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Introduction

Neuroscience is a fertile landscape of discovery surrounded by growing mountains of data that are 
often hard to navigate. Much of these data are open and accessible, but it is becoming hard to 
know where to find data we can trust and use, what they represent, and how to use them to better 
understand and accelerate our research. This course has been designed to put more usable data in 
the hands of neuroscientists who are not expert neuroinformaticians. Here we bring together leaders 
in the neuroscience/informatics field to guide attendees (armed with a laptop) through a hands-on 
course highlighting some of the most broadly accessible open datasets and to guide their independent 
scientific voyage of discovery. We do not expect you to be experts in informatics or data science—
though we hope that some of you will feel that way by the time you complete the workshop.

The objectives for this short course are threefold. First, we will walk you through online portals to 
find data that you might be able to use; explain their source, generation, and organization; and outline 
what they may be able to tell you. Second, we will demonstrate some of the established and more 
recent open-source tools that have been generated to help interpret different subsets of neuroscience 
data. Finally, we will provide sessions where you can ask some of your own questions (or ones we will 
provide for you) hands on and be guided by our experts and TAs.

The hands-on sessions will be based on material covered in the lectures, and you will get the most out 
of them if you have some basic programming skills, and at least a couple of areas of interest. The focus 
is on participants learning how to discover more about their areas of interest using openly available 
data, aided by leading experts from around the world.

The course will cover a broad range of topics, including single-cell transcriptomics, large-scale gene 
expression analysis, physiology of identifiable neurons (electrophysiology and optogenetics), mouse 
and human connectomics, human and mouse circuit function and modeling, and interpretation and 
analysis of human imaging. It is the course I wish I had been able to take when I was a grad student 
or postdoc! The course should instill a solid understanding of the basic techniques you will need to 
open a browser and generate new insights and hypotheses to further any research question you might 
want to ask.
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Introduction
Cells are a fundamental functional unit of organisms 
and come in many varieties. One major goal in 
biology is to characterize the cell types found in 
different tissues and species. For example, the human 
body is composed of approximately 30 trillion cells, 
of which less than 1% are neural cells (Sender et al., 
2016), and neurons show striking morphological, 
electrophysiological, and molecular diversity. Many 
of these characteristics have direct functional 
consequences for a neuron, including its connectivity 
and responsiveness to different neurotransmitters.

Neurons can be grouped into types based on shared 
features, and these cell types simplify the description 
of neural circuits and facilitate probing circuit 
function. While many neuronal types have already 
been described, a comprehensive survey will require 
high-throughput assays. Recent technological 
development of RNA sequencing (RNA-seq) of 
individual cells has enabled profiling gene expression 
in thousands of neurons, and this has led to a refined 
census of neuron types in mouse cortex (Tasic et al., 
2016) and a coarser census in human cortex (Lake et 

al., 2016). These cell types have selective expression 
of one or more genes, and molecular tools can be 
created to target these genes to further characterize 
the function of these neurons.

In this chapter, we will walk through the analysis 
steps required to define transcriptomic cell types 
from single-cell RNA-seq data. We will consider 
cell sampling strategies and the expected power 
to detect cell types based on their frequency and 
distinctiveness. Then we will examine the key steps 
of clustering: expression normalization, variable 
gene selection, dimensionality reduction, and 
clustering algorithms.

Cell Sampling
Cell types can be difficult to identify owing to 
their low frequency or similarity to other cell types  
(Fig. 1a). Monte Carlo simulations can be used to 
estimate the number of cells that must be sampled 
to be 95% confident of capturing at least N cells 
with frequency X in the population (Fig. 1b). The 
number of cells required to discriminate two cell 
types varies as a function of the number of genes that 

Figure 1. A quantitative sampling strategy to target cell types. a, Example of a population of cells that includes cell types with 
different frequencies and distinctiveness. Greater sampling depth captures more cell types. b, Cell sample sizes required to capture 
95% confidence for rare cell types with a given depth. Dashed lines show the rarest cell types captured at various depths when 
sampling 300 versus 10,000 cells. c, Simulation demonstrating that fewer cells are required to differentiate a pair of cell types 
with more differentially expressed genes or larger expression differences (Cohen’s d). d, Two pairs of excitatory (layer Va vs Vb) 
neuron types and inhibitory (two Sst+ subtypes) neuron types in mouse primary visual cortex (Tasic et al., 2016) are distinct based 
on small expression differences of thousands of genes and large differences of a few genes.
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the magnitude of the expression differences (Fig. 1c). 
For example, approximately eight cells are needed to 
differentiate layer Va from layer Vb mouse cortical 
neurons (Tasic et al., 2016), and this requirement is 
the result of small expression differences of thousands 
of genes and larger differences of a few genes (Fig. 1d).

One can improve detection of low-frequency cell 
types by enriching for cells, for example, by labeling 
and sorting cells using known molecular markers 
or by dissecting a region enriched with cells of that 
type. Some cells will rarely be captured if they are 
vulnerable to tissue dissociation, such as adult 
human neurons, and profiling single nuclei rather 
than whole cells has provided a less biased survey 
of human cortical neuron types (Lake et al., 2016). 
Finally, one can simply sample more cells with high-
throughput (e.g., droplet-based) RNA-seq methods 
(Macosko et al., 2015) that cost less per cell but 
detect fewer genes.

Gene Detection
One can improve detection of similar cell types by 
increasing the sensitivity and reducing the noise of 
gene expression measurements. Single-cell RNA 
amplification methods vary in their rates of gene 
detection, dropouts, noise, and cost (Ziegenhain 
et al., 2017), and the appropriate method will vary 
by experiment. For example, methods that amplify 
the full length of the transcript increase sensitivity 
to low-expression transcripts that may be important 
markers of cell types. Methods that quantify absolute 
transcript levels with unique molecular identifiers 
(UMIs) reduce amplification noise that may obscure 
subtle expression differences. Some droplet-based 
RNA-seq methods have significantly lower gene 
detection and higher dropout rates (Ziegenhain et al., 
2017), and this should be considered when balancing 
the number of cells profiled versus the resolution to 
discriminate among closely related cell types.

Gene expression dropouts in single cells result 
from missed detection and biological variability, 
such as transcriptional bursting, and can obscure 
relationships between cells. The number of dropouts 
varies across cells because of mRNA quality and 
across genes due to expression levels, and these effects 
can be modeled and accounted for as a weighting 
factor when calculating differential expression and 
similarities among cells (Kharchenko et al., 2014). 
Another approach to mitigate the effect of dropouts 
is to impute expression values by pooling information 
across many similar cells and correlated sets of genes 
(van Dijk et al., 2017).

Cell Clustering
After performing RNA-seq of single cells or nuclei, 
aligning reads to a reference transcriptome, and 
quantifying gene expression, one goal is to group 
cells based on shared transcriptomic signatures. 
Many clustering approaches share four steps:

1.	Expression normalization
2.	Variable gene selection
3.	Dimensionality reduction
4.	Clustering

The following presents examples of how to approach 
each of these steps.

Expression normalization
Ideally, one could measure the absolute number 
of every transcript in each cell. If UMIs are not 
available, then the relative number of transcripts 
must be inferred from the number of reads that map 
to each gene. If full-length transcripts are sequenced, 
then longer genes and more highly expressed 
genes will have more reads, so it is common to 
normalize read counts by transcript length. However, 
normalization requires an accurate reference 
transcriptome that may not be available. For 
example, many nuclear transcripts include intronic 
sequence (Lake et al., 2016), and gene lengths will be 
greatly underestimated by a reference that includes 
only spliced transcripts. Therefore, for single-nuclei 
RNA-seq data, it is important to construct a new 
reference transcriptome with better estimates of 
gene length or else normalize only by total read 
depth, for example, counts per million reads. Various 
methods have been developed to remove unwanted 
technical variation from single-cell expression 
data. These include using ERCC spike-in control 
RNAs (developed by the External RNA Controls 
Consortium and manufactured by ThermoFisher 
Scientific) with known levels (Vallejos et al., 2017). 
It is also common to log-transform and z-score the 
normalized expression values to reduce the influence 
of outliers and high-expression genes on clustering.

Variable gene selection
The goal of variable gene selection is to choose 
genes with variable expression due to real biological 
effects and not technical noise. Gene dropouts 
inflate expression variance and should be accounted 
for by incorporating an appropriate noise model, 
as described earlier. Technical noise increases with 
average expression, and this relationship can be 
estimated either using ERCCs (Brennecke et al., 
2013) or directly from the gene expression data (Fan 
et al., 2016), enabling identification of genes with 

© 2017 Bakken
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significant biological variation in expression. Note 
that genes with expression that is restricted to rare 
cell types may have relatively low variability across 
all cells and may be missed in this step. One way 
to mitigate this omission is to iterate clustering on 
clusters identified in the first round.

Dimensionality reduction
Groups of genes that act in shared biological 
pathways are often coordinately regulated and 
have correlated expression. Therefore, one can 
represent the expression of thousands of genes in a 
much lower-dimensional space that captures most 
of the variation in expression and reduce noise by 

pooling information across correlated genes. In 
other words, dimensionality reduction aims to learn 
the low-dimensional manifold in which cells reside 
within gene expression space. A classical technique 
is principal component analysis, which defines an 
orthogonal set of principal components (PCs) that 
are a linear combination of genes ordered by the 
amount of variance explained (Fig. 2a). One can 
then select PCs that explain more variance than is 
expected by chance. Weighted gene coexpression 
network analysis (WGCNA) is another intuitive 
dimensionality reduction technique that groups 
genes into modules that share correlated neighbors 
(Langfelder and Horvath, 2008). Modules and 

Figure 2. Example of steps to cluster and visualize cell types. a, Cells were projected onto the first two PCs of a PCA of signifi-
cantly variable genes. Cells were clustered based on their location using all significant PCs and colored based on cluster member-
ship. b, Coclustering matrix showing the proportion of 100 clustering iterations (each using a random 80% subsample of cells) 
that each pair of cells was placed in the same cluster. Final clusters can be defined as sets of cells that consistently cocluster, as 
represented by the red boxes along the diagonal. c, Left, Cell-type dendrogram based on hierarchical clustering of median expres-
sion of marker genes. Right, Visualization of transcriptional heterogeneity of cells within clusters (corresponding to colors) using 
t-SNE (van der Maaten and Hinton, 2008).
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functions and can be annotated with gene ontology 
enrichment analysis. This can help identify 
technical sources of expression variance, and these 
dimensions can be removed from further analysis. 
Finally, it can be helpful to apply a second round 
of nonlinear dimensionality reduction to better 
separate groups of similar cells using t-distributed 
stochastic neighbor embedding (t-SNE) (van der 
Maaten and Hinton, 2008), which preserves local 
but not global distance relationships.

