in prefrontal cortex correlated with interindividual variation in intelligibility scores and phonological working memory. A region in left angular gyrus (AG) showed an activation pattern that reflected learning over the course of the experiment, and co...
    May 26, 2010 Frank Eisner
  • Abstract
    Evidence for neural-vascular uncoupling in multiple sclerosis: A calibrated functional MRI study in visual cortex
    Multiple Sclerosis (MS) results in visual cortex (VC) dysfunction, even in the absence of ophthalmic pathologies. The precise mechanism of this dysfunction remains elusive. Our previous studies have shown an association between white-matter microstructu...
    Nov 14, 2017
  • TMS Does Not Increase BOLD Activity at the Site of Stimulation: A Review of All Concurrent TMS-fMRI Studies | eNeuro
    Transcranial magnetic stimulation (TMS) is widely used for understanding brain function in neurologically intact subjects and for the treatment of various disorders. However, the precise neurophysiological effects of TMS at the site of stimulation remain poorly understood. The local effects of TMS can be studied using concurrent TMS-functional magnetic resonance imaging (fMRI), a technique where TMS is delivered during fMRI scanning. However, although concurrent TMS-fMRI was developed over 20 years ago and dozens of studies have used this technique, there is still no consensus on whether TMS increases blood oxygen level-dependent (BOLD) activity at the site of stimulation. To address this question, here we review all previous concurrent TMS-fMRI studies that reported analyses of BOLD activity at the target location. We find evidence that TMS increases local BOLD activity when stimulating the primary motor (M1) and visual (V1) cortices but that these effects are likely driven by the downstream consequences ...
    Jul 1, 2022 Farshad Rafiei
  • Abstract
    Using functional MRI and concurrent EEG to track the initiation and early progression of seizure in a conscious rat.
    This study utilized functional MRI to evaluate the early stages of a kainic acid induced seizure in a fully conscious rat. Seizure activity was confirmed by EEG, and blood oxygen level dependant (BOLD) signal was temporally consistent with this activity. Male SD rats where anesthetized using medetomidine (Pfizer) and ketamine and EEG electrodes were implanted. The animal was then placed into a special animal restraint/Rf coil system (Insight Neuroimaging systems). This system was put into a 4.7T MRI (Bruker) and the animal was awoken with atipamizole (Pfizer). Physiologic parameters were recorded for the entire duration of the experiment. Anatomical images were acquired before and after the seizure. A 45 repetition functional sequence was acquired with 14 baseline repetitions (3 minutes) followed by an IP injection of kainic acid (10mg/kg). Seizure activity was noted via EEG within a minute. The anatomical images were subtracted to confirm that the awake animal remained immobile during the experiment. All ...
    Nov 6, 2002
  • Abstract
    Use MRI to assess changes in dopaminergic function in adolescent mice acutely after mild traumatic brain injury
    Major sequelae of mild traumatic brain injury (mTBI) in adolescence include attention deficit hyperactivity disorder (ADHD) symptoms and cognitive deficits. As cognitive deficits are linked to abnormal dopamine (DA) function in the brain, we aimed to ex...
    Nov 11, 2021
  • Visual Motion Area MT+/V5 Responds to Auditory Motion in Human Sight-Recovery Subjects | Journal of Neuroscience
    Using functional magnetic resonance imaging, we found that cortical visual motion area MT+/V5 responded to auditory motion in two rare subjects who had been blind since early childhood and whose vision was partially recovered in adulthood. Visually normal control subjects did not show similar auditory responses. These auditory responses in MT+ were specific to motion compared with other complex auditory stimuli including frequency sweeps and speech. Thus, MT+ developed motion-specific responses to nonvisual input, suggesting that cross-modal plasticity can be influenced by the normal functional specialization of a cortical region. Regarding sight recovery after early blindness, our results further demonstrate that cross-modal responses coexist with regained visual responses within the visual cortex.
    May 14, 2008 Melissa Saenz
  • Abstract
    MRI predictors of risk of Alzheimer’s disease among healthy older individuals with no cognitive impairment
    Previous research from our laboratory demonstrated that volumes of mesial temporal lobe structures such as the entorhinal cortex and hippocampus are sensitive markers of incident Alzheimer’s disease (AD). In addition, older people with amnestic mild cog...
    Nov 7, 2007
  • Previous
  • 204
  • 205
  • 206
  • 207
  • 208
  • Next

Featured

  • Apply to be a Neuronline Community Leader
  • Read the Neuroscience Quarterly - Fall 2025
  • Renew your SfN Membership Today!
SfN Websites
  • BrainFacts.org logo
  • eNeuro logo
  • JNeurosci logo
  • Neuronline logo
Engage with SfN
  • join Join
  • give Give
  • advocate Advocate
  • publish Publish
Quick Links
  • SfN News
  • For Press
  • Global Events
  • Contact Us
  • Advertise
  • Code of Conduct
  • Jobs at SfN
  • SfN Store
  • Social Media
Follow SfN
  • BlueSky logo
  • Facebook logo
  • Instagram logo
  • LinkedIn logo

  • Threads logo
  • X Logo
  • YouTube logo
SfN logo with "SfN" in a blue box next to Society for Neuroscience in red text and the SfN tag line that reads "Advancing the understanding of the brain and nervous system"
1121 14th Street NW, Suite 1010, Washington, D.C. 20005
(202) 962-4000 | 1-888-985-9246
  • Accessibility Policy
  • Disclaimer
  • Privacy Notice
  • Contact Us

Copyright ©
Society for Neuroscience