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From Graph Theory to Modern 
Network Science
Over the past decade, the study of networks has rapidly 
expanded across a number of scientific disciplines, 
from social sciences to economics, systems biology, 
and, most recently, neuroscience. The principal 
reason for this expansion is the realization that a 
wide range of complex interconnected and dynamic 
systems can be described and analyzed using a set of 
mathematical and statistical techniques originally 
developed in graph theory. Graph theory is a branch 
of mathematics that originated with Leonhard Euler’s 
famous 1736 treatment of the Königsberg bridge 
problem. Today, its applications are extremely broad, 
ranging from urban planning and traffic control to 
epidemiology, financial planning, internet search 
engines, and the analysis of complex biological 
systems from ecological to molecular scales (Barabási 
and Oltvai, 2004). Numerous surveys (Strogatz, 
2001; Watts, 2004; Boccaletti et al., 2006; Barabási, 
2009) have documented different classes of network 
architectures, dynamics, and growth processes. While 
much of classical graph theory has dealt with the 
analysis of random graphs, modern network science, 
with its renewed focus on real-world systems, has 
revealed that most, if not all, such systems have a 
distinctly nonrandom organization. This organization 
reflects the fundamental processes underlying their 
growth and functionality.

Understanding the organization of a complex network 
like the brain is a necessary first step to understanding 
its functions as an integrated system (Sporns, 2010). 
The arrival of modern brain mapping and recording 
techniques, together with renewed and concerted 
efforts to collect comprehensive brain connectiv-
ity data sets (for example, the human connectome) 
(Sporns et al., 2005), necessitates the development 
of novel quantitative analysis and modeling tools to 
reveal features of brain network organization. Col-
lectively, the chapters compiled for this short course 
provide an overview of how network approaches can 
be brought to bear on the anatomy and function of 
large-scale brain networks, particularly those of the 
human brain. The present chapter will briefly outline 
some of the relevant theoretical and methodological 
foundations that motivate and enable the analysis of 
brain networks. More detailed and formal treatments 
can be found elsewhere (Reijneveld et al., 2007; Bull-
more and Sporns, 2009; Rubinov and Sporns, 2010).

Brain Networks and Relevant 
Network Metrics
Given the variety of methods for observing the brain’s 
anatomy and physiology, it is not surprising that 

there are also a number of different ways to define 
and record brain connectivity (Horwitz, 2003; Jirsa 
and McIntosh, 2007). There are three main types of 
brain connectivity, describing structural, functional, 
and effective modes of interaction, respectively:
•  Structural connectivity refers to a set of physical 

connections linking neuronal elements, such as 
synaptic links or fiber pathways;

•  Functional connectivity describes patterns of 
dynamic interactions, usually computed from 
neural time series data (e.g., cross-correlation, 
mutual information, or coherence); and

•  Effective connectivity captures a network of causal 
effects between neural elements, often inferred on 
the basis of temporal precedence cues in time series 
or on the basis of experimental perturbations.

While structural connectivity (at least on time 
scales of seconds to minutes) remains fairly stable, 
functional and effective connectivity can undergo 
rapid reconfigurations on the order of hundreds of 
milliseconds in the course of spontaneous or task-
evoked neural activity. Common to all modes of 
brain connectivity is that they can be represented 
and analyzed as a network or graph.

Graphs are mathematical descriptions of a system 
that is composed of interconnected elements, 
comprising a set of nodes and edges. The nodes 
are the fundamental functional units of the system; 
in the brain, nodes may correspond to individual 
neurons, neuronal populations, or brain regions. The 
edges are connections or links that relate the nodes 
to each other; in the brain, edges can be synapses, 
fiber pathways, or statistical or causal relationships 
that describe functional association or similarity. The 
complete set of nodes and edges can be represented 
in a connection matrix, also called the “adjacency 
matrix” because it records which pairs of nodes are 
“adjacent” (i.e., directly connected by an edge).

Another fundamental concept is that of neural paths: 
sequences of edges that indirectly connect nodes to 
one another. The length of the shortest path between 
two nodes is also called the distance, defined as the 
minimal number of edges that lead from one node 
to the other. Note that, in graphs, distance refers to 
a topological separation of two nodes, not to their 
separation in a metric space. Most graph measures 
described in this brief survey derive either from the 
adjacency or the distance matrix, i.e., the direct 
connections (edges) or indirect connections (paths) 
between neural nodes.