Clustering
Unsupervised clustering techniques aim to group 
cells that are more like one another than they are 
to other cells. Density clustering, such as DBSCAN 
(density-based clustering of applications with noise) 
(Ester et al., 1996), identifies cells that are neighbors 
in feature space and is most effective when closely 
related cells are tightly packed and well separated 
from other cells. Therefore, it is helpful to first 
apply t-SNE to reduce features to two dimensions 
before density clustering. PhenoGraph (Levine et 
al., 2015) takes a related approach and represents 
cells as a nearest-neighbor graph that transforms 
the problem of finding densely packed cells in high-
dimensional expression space to a problem of finding 
sets of highly interconnected cells. Because efficient 
community detection algorithms exist for large 
networks, this technique is scalable to hundreds of 
thousands of cells. BackSPIN (Zeisel et al., 2015) 
also avoids dimensionality reduction by performing 
hierarchical biclustering and simultaneously 
identifies sets of correlated genes and cells with 
similar expression patterns.

One can attempt to further split clusters by 
repeating the previous steps (including variable 
gene selection) independently on each cluster, and 
this may identify more subtle or rare cell types that 
were missed on the first round. One must define 
stopping criteria for clustering, such as a minimum 
cluster size and lack of differentially expressed 
genes. Cluster robustness can be quantified by 
repeating iterative clustering on subsamples of cells 
and counting how often each pair of cells clusters 
together (Fig. 2a). This coclustering matrix can be 
used to define a final set of clusters by identifying 
groups of cells that consistently cocluster (Fig. 2b).

Cluster relatedness can be quantified by coclustering 
between clusters and by similarity of gene expression. 
Two visualizations can aid in the biological 
interpretation of cell types. A dendrogram tree of cell 
types can be constructed by applying hierarchical 
clustering to a correlation-based distance matrix of 

median expression across clusters. This tree can be 
annotated with marker genes that label branches of 
similar cell types (e.g., broad classes of GABAergic 
interneurons) and compared with similarities in 
developmental lineage, electrophysiology, and 
morphology among types. A t-SNE plot of all cells 
can be used to visualize cluster properties, such as the 
expression of specific genes or technical covariates, 
and this can aid cluster curation (Fig. 2c).

Example clustering pipeline

1.	Iteratively cluster cells
1.1.	Select significantly variable genes among cells.

1.2.	Reduce dimensionality of gene expression.
1.3.	Cluster cells based on proximity in reduced 

space.
1.4.	For each cluster, repeat steps 1.1–1.3.
1.5.	Stop when there are no significantly variable 

genes, PCs, or clusters.

2.	Assess cluster robustness
2.1.	Subsample 80% of cells.
2.2.	Perform iterative clustering on each subsample 

(steps 1.1–1.5).
2.3.	Calculate proportion of clustering iterations 

that each pair of cells is coclustered.

3.	Define and visualize clusters
3.1.	Cluster coclustering matrix to identify cells 

that consistently cluster together and not with 
other cells.

3.2.	Exclude “outlier” clusters based on significantly 
lower quality control metrics.

3.3.	Merge clusters that do not meet criteria for 
being distinct “cell types” (e.g., those that lack 
distinct marker genes).

3.4.	Construct a cluster dendrogram based on the 
median expression of marker genes.

3.5.	Compare transcriptional heterogeneity of 
clusters using dimensionality reduction (e.g., 
t-SNE) (van der Maaten and Hinton, 2008).

Conclusion
High-throughput RNA-seq of single cells and 
nuclei will reveal a broad diversity of cell types 
across tissues, species, development, and disease. 
Fully characterizing these transcriptomic cell types, 
including their shape, functional properties, local 
environment, and connections, will require the 
advancement of new techniques. For example, 
multiplex fluorescence in situ hybridization methods 
are rapidly improving that can map distributions of 
cell types in situ based on marker gene expression 
and localize transcripts to different subcellular 
compartments. Finally, new gene editing methods, 

© 2017 Bakken
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such as those based on clustered regularly interspaced 
short palindromic repeats (CRISPR), will provide 
a means to develop mechanistic models of gene 
function that should shed light on cell function in 
health and disease.

Resources
•	RNA-seq datasets

o	 Allen Brain Atlas cell types database:  
http://celltypes.brain-map.org/rnaseq

o	 Single Cell Portal Beta (The Broad Institute): 
https://portals.broadinstitute.org/single_cell

o	 Single Cell Analysis Program—Transcriptome 
Project (SCAP-T): https://www.scap-t.org/
content/data-portal

o	 National Center for Biotechnology Information 
GEO DataSets: https://www.ncbi.nlm.nih.gov/
gds

•	Analysis tools
o	 Cell sampling (Satija Lab): http://satijalab.org/

howmanycells
o	 BASiCS (Vallejos C): https://github.com/

catavallejos/BASiCS
o	 RUVSeq: http://bioconductor.org/packages/

release/bioc/html/RUVSeq.html
o	 DESeq2: https://bioconductor.org/packages/

release/bioc/html/DESeq2.html
o	 scde http://hms-dbmi.github.io/scde/
o	 WGCNA: an R package for weighted 

correlation network analysis (Langfelder P, 
Horvath S): https://labs.genetics.ucla.edu/
horvath/CoexpressionNetwork/Rpackages/
WGCNA/

o	 t-SNE (van der Maaten LJP): https://
lvdmaaten.github.io/tsne/

o	 ToppGene Suite GO enrichment: https://
toppgene.cchmc.org/enrichment.jsp

•	Clustering
o	 DBSCAN (Hahsler M, Piekenbrock M, Arya S,  

Mount D): https://cran.r-project.org/web/
packages/dbscan/

o	 Pagoda (Harvard Medical School Department 
of Bioinformatics): https://github.com/hms-
dbmi/pagoda2

o	 Seurat (Satija Lab): http://satijalab.org/seurat/
o	 BackSPIN (Linnarsson Lab): R toolkit for 

single cell genomics: https://github.com/
linnarsson-lab/BackSPIN

o	 PhenoGraph (Dana Pe’er Lab of Computational 
Systems Biology): https://www.c2b2.columbia.
edu/danapeerlab/html/phenograph.html

o	 SIMLR (Batzoglou Lab): https://github.com/
BatzoglouLabSU/SIMLR
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Introduction
RNA expression profiling is a powerful means of 
assaying the state of a biological sample but has many 
interpretational difficulties. One challenge is “cellular 
composition,” which refers to sample-to-sample 
variability in the types and proportions of cells present. 
Dissected “bulk” tissue is the source of the vast majority 
of RNA used in transcriptome studies, in which RNA 
from multiple cell types is intermingled. While it has 
long been a concern (especially in studies of the nervous 
system) that analysis of complex bulk tissue might result 
in the dilution of effects occurring in a subset of cells, 
it is also known that sample-to-sample differences in 
cellular composition occur. These differences can be 
caused by the random statistical effects of sampling 
from small pieces of tissue, but could also reflect 
biological differences among individuals. Further, while 
some conditions such as neurodegenerative diseases are 
well known to result in changes in cellular composition, 
there is a growing recognition that such effects should be 
considered in all analyses of brain tissue transcriptomes. 
At one extreme, a change in measured gene expression 
could be entirely the result of changes in cellular 
composition without any change in gene regulation 
within the cells (Fig. 1).

It is clear from these examples that taking cellular 
composition into account is important for interpreting 
expression analyses of bulk tissue data. That is, we 
should question whether a measured change in a 
gene transcript level results from a regulatory event 
within cells, or whether it represents an alteration 
in the number of cells expressing the gene, or some 

combination of such effects. The difficulty is that 
measuring cellular proportions directly (e.g., by 
stereology) is generally incompatible with destructive 
bulk tissue RNA sampling. Although there is hope 
that single-cell methodologies can resolve this 
problem, bulk tissue sampling remains the norm.

With this challenge in mind, methods for estimating 
cellular proportions based entirely on transcriptome 
measurements have been developed. A variety of 
approaches are available, but in general, they rely on the 
use of marker genes that distinguish one cell type from 
another. Simplistically stated, a change in the expression 
of marker genes is used as a surrogate for a change in 
the abundance of the relevant cell type. Although 
it is impossible to definitively assign such changes in 
expression to changes in cell-type proportions (direct 
cell counting remains the gold standard), the benefits 
of applying these methods outweigh the caveats. Thus, 
cell-type-specific (or enriched) marker genes have been 
used to gain cell-type-specific information from brain 
bulk tissue data, and have generally been interpreted 
as indicating changes in cell-type proportion (Sibille et 
al., 2008; Tan et al., 2013; Skene and Grant, 2016).

In this chapter, we demonstrate how cell-type-specific 
gene expression profiles can assist the interpretation 
of transcriptomics data derived from bulk tissue 
samples. The approach we cover is based on using 
multiple cell-type-specific markers identified using 
purified cell-type or single-cell transcriptomes, in this 
case, as captured in the NeuroExpresso.org database. 
These markers are used together to measure a marker 
gene profile (MGP) for each cell type, which can 
then be used either directly as a proxy cell-type 
proportion measure, or as a covariate in statistical 
models to “normalize” for cell-type proportion 
changes, allowing gene regulation effects to be 
estimated more accurately. Throughout, we highlight 
potential pitfalls and troubleshooting steps to assist 
practitioners in being informed users of the MGP 
approach in their own research.

Marker Gene Profile Estimation 
Overview
In this tutorial, we reproduce an analysis presented 
in Mancarci et al. (2016) to infer cell-type 
proportion changes in the human midbrain in 
Parkinson’s disease (PD).

MGPs are summarized expression levels of transcripts 
enriched in specific cell types. Because the simplest 
explanation for concordant change in the expression 
level of a large number of genes enriched in a specific 
cell type is change in the abundance of this cell type, 

Figure 1. Observed expression levels are the combination of 
multiple sources of variability. In this toy example, the expres-
sion of gene X as measured from bulk tissue is lower in a sam-
ple from the Disease group than in a sample from the Control 
group. However, the bulk tissue is composed of a mixture of 
cells (yellow, green, and blue ovals), only a subset of which ex-
presses gene X (red circles). Thus, the observed change can be 
induced by a, a regulatory event affecting the gene expression 
level in all cells; b, a decrease in the number of cells expressing 
the gene; or c, a regulatory event affecting expression in only 
a subset of cells.
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MGPs can be carefully used as surrogates for relative 
cellular abundance.

