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Introduction
Traditional analyses of functional magnetic resonance 
imaging (fMRI) data compare mean blood-oxygen-
level–dependent (BOLD) activations during different 
tasks to determine where brain activation differences 
occur. More recently, the patterns of activation within 
regions of the brain have been studied with keen 
interest. In them, the input patterns consist of either 
the test statistics or the activation estimate magnitudes 
associated with a task over space (Haxby, 2001; 
Carlson et al., 2003; Pereira et al., 2009; Kriegeskorte 
et al., 2008; Kriegeskorte, 2011). The two most 
common pattern analyses are multivariate pattern 
classification analyses and pattern similarity analyses, 
which are commonly referred to as representational 
similarity analyses (RSAs).

Multivariate pattern classification analyses use 
activation patterns, either over the entire brain or 
within a region of interest (ROI). They use a cross-
validation approach, where part of the data is used 
to train a model that discerns between different task 
patterns; then, this fitted model is used to predict 
the task associated with another set of independent 
patterns, ignoring their labels. The performance of the 
model is assessed by the accuracy of the predictions. 
The models used include regularized logistic regression 
and support vector machine-based classification 
algorithms (Carlson et al., 2003; Pereira et al., 2009). 
RSAs correlate activation patterns over space with 
different tasks to assess the similarity in activation 
patterns. One can then compare the RSA values, which 
consist of all possible pairwise correlations between 
tasks, across different regions of interest and between 
different imaging modalities (Kriegeskorte et al., 2008; 
Kriegeskorte, 2011). For example, in Kriegeskorte 
et al. (2008), RSA-based networks were used to 
compare human and primate network similarities. The 
activation patterns used in classification and similarity 
analyses can be based on estimates for individual trials, 
as well as windows of time surrounding a trial, and be 

aggregated over many trials (Xue et al., 2010; Mumford 
et al., 2012; Turner et al., 2012).

Because RSA analyses are a newer type in the field, 
the methods for data analysis have not yet been 
perfected. The focus here is on RSA analyses that use 
single-trial activation patterns to generate similarity 
matrices. For example, a single run of the paradigm 
might include presenting images of 30 faces and 30 
houses, and the goal is then to compute a 60 × 60 
similarity matrix to be used in the analysis. This type 
of approach has been used in the past for designs in 
which the trials are temporally spaced (Kriegeskorte 
et al., 2008; Jenkins and Ranganath, 2010; Xue 
et al., 2010; Ritchey et al., 2012). Recent work 
has developed methods for obtaining single-trial 
parameter estimates for faster event–related designs 
that have improved performance in classification 
based analyses (Mumford et al., 2012). Therefore, it 
is only natural that these models be used in RSA-
based analyses. This chapter discusses the methods 
for obtaining single-trial parameter estimates as 
well as possible problems that can arise when these 
estimates are used in RSA analyses.

Modeling Single-Trial Activation 
Patterns
Obtaining single-trial parameter estimates can be 
difficult in studies where the stimuli are presented 
with a short interstimulus interval (ISI). This is 
because the blurring and delayed nature of the 
BOLD fMRI signal makes it difficult to isolate a 
signal that is unique to a specific trial. Previous work 
introduced a new approach for estimating single-trial 
parameter estimates in fast event–related designs: 
using a separate model for each trial and iteratively 
estimating the pattern for each trial separately. This 
method is referred to as least squares single (LSS) and 
is illustrated in the right panel of Figure 1 (Mumford 
et al., 2012). This method was shown to produce less 

Figure 1. Model illustration for LSA and 
LSS. In both cases, trial-specific activations 
are estimated for each of 10 trials, and the 
model is run in a voxelwise fashion. The left 
panel shows LSA, which estimates all trials 
simultaneously in a single regression, and the 
estimates β1, …, β10, which represent the 
activation magnitudes for each trial. The right 
panel shows LSS, where each trial's activation 
is estimated in a separate model. The first 
regressor represents the trial of interest, and 
the two additional regressors model the 
remaining trials according to trial type (in this 
case, two). Only the estimates for the first 
parameter are retained from each model.
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NoTeS variable estimates than the more standard approach, 
which estimates all trials simultaneously in a single 
model. The standard approach is referred to as least 
squares all (LSA) and is illustrated in the left panel 
of Figure 1. Although the behavior and performance 
of LSS and LSA estimates were studied within the 
context of pattern classification analyses, they have 
not been studied within the RSA setting.