Brain networks can be extracted in a number of 
different ways, depending on the recording method or 
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experimental system employed 
in a given empirical study. A 
few basic steps are common to 
most approaches (Fig. 1). First, 
network nodes and edges must 
be defined. This is an extremely 
important step in any graph-
based analysis of a brain 
network because all statistical 
analyses depend on the way the 
biological system is partitioned 
into a set of nodes and edges. 
At the level of large-scale 
brain systems, node definition 
involves partitioning the brain 
into coherent regions on the 
basis of histological or imaging 
data. Objective, data-driven 
parcellation methods are an 
active area of investigation 
and still face a number of 
serious challenges. Significant 
progress has been made by 
using clustering techniques 
that assess the similarity profile 
of structural (Johansen-Berg et 
al., 2004) or functional (Cohen 
et al., 2008) connections to 
derive boundaries between 
coherent brain regions.

Once nodes are defined, the definition of edges 
typically involves estimating pairwise associations 
between nodes. Structural networks are constructed 
on the basis of measured fiber tracts or pathways, 
whereas functional and effective edges are often 
based on statistical associations estimated from time 
series data. A wealth of possible measures is available 
for representing functional coupling. While most 
studies of functional connectivity still utilize simple 
measures such as correlation or coherence, more 
complex strategies involving partial correlations 
or estimates of directed (“causal”) interactions are 
beginning to gain ground.

Once a brain network has been constructed, it can be 
analyzed with quantitative tools from graph theory. 
Many such tools and measures are available, and 
at the time of writing only a small subset has been 
adapted and applied in the context of neuroscience. 
Before graph-theoretical approaches become more 
widely used, several important methodological issues 
need to be addressed. For example, recent studies 
have focused on the impact parcellation schemes 
and spatial scales make on the robustness of graph 
metrics (Zalesky et al., 2009) and on their test-retest 
reproducibility (Deuker et al., 2009). So far, these  

methodological studies suggest that graph metrics 
report key features of network organization with high 
reliability and robustness.

In the remainder of the chapter, we will distinguish 
three broad classes of graph metrics that capture 
distinct aspects of brain network organization:
•  The existence of specialized communities or 

modules (“functional segregation”); 
•  The pattern of global interactions between 

communities (“functional integration”); and
•  The functional impact of individual network 

elements (“functional influence”).

Functional Segregation: Clustering 
and Modularity
Of particular importance for a neural node’s processing 
characteristics and functional contribution are its 
interactions with its immediate neighbors. These 
are defined as the collection of nodes to which it is 
directly connected. Numerous studies of large-scale 
brain networks have shown that neural regions 
are arranged in clusters or “communities,” with 
individual nodes communicating in densely and 
mutually interconnected “neighborhoods.”

Figure 1. Recording structural and functional brain networks. The diagram illustrates 
four major steps: definition of network nodes (step 1), estimation of a suitable associa-
tion measure (step 2), generation of an association matrix (step 3), and graph theoretical 
analysis of the resulting network (step 4). Modified with permission from Bullmore and 
Sporns (2009), their Figure 1.



11

NOteS

Networks of the Brain: Quantitative Analysis and Modeling

© 2010 Sporns

The clustering coefficient (Watts and Strogatz, 
1998) is one of the most elementary measures for 
capturing the degree to which nodes in a network 
form local communities. Clustering of a node is high 
if the node’s neighbors are also neighbors of each 
other. In neural terms, a region has a high clustering 
coefficient if the regions to which it is connected 
are also connected to each other. Averaged over 
the entire network, the clustering coefficient reports 
the degree to which the network as a whole consists 
of nodes that share local connectivity. Because 
clustering varies greatly depending on the size and 
density of any given network, it is important to 
conduct statistical comparisons within populations 
of appropriately constructed random networks.

In many (but not all) cases, high clustering indicates 
the existence of multiple segregated communities of 
nodes. Such communities or modules can be identified 
by using algorithms that search for partitioning 
schemes. These schemes optimally subdivide the 
network, given a modularity measure: for example, 
one that is based on the relative density of within-
module to between-module connections (Newman, 
2006). Numerous studies of structural and functional 
brain networks have identified modules in large-scale 
brain networks whose placement and boundaries 
often coincide with either known cognitive networks 
(Dosenbach et al., 2008) or functional subdivisions 
of the human brain. By extending analytic 
approaches to modularity, investigators have recently 
demonstrated that modules in brain networks are 
arranged hierarchically (Meunier et al., 2009). This 
architectural feature promotes economical physical 
embedding (Bassett et al., 2010) and may have 
significant implications for brain dynamics (Kaiser et 
al., 2007).

Functional Integration: Path Length 
and Efficiency
While clustering and modularity provide information 
about the network’s local community structure, a 
complementary set of measures captures the network’s 
capacity to engage in more global interactions that 
bind together and integrate its dynamic activity. 
Several of these measures are based on paths: 
specifically, the lengths of the shortest paths linking 
pairs of nodes. Generally, shorter paths are thought 
to be more effective in passing information. Thus, 
the average path length for a network can provide 
an indication of its capacity for global information 
exchange. A related measure (essentially an inverse 
of the average path length but less disrupted by 
the presence of disconnected nodes) is the global 
efficiency (Latora and Marchiori, 2001). As is the 

case for clustering, path length should be quantified 
in relation to a null population of random graphs, 
controlling for the size and density of the network.