Two components are needed to estimate MGP. First, 
one needs a set of marker genes, defined as genes 
specifically expressed in, or highly enriched in, a 
particular cell type in the context of a region or tissue. 
Second, one needs a transcriptomic dataset from 
relevant bulk tissue, representing gene expression 
profiles across a number of samples (Fig. 2).

In the example illustrated in this tutorial, we use the 
marker genes derived from mouse brain cell types 
described by Mancarci and colleagues (2017) and 
gene expression data from substantia nigra samples 
from healthy subjects and PD patients collected by 
Lesnick and colleagues (2007).

Package Installation and Data 
Download
In this tutorial, we make use of R code and data 
provided in the markerGeneProfile package 
available at GitHub: https://github.com/oganm/
markerGeneProfile/. This package can be installed 
from GitHub directly within R using the devtools 
package (version 1.12.0). This code also makes use 
of several third-party packages: ggplot2, dplyr, gplots, 
and viridis. We assume the reader is either familiar 
with R and these packages or can follow along with 
the assistance of the built-in R help system. (Note that 

in the following example, R console output is shown 
in a contrasting color, but not all output is shown.)

install.packages('devtools')
devtools::install_github('oganm/homologene')
devtools::install_github('oganm/ogbox')
devtools::install_github('oganm/
markerGeneProfile')
install.packages('ggplot2')
install.packages('gplots')
install.packages('viridis')
install.packages('dplyr')
library(markerGeneProfile)

Mouse marker genes
For this tutorial, we make use of lists of marker genes 
derived from gene expression datasets corresponding 
to specific mouse brain cell types. Specifically, 
these gene expression datasets were collected from 
published datasets reflecting purified, pooled brain 
cell types and single cells. We have made these data 
accessible within the NeuroExpresso database and 
resource at http://www.neuroexpresso.org.

After assembling these mouse cell-type-specific data, 
we computationally identified marker gene sets for 
each cell type. An individual marker gene set is 
composed of genes highly enriched in a cell type in 
the context of a brain region. That is, the expression 
level of genes in a cell type in the specified region is 
evaluated in comparison with all cell types available 
in NeuroExpresso for the same region. This means, 

Figure 2. Schematic representation of MGP analysis. The input for the analysis comprises mouse marker genes for the cell type of 
interest, derived from the NeuroExpresso database (http://www.neuroexpresso.org). For the analysis of human bulk tissue, mouse genes 
are first converted to human orthologues, and then their expression values are extracted from the human bulk tissue data. In the next 
step, the expression signals of the marker genes are summarized into a single value for each sample based on PCA. The summarized 
values indicate the MGP across the sample. After obtaining the MGPs, they can be statistically analyzed to obtain the group differences.
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for example, that the marker genes identified for 
astrocytes in the cortex can differ from the marker 
genes identified for the astrocytes in hippocampus. 
We selected marker genes based on (1) fold of change 
relative to other cell types in the brain region and 
(2) a lack of overlap of expression levels in other cell 
types. A complete description of the methodology 
used to define marker genes for mouse brain cell types 
is available in Mancarci et al. (2016).

Within the markerGeneProfile R package, we have 
made the marker gene lists for each cell type available 
in the mouseMarkerGenes object as a nested list. 
Each nesting shows the marker genes for each cell 
type in the context of a specific brain region, e.g., 
Midbrain (including the substantia nigra), Cortex, or 
Cerebellum, shown below. “All” indicates selection of 
marker genes in the context of the whole brain (i.e., 
compared with all cells available in NeuroExpresso).

data(mouseMarkerGenes)
names(mouseMarkerGenes)
## [1] "All" "Amygdala" "BasalForebrain"
## [4] "Brainstem" "Cerebellum" "Cerebrum"
## [7] "Cortex" "Hippocampus" "LocusCoeruleus"
## [10] "Midbrain" "SpinalCord" "Striatum"
## [13] "Subependymal" "SubstantiaNigra" 
"Thalamus"

Below, we list the first three cell types available in 
NeuroExpresso for the Midbrain region as well as the 
first few marker genes associated with each cell type. 
Note that the genes are identified here by mouse 
gene symbols.

lapply(mouseMarkerGenes$Midbrain[1:3],head, 14)

## $Astrocyte
## [1] "Aass" "Acsbg1" "Acsl6" "Acss1" "Add3" 
"Adhfe1"
## [7] "AI464131" "Aldh1l1" "Aldh6a1" "Antxr1" 
"Aox1" "Apoe"
## [13] "Aqp4" "Axl"
##
## $BrainstemCholin
## [1] "2310030G06Rik" "Anxa2" "Cabp1" "Calca"
## [5] "Calcb" "Cd24a" "Cd55" "Cda"
## [9] "Chodl" "Ecel1" "Fxyd7" "Hebp2"
## [13] "Hspb1" "Hspb8"
##
## $Dopaminergic
## [1] "Cacna2d2" "Cadps2" "Chrna6" "Mapk8ip2" 
"Nr4a2" "Ntn1"
## [7] "Prkcg" "Rian" "Scn2a" "Slc6a3" "Snhg11" 
"Tenm1"
## [13] "Th" "Zim3"

As described above, these markers are genes that 
have high expression levels in one cell type but not 
other cell types within the same brain region. In 
Figure 3, we have plotted a heat map of the gene 

Figure 3. Midbrain cell-type-specific marker genes. 
Columns show individual cell-type-specific samples 
from midbrain, and rows show the top five marker 
genes chosen for each cell type.
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expression levels for the top five marker genes per cell 
type annotated to the region Midbrain. As expected, 
known dopaminergic marker genes, including 
tyrosine hydroxylase (gene symbol Th), are selected 
as marker genes for midbrain dopaminergic cells.

We note that these cell-type-specific mouse 
gene expression data are not part of the 
markerGeneProfile package but can be accessed 
freely online through Neuroexpresso.org or github.
com/oganm/neuroExpressoAnalysis.

Bulk tissue transcriptomic data
As an example of a bulk tissue brain-region-
specific gene expression dataset amenable for MGP 
analysis, we selected a dataset collected by Lesnick 
et al. (2007) in which postmortem gene expression 
profiles from the midbrains of human controls and 
PD patients were assayed using microarrays.

We have made the preprocessed Lesnick dataset 
available as part of the markerGeneProfile package. 
This matrix (the object mgp_LesnickParkinsonsExp) 
is organized into a data frame with unique samples 
on columns and genes/microarray probes as rows. 
The first few rows of the gene expression data matrix 
are shown below. The metadata are provided in the 
object mgp_LesnickParkinsonsMeta, which 
lists which group (Control or Disease) each sample 
belongs to.

data(mgp_LesnickParkinsonsExp)
mgp_LesnickParkinsonsExp %>%
    dplyr::select(-GeneNames) %>%
    head %>% {.[,1:6]}

## Probe Gene.Symbol NCBIids GSM184354.cel 
GSM184355.cel
## 43955 1007_s_at DDR1 780 10.236880 9.891552
## 2278 1053_at RFC2 5982 5.421790 5.280541
## 45312 117_at HSPA6|HSPA7 3310|3311 5.164445 
4.651754
## 43710 121_at PAX8 7849 7.076004 7.035090
## 13573 1255_g_at GUCA1A 2978 3.107388 
3.418976## 21022 1294_at UBA7 7318 6.644858 
6.182664
## GSM184356.cel
## 43955 10.498371
## 2278 5.852467
## 45312 4.729189
## 43710 6.698765
## 13573 3.491832
## 21022 5.982642
data(mgp_LesnickParkinsonsMeta)
mgp_LesnickParkinsonsMeta %>% head
## GSM disease
## 1 GSM184354 Control
## 2 GSM184355 Control
## 3 GSM184356 Control
## 4 GSM184357 Control
## 5 GSM184358 Control
## 6 GSM184359 Control

Preprocessing bulk tissue  
expression data
One of the most important preprocessing steps 
before estimating MGPs is to filter out genes with 
low expression signals. This step is important 
because a low expression signal often indicates that 
the gene is not expressed (i.e., the source for the 
signal is noise rather than biological signal). This is 
especially relevant for microarray data in which all 
genes have non-zero background signals regardless of 
the biological expression. Lowly expressed genes will 
only interfere with later analysis steps, so we remove 
them here.

Another preprocessing step required for MGP 
estimation is to summarize multiple probesets (for 
microarray) or splice isoforms so that each gene is 
represented only once in the postprocessed bulk 
tissue expression dataset. Although there are many 
probeset summarization methods, for this tutorial, 
we remove all probesets with a maximum expression 
below the median and select the most variable 
probeset per gene. We perform both of these steps 
using the single function mostVariable, below.

unfilteredParkinsonsExp = mgp_
LesnickParkinsonsExp # keep this for later
medExp = mgp_LesnickParkinsonsExp %>%
    ogbox::sepExpr() %>% {.[[2]]} %>%
    unlist %>% median

# mostVariable function is part of this package 
that does
# probe selection and filtering for you
mgp_LesnickParkinsonsExp = mostVariable(mgp_
LesnickParkinsonsExp,
threshold = medExp,
threshFun= median)

MGP Estimation Overview
The approach we cover makes use of multiple cell-
type marker genes summarized as a single measure 
using principal component analysis (PCA). 
Specifically, we summarize the expression profiles of 
marker genes as the first principal component (PC) 
of their expression levels (Xu et al., 2014; Chikina 
et al., 2015; Westra et al., 2015). We refer to these 
summaries as MGPs. One MGP is estimated for 
each cell type being considered. The intuition we 
follow is that we are interested in the common signal 
change across the marker genes as best reflecting 
changes in cell proportions. Although there are 
multiple potential sources of variability in marker 
gene expression levels, including biological factors 
(e.g., regulation), technical factors (e.g., RNA 
quality), and sampling noise, the major source of 
common variance in their expression (captured in 
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type abundance. Various validations of this approach 
are presented in the papers cited earlier as well as in 
Mancarci et al. (2016).