Factors That Influence RSA 
Measures
Noise differences
Since the RSA measure is based on correlations 
between activation patterns, it is susceptible to noise 
differences. For example, if similarity matrices are 
obtained for multiple ROIs, and one is interested in 
studying the correlation of the RSA matrices between 
ROIs (Kriegeskorte et al., 2008; Diedrichsen et al., 
2011), then noise variations between regions can 
induce false-positive differences. For example, if one 
region has noisier data than another, but the theoretical 
correlations of the within-region RSA are identical 
for the two regions, then the noisier region will have 
smaller RSA values than the other. This problem was 
discussed by Kriegeskorte et al. (2008), who concluded 
that a rank-based correlation is necessary to avoid 
correlation magnitude differences when comparing 
RSAs between regions. It was also addressed by 
Diedrichsen et al. (2011), who used a random-effects 
model to estimate the RSA correlations within 
regions, adjusting for noise differences. Theoretically, 
this method would allow for directly comparing RSA 
values between regions, because it would remove any 
biases induced by noise differences.

Variability differences
Although spatial noise differences and their impact 
on RSA estimates have been studied, variability 
differences across trial pattern estimates also can 
induce false-positive RSA differences within a 
region of interest. For example, assume that a study 
has 30 presentations of each of two trials (type 1 and 
type 2). The T1 trials have a longer duration than 
the T2 trials, and the RSA study of interest is how 
the distributions of within-trial RSA values compare 
between these two trials. It is well known that 
longer trials yield more efficient estimates of BOLD 
activation when using the general linear model 
(GLM), so trial A will have less variable activation-
pattern estimates than trial B (Smith et al., 2007). 
Even if the true within-trial correlation were 
identical for both trial types, the higher variability 
in T2’s estimates would lead to within-trial RSA 
values lower for T2 than for T1. This is not the only 
case where variability differences may occur between 
trials, within a region of interest. If the ISI (duration 
of the baseline task surrounding each trial) differs 
between trials, shorter trials will also have noisier 
activation-pattern estimates.

Model influence 
A less studied phenomenon is how the model itself 
can determine correlations between activation 
patterns. This is the case for both LSS and LSA 
methods for obtaining activation patterns for single 
trials. Figure 2 illustrates the true RSA values 
between 60 trials (the first 30 trials are type 1 and 
second set of 30 are type 2), where a correlation of 0 
is assumed between all trials, and the ISI is equal for 
all trials and 2 s on average (left panel). The middle 
and right panels show the theoretical correlations 

© 2013 Mumford

Figure 2. RSA estimate comparisons for the null case. The run consisted of 20 trials, each 2 s long with a random ISI between 
2 s and 4 s. There were two trial types: 30 of trial type 1, followed by 30 of trial type B. Trials are ordered in the matrices as they 
were presented in time, starting from trial 1 (bottom left corner) to trial 60 (top right corner). Each cell in the matrix corresponds 
to the correlation between activation patterns between two trials. The left panel illustrates the true RSA, which in this case of the 
null is set to an identity matrix (1s on diagonal and 0s elsewhere). The middle and left panels are the LSA- and LSS-based RSA 
matrices that were theoretically derived.
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between the activation patterns when using LSA 
and LSS, respectively. In these graphs, the trials are 
ordered temporally from first to last, from the bottom 
left corner to the top right corner of the plot. The 
first off-diagonal of the plot, therefore, indicates the 
lag 1 correlations between trials.