Because of the importance of communication and 
information flow in large-scale brain networks, 
these measures of functional integration have fairly 
straightforward neurobiological implications. In a 
network with high efficiency, short communication 
paths can be identified between most or all pairs of 
nodes. Since clustering and path length are capturing 
complementary aspects of a network’s functional 
organization, they are often measured in conjunction. 
Also, these measures can be combined to assess the 
degree to which the network balances the existence 
of local and segregated communities with global, 
systemwide integration. High clustering and a 
short path length are the defining characteristics 
of a universal class of network architectures found 
in social, technological, and biological systems, 
including the brain (Sporns and Zwi, 2004). These 
are referred to as small-world networks (Watts and 
Strogatz, 1998). The modular small-world networks 
encountered in the brain not only allow for efficient 
information processing but are economical with 
respect to their wiring and metabolic cost (Bassett 
and Bullmore, 2006).

Functional Influence: Centrality 
and Hubs
Real-world networks deviate from randomness; 
in many cases, this entails specialization among 
nodes. Different classes of network elements can 
be distinguished by the way they participate in the 
network, i.e., by the way they are connected to the rest 
of the system. An important distinction can be made 
based on their “influence”: that is, their potential 
impact on the system as a whole and their capacity 
to transfer or process information. Highly influential 
nodes are often referred to as “hubs,” and identifying 
such hubs in brain networks can help one to map 
regions of the brain that are critical for coordinating 
functional interactions and for generating coherent 
system states. Hubs can be identified either on the 
basis of the number of interactions they engage in 
or by the degree to which they participate in short 
paths across the network. The latter measure, 
called “betweenness centrality” (Freeman, 1977), is 
particularly salient for structural networks, and it can 
be computed for edges as well.

Once an optimal modularity partition has been 
identified (Fig. 2A), the diversity of a node’s 
connections with respect to individual modules can 
be assessed in the form of a participation coefficient 
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(Guimerà et al., 2007) (Fig. 2B). Of particular 
interest are highly connected nodes with a high 
participation coefficient: the so-called “connector 
hubs.” These maintain a diverse set of between-
module connections and thus facilitate global 
intermodule communication. On the other hand, 
high-degree nodes with few or less diverse between-
module connections have a low participation index. 
Consequently, these so-called “provincial hubs” 
participate mostly in interactions within their  
own module.

Hubs are of special interest in large-scale brain 
networks. Their high degree of centrality and, in 
the case of connectors, high level of participation 
in multiple functional communities predict that 
they will play a crucial role in integrative processes 
and information flow. The association of at least 
some hubs in the human brain with regions that 
engage in a high rate of metabolism (Hagmann et 
al., 2008), as well as with neuropathological changes 
in degenerative brain disease (Buckner et al., 2009), 
suggests intriguing hypotheses that may link brain 
network topology to function. Furthermore, the 
assessment of centrality or influence is a crucial 
component for predicting functional disturbances 
that will occur upon node or edge deletion. In a 
neurobiological context, the loss of more highly 
central nodes or edges owing to trauma or disease 

should result in more widespread disruptions of 
information flow and dynamics in the remaining 
brain (Alstott et al., 2009).

Future Applications
Graph methods and their application to large-scale 
networks have begun to provide significant insights 
into the organization and function of the human 
brain. The remaining contributions to this short 
course illuminate various approaches, ranging from 
anatomical networks to functional connectivity in 
the resting brain, task-evoked activity, individual 
differences, and clinical populations. As the 
applications of graph theory continue to expand, 
important methodological and interpretational 
questions will need to be addressed. For example, 
objective methods for comparing networks within 
individual subjects or across subject populations will 
be needed to facilitate longitudinal studies of brain 
development and disease progression.
Many aspects of brain networks await future 
investigation. Network approaches have already 
revealed significant between-subject variability in 
structural and functional connectivity, so the role 
of variations in networks for variable cognition 
and behavior will likely be an intense area of future 
research. Other promising avenues will lead to the 
areas of translational neuroscience and in discovering 
relations between genetic and brain networks.

Figure 2. Modularity and classification of hubs. The schematic diagram A shows three modules (gray circles) linked by provincial 
(green) and connector hubs (red). Provincial hubs link nodes within a single module, while connector hubs link modules to each 
other. The diagram B shows a visualization of the community structure of the functional connectivity estimated from simulated 
blood oxygenation level–dependent (BOLD) responses of 47 regions of the macaque cortex (Honey et al., 2007). Two modules 
consisting mostly of visual and somatomotor regions are linked by multiple connector hubs located predominantly in parietal and 
frontal cortex.

A B
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