Despite the power of the PC approach, we implement 
additional quality checks rather than treating the 
MGP analysis as a black box (described in more 
detail in later sections). For example, for good quality 
results, the first PC should explain 40–70% of the 
variance in marker expression. Values lower than 
this mean that the marker genes are not strongly 
correlated, suggesting that factors other than cell-
type proportions are dominating the signals. Another 
consideration is expression level: Including marker 
genes that are not robustly detected as expressed (as 
well as genes that are not sufficiently specific to the 
cell type) will have a strong adverse effect on the 
analysis. This is especially important when analyzing 
human tissue because cell-type-specific markers are 
often inferred from rodent studies (as we do here). 
We anticipate that some of the marker genes in 
mouse cell types will not be equivalently expressed 
in the corresponding human cell types, or that their 
expression in bulk tissue might be too low to reliably 
detect. For all these reasons, it is probable that for 
some datasets and/or cell types, MGPs cannot be 
confidently estimated. We discuss various additional 
caveats in a later section.

MGP calculation exercise
The death of dopaminergic cells within the 
substantia nigra is a known hallmark of PD. In the 
exercise that follows, we apply the list of marker 
genes derived from midbrain mouse cell types (e.g., 
dopaminergic cells, cholinergic cells, astrocytes) to 
the bulk tissue expression data from human control 
and Parkinsonian subjects.

Although estimating MGPs requires a simple 
calculation of PC scores per sample using only 
the marker gene sets for a particular cell type, we 
have provided a convenience function within the 
markerGeneProfile R package for estimating MGP. 
This function, mgpEstimate, takes as input bulk 
tissue expression data (exprData below), marker 
genes (genes), and experimental groups (groups) 
and returns as outputs the calculated MGPs as well 
as a number of quality control (QC) metrics. The 
function outputs a variable, estimations, containing 
the MGP estimates per cell type.

Because the marker genes are defined as mouse gene 
symbols, whereas genes in the bulk tissue expression 

data are defined using human gene symbols, the 
function also transforms the mouse gene names 
into human gene names (using the homologene R 
package). Please see the documentation for more 
information on optional inputs to the function for 
further customization and extra information on the 
outputs under estimations.

estimations =  mgpEstimate(exprData=mgp_
LesnickParkinsonsExp,
  genes=mouseMarkerGenes$Midbrain,
  geneColName='Gene.Symbol',
  geneTransform =
       �function(x){homologene::mouse2human(x)$

humanGene},
  groups=mgp_LesnickParkinsonsMeta$disease)

The values for the MGP estimations are stored 
within the estimates object for each cell type:

ls(estimations$estimates)
## [1] "Astrocyte" "BrainstemCholin"
## [3] "Dopaminergic" "Microglia"
## [5] "Microglia_activation" "Microglia_
deactivation"
## [7] "Oligo" "Serotonergic"

Below, we create a data frame to store the sample-by-
sample MGP estimation results corresponding to the 
dopaminergic cell type. The groups are indicated by 
the state variable.

dopaminergicFrame =
   �data.frame(`Dopaminergic MGP` = estimations$

estimates$Dopaminergic,
      state = estimations$groups$Dopaminergic,
      check.names=FALSE)

We plot the sample-by-sample MGP estimates below 
(Fig. 4). Each human Midbrain gene expression 
sample is shown by a single dot, and the groups have 
been separated by disease state.

library(ggplot2)
ggplot2::ggplot(dopaminergicFrame,
      �aes(x = state, y = `Dopaminergic MGP`)) +
   �ogbox::geom_ogboxvio() + geom_jitter(width 

= .05)

As a contrast to the MGP estimates, we can plot the 
gene expression values of the dopaminergic marker 
genes from the Midbrain bulk tissue samples (Fig. 5). 
Note that most of the dopaminergic marker genes, 
including TH and SLC6A3, have higher expression 
values in the Control samples than in the PD samples.

© 2017 Pavlidis
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estimations$usedMarkerExpression$Dopaminergic%>%
    as.matrix %>%
    gplots::heatmap.2(trace = 'none',
         �scale='row',Rowv = FALSE,Colv = FALSE, 

dendrogram = 'none',
         �col= viridis::viridis(10),cexRow = 1, 

cexCol = 0.5,
         �ColSideColors = 

estimations$groups$Dopaminergic %>%
           �ogbox::toColor(palette = c('Control' 

= 'blue',
           "PD" = "red")) %$% cols ,
         �margins = c(5,5))

Indeed, in general, most marker genes have a high 
expression in control samples (indicated by the blue 
bar above the heat map) compared with the PD 
samples (red bar).

Testing for group differences in MGPs
Once we have MGP estimates for each sample, a 
natural question arises as to whether these values 
differ in distribution among experimental groups. 
There are myriad ways to perform statistical tests for 
group differences (e.g., Student’s t-test of the mean). 
Here, we apply the nonparametric Wilcoxon rank-
sum test (Mann–Whitney U test):

group1 = estimations$estimates$Dopaminergic 
[estimations$groups$Dopaminergic %in% "Control"]
group2 = estimations$estimates$Dopaminergic 
[estimations$groups$Dopaminergic %in% "PD"]
wilcox.test(group1,group2)

##
## Wilcoxon rank sum test
##
## data: group1 and group2
## W = 119, p-value = 0.006547
## alternative hypothesis: true location shift 
is not equal to 0

Based on these results, we can say that there is a 
significant difference (p = 0.0065) in the dopaminergic 
MGPs between Control and PD patients.

Thus far, we have applied MGP estimation in a fairly 
bare-bones manner. However, we encourage a closer 
inspection of the data and the use of QC metrics 
(discussed in the next section) to ensure that the 
method is giving meaningful results.

It is important to note that not all of the mouse cell-
type-specific marker genes (which NeuroExpresso 
provides) can be used to estimate MGPs in human 
bulk tissue samples. There are three main reasons why 
genes are not used in the estimation of MGPs: (1) 
there is no matching gene orthologue between mouse 
to human; (2) the gene is not represented in the 
bulk tissue dataset (e.g., not sampled on microarray 
platform) or is filtered out due to low expression 
level; and (3) the gene has low correlation between 
its expression in the bulk tissue data compared with 
the majority of marker genes of the same cell type. 
We detail these aspects in the next demonstrations.

Figure 5. Heat map showing gene expression values of do-
paminergic marker genes from Midbrain bulk tissue samples. 
Most of the dopaminergic marker genes (right) have higher 
expression values in the Control samples (blue bar) than in the 
PD samples (red bar).

Figure 4. Sample-by-sample MGP estimate plots for dopami-
nergic cells. Each human Midbrain bulk tissue gene expression 
sample is shown by a single dot, and the groups have been 
separated by disease state: Control and PD.
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dopaminergic cell markers having human orthologues:

mouseHumanGeneTable = mouseMarkerGenes$Midbrain
$Dopaminergic %>% homologene::mouse2human()
allHumanDopaGenes = mouseHumanGeneTable %$% 
humanGene
mouseHumanGeneTable

## mouseGene humanGene
## 1 Cacna2d2 CACNA2D2
## 2 Cadps2 CADPS2
## 3 Chrna6 CHRNA6
## 4 Mapk8ip2 MAPK8IP2
## 5 Nr4a2 NR4A2
## 6 Ntn1 NTN1
## 7 Prkcg PRKCG
## 8 Slc6a3 SLC6A3
## 9 Tenm1 TENM1
## 10 Th TH

Thus, of the 14 mouse dopaminergic marker genes, 
10 have human orthologues. However, CHRNA6, as 
shown by the next line of code, is not present in the 
dataset (because of expression-level based filtering), 
so we remove it from consideration:

allHumanDopaGenes[!allHumanDopaGenes %in% mgp_
LesnickParkinsonsExp$Gene.Symbol]

## [1] "CHRNA6"

allGenesInDataset = allHumanDopaGenes[allHuman
DopaGenes %in% mgp_LesnickParkinsonsExp$Gene.
Symbol]

Next, because the MGP estimation algorithm 
uses PCA to summarize the expression of multiple 
marker genes specific to a cell type, the algorithm (by 
default) removes or drops individual marker genes 
if they have poor correlation (across samples) with 
other marker genes corresponding to a cell type (as is 
the case for PRKCG, below). (Details of this process 
can be found in Mancarci et al., 2016.) We show 
genes that were dropped during estimation as follows:

allGenesInDataset[!allGenesInDataset %in%  
rownames(estimations$usedMarkerExpression$ 
Dopaminergic)]
## [1] "PRKCG"

To better help visualize these gene-dropping steps, 
we plot the raw expression levels for all the human 
bulk tissue samples for the 10 dopaminergic marker 
genes (Fig. 6). Here, we can see that CHRNA6 
and PRKCG have very low expression levels. 
CHRNA6 was removed at our earlier expression-
level filtering step. PRKCG just barely passed that 
threshold but was removed later owing to its low 
overall correlation (across samples) with the other 
dopaminergic marker genes. 

genesUsed =  rownames(estimations$usedMarker 
Expression$Dopaminergic)

toPlot =
    unfilteredParkinsonsExp[unfilteredParkinsons 
Exp$Gene.Symbol %in%
   homologene::mouse2human(mouseMarkerGenes$ 
Midbrain$Dopaminergic)$humanGene,] %>%
    mostVariable(threshold = 0)

toPlot %>%
    mostVariable(threshold = 0) %>%
    ogbox::sepExpr() %>%
    {.[[2]]} %>% as.matrix()%>%
    {rownames(.) =
        toPlot$Gene.Symbol[toPlot$Gene.Symbol 
%in% homologene::mouse2human(mouseMarkerGenes$M
idbrain$Dopaminergic)$humanGene];.} %>%
    reshape2::melt() %>% {colnames(.) = c('Gene
','Sample','Expression');.} %>%
    dplyr::mutate(`Is used?` = 
rep('used',length(Gene)) %>%
                      {.[Gene %in% 'CHRNA6'] = 
'CHRNA6 - not expressed';.[Gene %in% 'PRKCG'] = 
'PRKCG - not correlated';.}) %>%
    ggplot(aes(y = Expression, x = Sample, 
group = Gene, color = `Is used?`)) +
    geom_line() +
    cowplot::theme_cowplot() +
    theme( axis.text.x= element_blank()) +
    ggtitle('Nonscaled expression of markers')

QC metrics in MGP estimation
As a more formal metric for controlling the quality 
of MGP estimates, we suggest using the fraction of 
removed genes. The rationale is that if a significant 
portion of the genes do not correlate well with each 
other, this might indicate that the variance explained 
by the first PC cannot be explained by changes in 
cellular abundance. For example, this can happen if 
some of the genes are highly regulated in a subset of 
the samples or if a substantial proportion of the genes 
is either not sufficiently expressed or not specific to 
the cell type. For all cell types, this ratio is calculated 
and output as the removedMarkerRatios. The 
function outputs a warning if this ratio exceeds 0.4:1.0 
for any cell type (i.e., > 40% of marker genes for a 
cell type are removed). Of note, for some cell types, 
the expression level of the markers in bulk tissue is 
relatively low, and thus, the ratio of removed genes 
is normally relatively high but without affecting the 
reliability of the results. In general, the ratio of the 
removed genes should always be evaluated in the 
context of variance explained by the first PC, as 
described below:

© 2017 Pavlidis
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estimations$removedMarkerRatios
## Astrocyte BrainstemCholin Dopaminergic
## 0.12962963 0.37500000 0.11111111
## Microglia Microglia_activation Microglia_
deactivation
## 0.09649123 0.08219178 0.10909091
## Oligo Serotonergic
## 0.05882353 0.00000000

Note that the proportion of removed marker genes 
for Midbrain dopaminergic cells is fairly low: 1 of 9 
total marker genes pass the expression-level-based 
filtering. Unlike dopaminergic cells, cholinergic cells 
seem to have a higher proportion of their marker 
genes removed (~0.375).