As this figure shows, for both LSS and LSA, there is 
a bias in the lag 1 correlation. In LSS, trials that are 
temporally adjacent (lag 1) are anticorrelated, since 
the collinearity in the model pushes the estimate of 
one trial in the opposite direction of its collinear 
neighbors. In contrast, LSA has a positive bias that 
occurs because the trials are modeled separately and, 
hence, are not adjusted for each other statistically 
and thus describe similar parts of the data. LSS shows 
a blocked pattern caused by a collinearity effect in 
the LSS model that occurs when the neighbors of a 
trial match each other, but not necessarily the trial in 
the middle. This causes a weak negative correlation 
between that trial and all trials of the neighbors’ type, 
owing to a collinearity between the single trial and 
the nuisance regressor for the trial of the neighbors’ 
type. The fact that trials are blocked in Figure 2 causes 
a weak negative correlation between all trials of the 
same type, though correlations between trial types 
are comparatively more positive—a counterintuitive 
result. These patterns are described in more detail for 
a variety of trial orderings and ISI durations below.

Trial order and ISI duration
A series of simulations were used to study how the 
patterns in Figure 2 vary as a function of the ordering 
of the trials and the ISI duration. Trials were either 
blocked (all trial 1, followed by all trial 2), alternated 
(T1, T2, T1, etc.), or randomly generated for each 

run. Situations where the ISIs matched between 
trials and when the ISI was longer for T2 were 
investigated. The ISIs were randomly drawn from 
continuous uniform distributions, where U(a,b) 
represented random draws between a and b. The TR 
used in the simulations was 2 s.

To start, the behavior of the correlation as a function 
of lag was estimated. Figure 3 shows the mean 
correlation as a function of lag for ISIs ranging 
between 2 s and 7 s, where ISIs matched for the 
two trial types. The left panel shows the patterns 
for LSA, in which for an ISI of 2 (red line), the 
correlation alternates between negative and positive. 
This pattern results from collinearity pushing 
neighboring trials in opposite directions. Thus, at a 
lag of 1, the correlation would be negative, but at a 
lag of 2, there is a positive correlation (since both 
trials would be pushed in the same direction by their 
common collinear neighbor). This effect diminishes 
as the ISI increases, since the collinearity problem 
is reduced. Even so, the mean correlation is never 
the true correlation of 0 but hovers around 0.1—the 
result of the influence of the model itself.

The LSS model shows positive correlations for early 
lags owing to the overlap in the trials, which are not 
statistically adjusted for each other and hence describe 
the same variability in the data. The dip around a lag 
of 3 when the ISI equals 2 results from the peak of one 
trial meeting the poststimulus undershoot of another, 
a difference of approximately 6 s.

The results in Figure 4 compare within-trial correlations 
(red and green) to between-trial correlations (blue) 
when the ISIs match and when T2’s ISIs are longer 
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Figure 3. Averaged correlations as a function of lag for LSA (left) and LSS (right) for varying ISIs when trials are blocked. LSA 
tends to alternate between positive and negative due to collinearity; in contrast, LSS tends to have high positive correlations at 
early lags, followed by a negative correlation when the peak of one trial meets with the poststimulus undershoot of another trial.

2 4 6 8 10 2 4 6 8 10

−0
.3

−0
.2

−0
.1

0.
0

0.
1

0.
2

LSA

Lag

M
ea

n 
co

rre
la

tio
n

mean ISI=2
mean ISI=3
mean ISI=4
mean ISI=5
mean ISI=6
mean ISI=7

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

LSS

Lag

M
ea

n 
co

rre
la

tio
n



48

NoTeS

for blocked (left), alternating (middle), and random 
(right) trial orderings. Significantly, in the random 
setting (right), each run had a different randomization. 
The top row shows the LSA results, and the bottom 
shows LSS ones. The alternating blocked designs 
illustrate that, even with the ISIs matching, the 
within-trial correlations are not comparable with the 
between-trial correlations. In the alternating LSA, 
the within-trial correlations are larger; in the blocked 
case, they are smaller, as noted in Figure 1. When the 
ISIs differ between trials, there is not much impact in 
the alternating case since, on average, each trial has 
the same amount of fixation or rest on either side of 
it. In both the blocked and random cases, the second 
trial type will always have more fixation surrounding 
it, which decreases the collinearity problem for trials 
of type 2, removing some bias in the correlation 
estimate. The only case where the correlations are 
comparable for both LSA and LSS is when the ISIs 
match and the trial order is randomized.