As a complementary QC metric, we suggest inspecting 
the amount of variance explained in the first PC of 
marker gene expression. For the dopaminergic cell-
type marker genes here, it is 66%. If this value is low, 
it is very likely that the first PC does not correspond to 
variance explained by changes in cellular abundance.

estimations$trimmedPCAs$Dopaminergic %>% 
summary()
## Importance of components%s:
## PC1 PC2 PC3 PC4 PC5 PC6
## Standard deviation 2.3056 1.0829 0.87149 
0.53287 0.45796 0.38075
## Proportion of Variance 0.6645 0.1466 0.09494 
0.03549 0.02622 0.01812
## Cumulative Proportion 0.6645 0.8110 0.90597 
0.94147 0.96768 0.98580
## PC7 PC8
## Standard deviation 0.28376 0.18177
## Proportion of Variance 0.01006 0.00413
## Cumulative Proportion 0.99587 1.00000

Looking at the variation explained by the first PC 
of cholinergic cells reveals that the first PC explains 
only 29% of all variance. Thus, both the proportion 
of genes removed and the variance explained by the 
first PC indicate that the MGP estimations for the 
cholinergic cell type are more suspect:

estimations$trimmedPCAs$BrainstemCholin %>% 
summary()
## Importance of components%s:
## PC1 PC2 PC3 PC4 PC5 PC6 PC7
## Standard deviation 1.7002 1.3215 1.2445 
1.1559 0.8752 0.7804 0.68942
## Proportion of Variance 0.2891 0.1746 0.1549 
0.1336 0.0766 0.0609 0.04753
## Cumulative Proportion 0.2891 0.4637 0.6186 
0.7522 0.8288 0.8897 0.93725
## PC8 PC9 PC10
## Standard deviation 0.55879 0.44616 0.34094
## Proportion of Variance 0.03122 0.01991 
0.01162
## Cumulative Proportion 0.96847 0.98838 
1.00000

Limitations and Pitfalls of MGP 
Interpretation
Although the data inspection and QC steps described 
above help ensure that users understand the source 
and meaning of the outputs of MGP analysis, users 
should pay heed to a number of other caveats 
and guidelines. Here we outline a few of the most 
pertinent; for additional discussion of limitations and 
caveats, see Mancarci et al. (2016).

Figure 6. Plot of raw expression levels for all human bulk tissue samples for 10 dopaminergic marker genes. Of these, CHRNA6 
and PRKCG have very low expression levels.
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NOTESInterpretation of MGPs as cellular 
proportion rather than regulatory 
changes
The most likely explanation for concordant change 
in a large proportion of marker genes is change in 
cellular abundance, but this does not always have to 
be so. It is important to remember that many marker 
genes encode for proteins involved in the biological 
function of a specific cell type (e.g., many of the 
oligodendrocyte markers encode proteins involved 
in synthesis and maintenance of myelin). This 
implies that under specific conditions, the genes can 
be coregulated (e.g., if myelin synthesis is blocked 
or if the condition affects the maturation state of 
the cells), resulting in transcriptomic regulatory 
changes in multiple marker genes inside individual 
cells. Thus, changes in MGPs should be interpreted 
carefully while considering alternative explanations 
for the observed change.

It is also important to remember that we treat the 
first PC as capturing the variance that correlates with 
cellular abundance. However, this might not be true 
if larger sources of variation exist in the data. For 
example, sample pH and mRNA quality are known 
to affect the measured expression signal. Thus, in 
datasets with large pH differences or datasets of low 
mRNA quality, the main source of variance in the 
expression of marker genes might not be related to 
cellular abundance but rather correspond to other 
biological or technical effects. Although the quality 
metrics described above can help to identify such 
cases, it is advisable to make sure that the data are of 
good quality before applying the algorithm.

Necessary sample size
As with any differential expression analysis, we 
recommend applying the method to datasets with a 
large number of samples (> 10). This is important 
because PCA is sensitive to outliers, and it follows 
that the existence of outliers would have greater 
effect in datasets with small sample size.

Necessary numbers of marker genes 
per cell type
Because individual genes can be regulated by 
different conditions, if MGPs are calculated based on 
a small number of starting marker genes, the impact 
of any regulation is more likely to be problematic. 
We thus suggest that MGPs based on fewer than 
three marker genes not be trusted as indicators of 
cellular abundance.

Which cell types to use
Not every cell type is present in every brain region, 
so it makes sense to estimate MGPs only for cell types 
expected to be present. In addition, the markers 
provided by NeuroExpresso are, where possible, 
chosen in a brain-region-specific manner. This 
means that markers for cells types might overlap 
across regions. A good example is Purkinje cells of 
the cerebellum, which share markers with inhibitory 
interneurons found in the neocortex. Although 
estimation of a Purkinje cell MGP from neocortical 
data will “work,” the results are obviously not 
interpretable as intended.

MGPs as relative measures
In an ideal world, the MGP approach would yield 
the fraction of the sample made up from each cell 
type, and those fractions would add up to 1.0. 
Unfortunately, this is not the case, and for many 
reasons would be difficult to achieve with any 
method. The MGP estimates are effectively on an 
arbitrary unit-less scale and can be compared only 
with the MGP for the same cell type across samples 
in the same dataset. It is imperative that MGPs not 
be referred to as proportions, but rather as being 
correlated with proportions.

Conclusions
In this tutorial, we have outlined some of the 
applications of the MGP approach, focusing on the 
simplest use of estimating MGPs for cell types across 
samples and comparing them between experimental 
groups. We have also highlighted the need for 
caution in interpreting MGPs and the importance 
of high-quality data. Another common application, 
not demonstrated here, is to use the MGP values as 
covariates in statistical models in order to account 
for cell-type proportion differences as a source of 
variability that might obscure differences of more 
primary interest (e.g., disease).

In our work, we have found that the MGPs themselves 
provide useful insight into the data, to the extent 
that inferred cell-type-specific effects likely caused 
by compositional changes are the major signal in 
the data (Mancarci et al., 2016). We suggest that 
such effects not be treated as a nuisance. Instead, 
compositional changes may commonly be present 
in conditions besides neurodegenerative disorders, 
and gene expression profiling provides an indirect 
but efficient means of assessing such effects. Ongoing 
work on the MGP approach aims at improving the 
diagnostic and interpretation aids as well as revising 
and extending the marker gene sets available as more 
data become available.

© 2017 Pavlidis
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Introduction
This chapter considers the following “graph 
classification” question: Given a collection of 
graphs and associated classes, how can one predict 
the class of a newly observed graph? To address this 
question, we propose a statistical model for graph/
class pairs. This model naturally leads to a set of 
estimators to identify the class-conditional signal, 
or “signal-subgraph,” defined as the collection of 
edges that are probabilistically different between 
the classes. The estimators admit classifiers that 
are asymptotically optimal and efficient but differ 
by their assumption about the “coherency” of the 
signal-subgraph (coherency is the extent to which 
the signal-edges “stick together” around a common 
subset of vertices). Via simulation, the best estimator 
is shown to be a function of not just the coherency 
of the model but also the number of training 
samples. These estimators are employed to address a 
contemporary neuroscience question: Can we classify 
“connectomes” (brain graphs) according to sex? The 
answer is yes, and significantly better than for all 
benchmark algorithms considered. Synthetic data 
analysis demonstrates that even when the model is 
correct, given the relatively small number of training 
samples, the estimated signal-subgraph should be 
taken with a grain of salt. We conclude by discussing 
several possible extensions. Graphs are emerging 
as a prevalent form of data representation in fields 
ranging from optical character recognition and 
chemistry (Bunke and Riesen, 2011) to neuroscience 
(Hagmann et al., 2010). Whereas statistical inference 
techniques for vector-valued data are widespread, 
statistical tools for the analysis of graph-valued data 
are relatively rare (Bunke and Riesen, 2011). In 
this chapter, we consider the task of “labeled graph 
classification”: Given a collection of labeled graphs 
and their corresponding classes, can we accurately 
infer the class for a new graph? Note that we assume 
throughout that each vertex has a unique label, and 
that all graphs have the same number of vertices 
with the same vertex labels. The methods developed 
herein, however, can straightforwardly be relaxed to 
use them in more general settings.

We propose and analyze a joint graph/class model—
sufficiently simple to characterize its asymptotic 
properties but sufficiently rich to afford useful 
empirical applications. This model admits a class-
conditional signal encoded in a subset of edges: 
the signal-subgraph. Finding the signal-subgraph 
amounts to providing an understanding of the 
differences between the two graph classes. Moreover, 
borrowing a term from the compressive sensing 
literature (Donoho et al., 2006; Candès and Wakin, 

2008), we are interested in learning to what extent 
this signal is coherent—that is, to what extent the 
signal-subgraph edges are incident to a relatively 
small set of vertices. In other words, if the signal 
is sparse in the edges, then the signal-subgraph is 
incoherent; if it is also sparse in the vertices, then 
the signal-subgraph is coherent (we formally define 
these notions below).

This graph model–based approach is qualitatively 
different from most previous approaches, which 
utilize only unique vertex labels or graph structure. 
In the former case, simply representing the adjacency 
matrix with a vector and applying standard machine 
learning techniques ignores graph structure (for 
instance, it is not clear how to implement a coherent 
signal-subgraph estimator in this representation). In 
the latter case, computing a set of graph invariants 
(such as clustering coefficient) and then classifying 
using only these invariants ignores vertex labels 
(Kudo et al., 2005; Ketkar et al., 2009; Bunke and 
Riesen, 2011).

Although some of the above approaches consider 
attributed vertices or edges, we are unable to find 
any that utilize both unique vertex labels and graph 
structure. The field of connectomics (the study of 
brain graphs), however, is ripe with many examples of 
brain graphs with vertex labels. In invertebrate brain 
graphs, for example, often each neuron is named such 
that one can compare neurons across individuals 
of the same species (North and Greenspan, 2007). 
In vertebrate neurobiology, even though neurons 
are rarely named, “neuron types” (Shepherd and 
Huganir, 2007) and neuroanatomical regions (Nolte, 
2002) are named. Moreover, a widely held view is 
that many psychiatric issues are fundamentally 
“connectopathies” (Lichtman et al., 2008; Bassett 
and Bullmore, 2009). For prognostic and diagnostic 
purposes, merely being able to differentiate groups of 
brain graphs from one another is sufficient. However, 
for treatment, it is desirable to know which vertices 
and/or edges are malfunctioning so that therapy can 
be targeted to those locations. This is the motivating 
application for our work.

We demonstrate via theory, simulation, analysis 
of a neurobiological dataset (magnetic resonance 
[MR]–based connectome sex classification), and 
synthetic data analysis that utilizing graph structure 
can significantly enhance classification accuracy. 
However, the best approach for any particular 
dataset is not just a function of the model, but 
also the amount of data. Moreover, even when the 
model is true, given a relatively small sample size, 
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the estimated signal-subgraph will often overlap 
with the truth but not fully capture it. Nonetheless, 
the classifiers described below still significantly 
outperform the benchmarks.

Methods
Setting
Let 𝔾 : Ω → 𝒢 be a graph-valued random variable with 
samples Gi. Each graph G = (𝒱, E) is defined by a set 
of V vertices, 𝒱 = {vi}i∈ [V], where [V] = {1, … , V}, and 
a set of edges between pairs of vertices E ⊆ V × V. Let 
A : Ω → 𝒜 be an adjacency matrix-valued random 
variable taking values a ∈ 𝒜 ⊆ ℝV×V, identifying which 
vertices share an edge. Let Y : Ω → 𝒴 be a discrete-
valued random variable with samples yi. Assume the 
existence of a collection of n exchangeable samples of 
graphs and their corresponding classes from some true 
but unknown joint distribution: {(𝔾i,Yi)}i∈ [n]∼exch. F𝔾,Y. 
Our aim (exploitation task) is to build a graph classifier 
that can take a new graph, 𝔾, and correctly estimate 
its class, y, assuming that they are jointly sampled from 
some distribution, F𝔾,Y. Moreover, we are interested 
solely in graph classifiers that are interpretable with 
respect to the vertices and edges of the graph. In other 
words, nonlinear manifold learning, feature extraction, 
and related approaches are unacceptable.

We adopt the common practice of identifying graphs 
with their adjacency matrices. We note, however, 
that operations available on the latter (addition, 
multiplication) are not intrinsic to the former.

Model
Consider the model, ℱ𝔾,Y, which includes all 
joint distributions over graphs and classes under 
consideration: ℱ𝔾,Y = {F𝔾,Y (⋅;θ) : θ ∈ Θ}, where θ ∈ Θ  
indexes the distributions. We proceed via a hybrid 
generative–discriminative approach (Lasserre et al., 
2006) whereby we describe a generative model and 
place constraints on the discriminant boundary.

First, assume that each graph has the same set of 
uniquely labeled vertices so that all the variability in 
the graphs is in the adjacency matrix, which implies 
that F𝔾,Y = FA,Y. Second, assume edges are independent, 
that is, FA,Y = ∏u,v∈ε FAuv,Y, where ε ⊆V × V is the set 
of all possible edges. Now, consider the generative 
decomposition FA,Y = FA|YFY, and let Fuv|y = FAuv|Y= y 
and πy = FY=y. Third, assume the existence of a class-
conditional difference, that is, Fuv|0 ≠ Fuv|1 for some (u, 
v) ∈ ε, and denote the edges satisfying this condition 
as the signal-subgraph, S = {(u, v) ∈ ε : Fuv|0 ≠ Fuv|1}. 
Fourth, although the following theory and algorithms 
are valid for both directed and undirected graphs, for 
concreteness, assume that the graphs are simple graphs, 

that is, undirected, with binary edges, and lacking (self-)
loops (so ε = (V

 2) ). Thus, the likelihood of an edge 
between vertex u and v is given by a Bernoulli random 
variable with a scalar probability parameter: Fuv|y (Auv) 
= Bern(Auv ; puv|y). Together, these four assumptions 
imply the following model:

𝓕𝔾,Y = {FA,Y (a,y; θ)  ∀a ∈ 𝒜, y ∈ 𝒴: θ ∈ Θ},      (1)

where   FA,Y (a,y; θ) = ∏ Bern(auv; puv|y)πy
  uv∈𝒮

             × ∏ Bern(auv; puv),    (2)
uv∈ℰ\𝒮

and θ = {p, π, 𝒮}. The likelihood parameter is 
constrained such that each element must be between 
zero and one: p ∈ (0, 1)(V

 2) ×|y|. The prior parameter,  
π = (π1, …, π|y|), must have elements greater than or 
equal to zero and sum to one: πy ≥ 0, ∑y πy = 1. The 
signal-subgraph parameter is a nonempty subset of the 
set of possible edges, 𝒮 ⊆ ε and 𝒮 ≠ ∅.

We consider up to two additional constraints on 
𝒮. First, the size of the signal-subgraph may be 
constrained such that |𝒮| ≤ s. Second, the minimum 
number of vertices onto which the collection of edges 
is incident to is constrained such that 𝒮 = {(u, v) :  
u ∪ v ∈ 𝒰}, where 𝒰 is a set of signal-vertices with 
|𝒰| ≤ m. Edges in the signal-subgraph are called 
signal-edges. Note that given a collection of signal-
edges, the signal-vertex set may not be unique. 
Although it may be natural to treat S as a prior, we 
treat it as a parameter of the model; the constraints, s 
and m, are considered to be hyperparameters.

Note that given a specification of the class-conditional 
likelihood of each edge and class-prior, one completely 
defines a joint distribution over graphs and classes; the 
signal-subgraph is implicit in that parameterization. 
However, the likelihood parameters for all edges not 
in the signal-subgraph, puv|y = puv ∀ y ∈ 𝒴, (u, v) ∉ 
𝓢, are “nuisance parameters”; that is, they contain no 
class-conditional signal. When computing a relative 
posterior class estimate, these nuisance parameters 
cancel in the ratio.

Classifier
A graph classifier, h ∈ ℋ, is any function satisfying h 
: 𝒢 → 𝒴. We desire the “best” possible classifier, h∗. 
To define best, we first choose a loss function, ℓh : 𝓖 
× 𝓨 → ℝ+, specifically the 0 − 1 loss function:

	 ℓh(G,y)⩠𝕀{h(G) ≠ y},		  (3)

where 𝕀{⋅} is the indicator function, equaling one 
whenever its argument is true and zero otherwise. 

© 2017 Vogelstein
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Further, let risk, R : 𝓕 × 𝓗 → ℝ+, be the expected 
loss under the true distribution:

	 R(F,h)  𝔼F[ℓh(𝔾,Y)].		  (4)

The Bayes optimal (best) classifier for a given 
distribution F minimizes risk. It can be shown that 
the classifier that maximizes the class-conditional 
posterior FY| 𝔾 is optimal (Bickel and Doksum, 2000):

	 h∗ = argmin 𝔼F[ℓh(𝔾, Y)]                (5)
h∈ℋ

 = argmax F𝔾 |Y=y FY=y.
y∈𝒴

Given the proposed model, Equation 5 can be further 
factorized using the above four assumptions:

h∗(G) = argmax ∏  Bern(Auv; puv|y)πy.        (6)
            y∈𝒴	 u,v∈𝒮

Unfortunately, Bayes optimal classifiers are typically 
unavailable. In such settings, it is therefore desirable 
to induce a classifier estimate from a set of training 
data. Formally, let 𝒯n = {(𝔾i, Yi)}i∈[n] denote the 
training corpus, where each graph-class pair is sampled 
exchangeably from the true but unknown distribution: 
(𝔾i, Yi)∼exch. F𝔾,Y. Given such a training corpus and an 
unclassified graph G, an induced classifier predicts the 
true (but unknown) class of G, ĥ : 𝓖 × (𝓖 × 𝓨)n → 𝓨. 
When a model 𝓕𝔾,Y is specified, a beloved approach is 
a Bayes plug-in classifier. Because of the above simplifying 
assumptions, the Bayes plug-in classifier for this model 
is defined as follows: First, obtain parameter estimates θ 
= {𝓢, p, π}. Second, plug those estimates into the above 
equation. The result is a Bayes plug-in graph classifier:

 auvĥ (G;𝒯n)  argmax ∏  p̂uv|y(1 – p̂uv|y) (1– auv)π̂y
     (7)

   y∈𝒴	      u,v∈Ŝ   

where the Bernoulli probability is explicit. To 
implement such a classifier estimate, we specify 
estimators for 𝓢, π, and p.

Estimators
Desiderata
We desire a sequence of estimators, θ̂1, θ̂2, …, that 
satisfy the following five desiderata, listed in no 
particular order:

1.	 Consistent: An estimator is consistent (in some 
specified sense) if its sequence converges in the 
limit to the true value: limn→∞  θ̂n = θ..

2.	 Robust: An estimator is robust if the resulting 
estimate is relatively insensitive to small model 
misspecifications. Because the space of models is 
massive (uncountably infinite), it is intractable 
to consider all misspecifications, so we consider 
only a few of them, as described below.

3.	 Quadratic complexity: Computational time 
complexity should be no more than quadratic in 
the number of vertices.

4.	 Interpretable: We desire that the parameters be 
interpretable with respect to a subset of vertices 
and/or edges.

5.	 Finite sample/empirical performance: At the 
end of the day, we are concerned with having 
a classifier that works to solve our applied 
problems.