Randomly ordering trials and matching the ISI 
seem to be key for both LSS and LSA; however, 
it is important that the trials be randomly ordered 
for each run of the analysis. In reality, it is common 
to generate one or two trial orderings found to be 
efficient for the design and to use these for all subjects. 
But when this is done, slight biases in ISI may occur. 

In 100 simulated data sets with 40 subjects in each 
study, more than half of the data sets exhibited 
a statistically significant difference between at 
least one of the pairwise comparisons (within T1 
versus within T2; within T1 versus between T1/
T2; or within T2 versus between T1/T2). Figure 5 
illustrates the distribution of RSA values for a single 
one of these simulated data sets. It shows that the 
within-T2 correlations are significantly larger than 
both within-T1 and between-T1/T2 ones. Although 
the magnitude of the difference is quite small, it is 
common to look only at the p values of these tests, so 
this would not be taken into consideration.

Possible Remedies and 
Considerations
One possible fix for this problem is to compute RSA 
matrices by using comparisons of patterns estimated 
with different models. For example, if there are two 
runs of a study for a single subject, correlate only a 
single trial’s pattern from run 1 with trials in run 2. 
Since the biases discussed above were all imposed 
by the models used, this will prevent that bias from 
entering the analysis. Notably, however, this will not 
solve problems where the ISI was not equal across all 
trial types.

© 2013 Mumford

Figure 4. Distributions of within-trial and between-trial correlations for 100 simulated data sets for varying ISI settings and trial 
orderings for LSA (top) and LSS (bottom). The setting of equal ISIs with random trial orderings appears to remove biases, as-
suming that a different randomization is used for each subject.
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Before running a study, it is fairly easy to take the 
proposed paradigm and perform simulations like 
the ones run here to investigate possible biases that 
may enter the analysis. However, using between-run 
correlations should remedy many of the problems. 
What is important is to recognize that paradigms that 
work very well when studying activation magnitudes 
and their differences may not work as well in the 
RSA setting. Although only ISI differences were 
studied here, the same problems would arise if there 
were differences in the duration of the stimuli. Where 
stimulus presentation is controlled by the reaction 
time of the subject, further analysis strategies would 
need to be developed to control for those differences.
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Figure 5. When the same randomization is used across all subjects, unusual patterns can emerge that cause small yet statisti-
cally significant differences in RSA distributions. In this case, the within-T2 similarities appear larger than within-T1 and between-
T1/T2 similarities, when theoretically, they all equal 0.

LSA LSS

0.085

0.090

0.095

0.100

0.105

0.110

0.115

U(2,4)/U(2,4) U(2,4)/U(2,4)
ISI

C
or

re
la

tio
n

Correlation Type
within T1
within T2
btwn T1/T2



© 2013

50

NoTeS Smith S, Jenkinson M, Beckmann C, Miller K, 
Woolrich M (2007) Meaningful design and 
contrast estimability in FMRI. Neuroimage 
34:127–136.

Turner BO, Mumford JA, Poldrack RA, Ashby FG 
(2012) Spatiotemporal activity estimation for 
multivoxel pattern analysis with rapid event-
related designs. Neuroimage 62:1429–1438.

Xue G, Dong Q, Chen C, Lu Z, Mumford JA,  
Poldrack RA (2010) Greater neural pattern 
similarity across repetitions is associated with 
better memory. Science 330:97–101.