Signal-Subgraph Estimators
Naively, one might consider a search over all possible 
signal-subgraphs by plugging each one into the classifier 
and selecting the best performing option. This strategy 
is intractable because the number of signal-subgraphs 
scales super-exponentially with the number of vertices 
(Fig. 1, left panel). Specifically, the number of possible 
edges in a simple graph with V vertices is dV = (V

 2),  
so the number of unique possible signal-subgraphs 
is 2(V

2). Searching over all of them is sufficiently 
computationally taxing so as to motivate the search for 
other alternatives.

Before proceeding, recall that we assume each edge 
is independent; thus, one can evaluate each edge 
separately (although treating edges independently is not 
necessarily advisable, considering the Stein estimator 
[Stein, 1956]). Formally, consider a hypothesis test for 
each edge. The simple null hypothesis is that the class-
conditional edge distributions are the same, so H0 : Fuv|0 
=Fuv|1. The composite alternative hypothesis is that 
they differ, so HA : Fuv|0 ≠ Fuv|1. Given such hypothesis 
tests, one can construct test statistics Tuv

(n) : 𝓣n → ℝ+. 
We reject the null in favor of the alternative whenever 
the value of the test statistic is greater than some critical 
value: Tuv

(n) (𝓣n) > c. We can therefore construct a 
significance matrix T  Tuv

(n), which is the sufficient 
statistic for the signal-subgraph estimators. Example test 
statistics include Fisher’s and chi-squared, which will be 
discussed further below. Whichever test statistic one 
uses, the sufficient statistics are captured in a 2 × | 𝓨 |  
contingency table, indicating the number of times edge 
u, v was observed in each class. For example, the two-
class contingency table for each edge is given by:

Class 0  Class 1 Total

Edge nuv | 0 nuv | 1 nuv

No Edge n 0 – nuv | 0 n 1 – nuv | 1 n  – nuv

Total n0 n1 n.

For simplicity, we will assume that | 𝓨 | = 2 for 
the remainder, though the general case is relatively 
straightforward.

Graph Classification Using Signal-Subgraphs: Applications in Statistical Connectomics
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Incoherent signal-subgraph estimators. Assume the 
size of the signal-subgraph, |ε | = s, is known. The 
number of subgraphs with s edges on V vertices is 
given by (dV

𝒮), which is also super-exponential (Fig. 1, 
middle panel). Thus, searching them all is currently 
computationally intractable. When s is given under 
the independent-edge assumption, one can choose 
the critical value a posteriori to ensure that only 
s edges are rejected under the null (that is, have 
significant class-conditional differences):

minimize c

subject to        ∑    𝕀{Tuv
(n) < c} ≥ s.             (8)

(u,v)∈ε 

Therefore, an estimate of the signal-subgraph is the 
collection of s edges with minimal test statistics. 
Let T(1) < T(2) < ⋯ < T(dV) indicate the ordered test 
statistics (dropping the superscript indicating the 
number of samples for brevity). Then, the incoherent 
signal-subgraph estimator is given by 𝒮̂n(s) = {e(1), 
…, e(s)}, where e(u) indicates the uth edge ordered by 
significance of its test statistic, T(u).

Note that the number of distinct test-statistic values 
is typically much smaller than the number of possible 
settings of s; specifically, the number of unique test 
statistic values will be t ≤ min(|ε|, (n0 + 1)(n1 + 
1)). In practice, t is often far less than either of the 
upper bounds, because not every edge has a unique 
contingency table. In such scenarios, certain settings 
of the hyperparameters will lead to “ties,” that is, 
edges that are equally valid under the assumptions. 
In such settings, we simply randomly choose edges 
satisfying the criterion.

Pseudocode for implementing the incoherent signal-
subgraph estimator is provided in Algorithm 1, and 
MATLAB code is available from http://jovo.me.

Algorithm 1. Pseudocode for estimating an 
incoherent signal-subgraph.

Input: 𝓣n and s

Output: 𝒮̂n(s)

1. Compute test statistics Tuv
(n) for all (u, v) ∈ ε

2. �Sort each edge according to its test-statistic rank, 
T(1) < T(2) < ⋯ < T(dV)

3. �Let 𝒮̂n(s) = {e(1), …, e(s)}, arbitrarily breaking ties 
as necessary.

Coherent signal-subgraph estimators. In addition to 
the size of the signal-subgraph, also assume that each 
of the edges in the signal-subgraph is incident to one 
of m special vertices called signal-vertices. Although 
this assumption further constrains the candidate sets 
of edges, the number of feasible sets still scales super-
exponentially (Fig. 1, right panel). Therefore, we 
again take a greedy approach.

First, compute the significance of each edge as above, 
yielding ordered test statistics. Second, rank edges 
by significance with respect to each vertex, ek,(1) ≤ 
ek,(2) ≤ ⋯ ≤ ek,(n – 1) for all k ∈ 𝒱. Third, initialize 
the critical value at zero, c = 0. Fourth, assign each 
vertex a score equal to the number of edges incident 
to that vertex more significant than the critical 
value, wv;c = ∑u∈[V] 𝕀{Tv,u > c}. Fifth, sort the vertex 
significance scores, w(1);c ≥ w(2);c ≥ ⋯ ≥ w(V);c. Sixth, 

Figure 1. Exhaustive searches for the signal-subgraph, even given severe constraints, are computationally intractable even for 
small graphs. The three panels illustrate the number of unique simple subgraphs as a function of the number of vertices V for the 
three different constraint types considered: unconstrained, edge constrained (incoherent), and both edge and vertex constrained 
(coherent). Note the ordinates are all log scale. On the left is the unconstrained scenario, that is, all possible subgraphs for a given 
number of vertices. In the middle panel, each line shows the number of subgraphs with a fixed number of signal-edges, s, ranging 
from 10 to 100, incrementing by 10 with each line. The right panel shows the number of subgraphs for various fixed s and only a 
single signal-vertex; that is, all edges are incident to one vertex. Reprinted with permission from Vogelstein JT et al. (2013), Figure 1.  
Copyright 2013, Institute of Electrical and Electronics Engineers.
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check if there exist m vertices whose scores sum to 
greater than or equal the size of the signal-subgraph, 
s. That is, check whether the following optimization 
problem is satisfied:

minimize c

subject to                 ∑ w(v);c ≥ s.		  (9)
                    v∈[m]

If so, call the collection of s most significant edges 
from within that subset the coherent signal-subgraph 
estimate, 𝒮̂n(s, m). If not, increase c and go back 
to step four. As above, we break ties arbitrarily. 
Pseudocode for implementing the coherent signal-
subgraph estimator is provided in Algorithm 2, and 
MATLAB code is available from http://jovo.me.

Algorithm 2. Pseudocode for estimating a coherent 
signal-subgraph.

Input: 𝓣n and (s, m)

Output: 𝓢̂n(s, m)

1. Compute test statistics Tuv
(n) for all (u, v) ∈ ε

2. �Sort each edge according to its vertex-conditional 
test-statistic rank, T(1),k < T(2),k < ⋯ < T(dV),k for 
all k ∈ 𝒱

3. �Let c = 0

4. Let wv;c=∑u∈𝒱  𝕀{Tv,u>c} for all v ∈ 𝒱
5. Let wc = ∑v∈[m] w(v);c

6. while wc < s do

7. Let c ← c + 1

8. Update wc

9. end while

10: Let 𝒮̂n(s, m) be the collection of s edges from 
among those that satisfy Equation 9 for the final 
value of c, arbitrarily breaking ties as necessary.

Coherograms: In the process of estimating 
the incoherent signal-subgraph, one builds a 
“coherogram.” Each column of the coherogram 
corresponds to a different critical value c, and each 
row corresponds to a different vertex v. The (c, v)th  
element of the coherogram wv;c is the number of 
edges incident to vertex v with test statistic larger 
than c. Thus, the coherogram gives a visual depiction 
of the coherence of the signal-subgraph (see, e.g., 
Fig. 2, right column).

Likelihood estimators
The class-conditional likelihood parameters puv|y are 
relatively simple. In particular, because the graphs 

are assumed to be simple, puv|y is just a Bernoulli 
parameter for each edge in each class. The maximum 
likelihood estimator (MLE), which is simply the 
average value of each edge per class, is a principled 
choice:

MLE p̂ uv|y
  =   1      ∑  a(i),                                     (10) _ 

 ny i|yi = y
  uv

where ∑i|yi
 = y indicates the sum is over all training 

samples from class y. Unfortunately, the MLE has an 
undesirable property; specifically, if the data contain 
no examples of an edge in a particular class, then the 
MLE will be zero. If the unclassified graph exhibits 
that edge, then the estimated probability of it being 
from that class is zero, which is undesirable. We 
therefore consider a smoothed estimator

ηn	 if maxi a(i)  = 0uv

1– ηn	 if min
i a

(i)  = 1           (11)uv
MLE p̂ uv|y

 	 otherwise

p̂ uv|y = 

{
 	

where we let ηn = 1/(10n).

Prior estimators
The priors are the simplest. The prior probabilities 
are Bernoulli, and we are concerned only with the 
case where | 𝒴 | ≪ n, so the maximum likelihood 
estimators suffice:

	 nyπ̂y = –,		  (12)
	 n	

where ny = ∑i∈[n] 𝕀{yi = y}.

Hyperparameter selection
The signal-subgraph estimators require specifying 
the number of signal-edges s, as well as the number 
of signal-vertices m for the coherent classifier. In 
both cases, the number of possible values is finite. In 
particular, s ∈ [dV] and m ∈ [V]. Thus, to select the 
best hyperparameters we implement cross-validation 
procedures (see discussion of classifiers, below, for 
details), iterating over (s, m) ∈ s⃗ × m⃗ ⊆ [dV] × [V]. 
Note that when m = V, the coherent signal-subgraph 
estimator reduces to the incoherent signal-subgraph 
estimator. For all simulated data, we compared 
hyperparameter performance via a training and held-
out set. For the real data application, we decided to 
use a leave-one-out cross-validation procedure owing 
to the small sample size.

All together
Putting the above pieces together, Algorithm 3 
provides pseudo-code for implementing our signal-
subgraph classifiers. MATLAB code is available from 
the first author’s website, http://jovo.me.

Graph Classification Using Signal-Subgraphs: Applications in Statistical Connectomics
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Figure 2. An example of the coherent signal-subgraph estimate’s improved accuracy over the incoherent signal-subgraph esti-
mate, for a particular homogeneous two-class model specified by: 𝓜70(1, 20; 0.5, 0.1, 0.3). Each row shows the same columns 
but for increasing the number of graph/class samples. The columns show the negative log-significant matrix (far left), computed 
using Fisher’s exact test (lighter, more significant; each panel is scaled independent of the others because only relative significance 
matters here); incoherent estimate of the signal-subgraph (column 2); coherent estimate of the signal-subgraph (column 3); and 
coherogram (far right). As the number of training samples increases (lower rows), both the incoherent and coherent estimates 
converge toward the truth (the ordinate labels of the middle panels indicate the number of edges correctly identified). For these 
examples, the coherent estimator tends to find more true edges. The coherogram visually depicts the coherency of the signal; 
it is also converging toward the truth: The signal-subgraph here contains a single signal-vertex. Reprinted with permission from 
Vogelstein JT et al. (2013), Figure 2. Copyright 2013, Institute of Electrical and Electronics Engineers.
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Algorithm 3. Pseudocode for training signal-
subgraph classifiers.

Input: 𝓣n and a set of constraints (s⃗, m⃗)
Output: 𝒮̂n, {p̂uv|y}(u,v)∈𝒮̂n

,{π̂y}y∈{0,1}

1. �Partition the data for the appropriate cross-
validation procedure

2. Estimate puv|y for all (u, v) using Equation 11

3. Estimate πy for all y using Equation 12

4. for all (s, m) ∈ (s⃗, m⃗) do

5. �Compute 𝒮̂n(s, m) using Algorithm 1 or 2, as 
appropriate

6. �Compute cross-validated error L̂s,m using  
Equation 13

7. end for

8. Let 𝒮̂n = argmin(s,m) L̂s,m

Finite sample evaluation criteria
Likelihoods and priors
The likelihood and prior estimators will be evaluated 
with respect to robustness to model misspecifications, 
finite samples, efficiency, and complexity.

Classifier
We evaluate the classifier’s finite sample 
properties using either held-out or leave-one-out 
misclassification performance, depending on whether 
the data are simulated or experimental, respectively. 
Formally, given C equally sized subsets of the data, 
{𝒯1, . . . , 𝒯C }, the cross-validated error is given by

	 1	 C	 1	 —L̂ĥ(.;Tn)
 = –

C ∑|Tn\Tc| ∑ 𝕀{ĥ(G;Tc) ≠ y	 (13)
	 c=1	 G∉Tc

Given this definition, let L π̂ be the error of the 
classifier using only the prior estimates, and let L∗ be 
the error for the Bayes optimal classifier.

To determine whether a classifier is significantly 
better than “chance” (defined as the performance by 
a naive classifier), we randomly permute the classes 
of each graph nMC times, and then estimate a naive 
Bayes classifier using the permuted data, yielding an 
empirical distribution of chance misclassification 
performance. The p-value of a permutation test is 
the minimum fraction of Monte Carlo permutations 
that did better than the classifier of interest (Good, 
2010).

To determine whether a pair of classifiers are 
significantly different, we compare the leave-one-
out classification results using McNemar’s test 
(McNemar, 1947).

Signal-subgraph estimators
To evaluate absolute performance of the signal-
subgraph estimators, we define “miss-edge rate” as the 
fraction of true edges missed by the signal-subgraph 
estimator:

	 1
Rx

n = 
|
—
𝒮|  ∑𝕀{(u, v)∉ 𝒮̂n}.	 (14)

	 (u,v)∈𝒮

Note that when |𝓢| is fixed, miss-edge rate is a 
sufficient statistic for all combinations of false-negative/
positive-negative results. Further, we estimate the 
relative rate and relative efficiency to evaluate the relative 
finite sample properties of a pair of consistent estimators. 
The relative rate is simply (1 − Rn

inc)/(1 − Rn
coh). Relative 

efficiency is the number of samples required for the 
coherent estimator to obtain the same rate as the 
incoherent estimator.

Estimator Properties
Likelihood and prior estimators
Lemma 1. p̂uv|y as defined in Equation 11 is an 
L-estimator.

Proof. Huber defines an L-estimator as an estimator 
that is a linear combination of (possibly nonlinear 
functions of) the order statistics of the measurements 
(Huber, 1981). Indeed, p̂uv|y is a thresholded function 
of the minimum, maximum, and mean.                  

Because L-estimators converge to the MLE, our 
estimators share all the nice asymptotic properties 
of the MLE. Moreover, L-estimators are known 
to be robust to certain model misspecifications 
(Huber, 1981). The prior estimators are MLEs and 
therefore also consistent and efficient. Both prior and 
likelihood estimates are trivial to compute, as closed-
form analytic solutions are available for both.

Signal-subgraph estimators
A variety of test statistics are available for computing 
the edge-specific class-conditional signal, Tuv

(n). 
Fisher’s exact test computes the probability of 
obtaining a contingency table equal to, or more 
extreme than, the table resulting from the null 
hypothesis: that the two classes have the same 
probability of sampling an edge. In other words, 
Fisher’s exact test is the most powerful statistical test 
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assuming independent edges (Rice, 2001). This leads 
to the following lemma:

Lemma 2. 𝒮̂n(s′, m′) → 𝒮 as n → ∞ when computing 
Tuv

(n) via Fisher’s exact test, even when s and m are 
unknown, as long s′ ≥ s and m′ ≥ m.

Proof. Whenever puv|0 ≠ puv|1, the p-value of Fisher’s 
exact test converges to zero, whereas whenever puv|0 
=puv|1, the distribution of p-values converges to the 
uniform distribution on [0, 1]. Therefore, Fisher’s 
exact test induces a consistent estimator of the signal-
subgraph as n → ∞, assuming a fixed and finite V. 
Moreover, as V → ∞, as long as V/n → 0, Fisher’s exact 
test remains consistent (Rice, 2001).                           

While most powerful, computing Fisher’s exactly is 
computationally taxing. Fortunately, the chi-squared 
test is asymptotically equivalent to Fisher’s test, 
and therefore shares those convergence properties 
(Rice, 2001). Even the absolute difference of MLEs, 
|p̂ 

MLE  –    uv|1 p̂ 
MLE    uv|0|, which is trivially easy to compute, is 

asymptotically equivalent to Fisher’s (Rice, 2001) 
and therefore consistent. Moreover, the signal-
subgraph estimators are robust to a variety of model 
misspecifications. Specifically, as long as all the 
marginal probability of all the edges in the signal-
subgraph are different between the two classes, puv|1 
≠ puv|0, and the constraints are upper bounds on the 
true values, s′ ≥ s and m′ ≥ m, then any consistent 
test statistic will yield a consistent signal-subgraph 
estimator. Estimating the coherent signal-subgraph 
is more computationally time-consuming than 
estimating the incoherent signal-subgraph. What 
is lost by computational time, however, is typically 
gained by finite sample efficiency whenever the 
model does not induce too much bias, as will be 
shown below.

Bayes plug-in classifier
Lemma 3. The Bayes plug-in classifier, using the 
signal-subgraph, likelihood, and prior estimators 
described above, is consistent under the model 
defined by Equation 2.

Proof. A Bayes plug-in classifier is a consistent 
classifier whenever the estimates that are plugged in 
are consistent (Bickel and Doksum, 2000). Because 
the likelihood, prior, and signal-subgraph estimates 
are all consistent, the Bayes plug-in classifier is also 
consistent.                                                                

Note that naive Bayes classifiers often exhibit 
impressive finite sample performance owing to their 
winning the bias–variance trade-off relative to other 
classifiers (Hand and Yu, 2001). In other words, even 
when edges are highly dependent, because marginal 
probability estimates are more efficient than joint 
probability estimates, an independent edge–based 
classifier will often outperform a classifier based on 
dependencies.

Summary
This work makes the following contributions. First, 
it introduces a novel graph/class model that admits 
rigorous statistical investigation. Second, it presents 
two approaches for estimating the signal-subgraph: the 
first using only vertex label information and the second 
also utilizing graph structure. The resulting estimators 
satisfy the five aforementioned desiderata: (model) 
consistency, robustness to model misspecifications, 
quadratic complexity, interpretability in terms of the 
vertices and edges, and state-of-the-art finite sample/
empirical performance. Third, simulated data analysis 
indicates that neither approach dominates the other; 
rather, the best approach is a function of both the 
model and the amount of training data. And while 
the lasso classifier has error properties similar to our 
incoherent classifier, lasso’s computational time is 
about an order of magnitude longer.

Fourth, these classifiers are applied to an MR 
connectome sex classification dataset; the coherent 
classifier performs significantly better than a variety 
of benchmark classifiers. More specifically, the 
coherent classifier outperformed a pair of classifiers 
that use only vertex labels (the naive Bayes and 
lasso classifiers) as well as a classifier that uses only 
structural information (the invariant-k nearest-
neighbor [kNN] classifier). Only the signal subgraph 
classifier and graph-kNN classifier use both vertex 
labels and graph structure. However, because the 
graph-kNN classifier is universally consistent, it has 
high variance and therefore takes much longer than 
the coherent classifier to converge to a good estimate.

Fifth, synthetic data analysis suggests that while we 
can use the signal-subgraph estimators to improve 
classification performance, we should not expect that 
all the edges in the estimated signal-subgraph will be 
the true signal-edges, even when the model is correct. 
Moreover, we might expect a drastic improvement in 
classification performance with only a few additional 
data samples. Finally, model checking suggests that the 
independent-edge assumption does not fit the data well.

© 2017 Vogelstein
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Introduction
In neuroscience, a major challenge in data-driven 
analysis and modeling is the heterogeneity of the data 
in terms of the experimental designs, measurement 
modalities, and data formats (Akil et al., 2011). This 
heterogeneity makes it very challenging to identify 
which data are similar, comparable, and able to be 
combined or integrated for large-scale analysis or 
used to constrain a computational model.

Data-driven neuroscience analysis and modeling 
require organizing, accessing, and integrating highly 
heterogeneous multimodal and multiscale data 
and knowledge. The scientific meaning, value, and 
quality of data are critically dependent not only on 
the data’s semantic identity (what they are) but also 
on their provenance—where they originated, how 
they were produced, and who produced them. The 
semantic identity reflects important information 
about the type of data, their properties and format, 
and their relationship to other datasets from the 
brain. Effective open science approaches also require 
provenance tracking to support reproducibility, 
accountability, and attribution for the data, 
algorithms, and scientists involved. Here we describe 
the challenge of organizing data and knowledge 
for analysis and approaches to support data-driven 
neuroscience analysis and modeling.

Discovering Data with the 
Minimal Information for 
Neuroscience Datasets (MINDS)
In order to discover data, they must be labeled using 
standardized metadata indexed for searching. A 
common approach to ensuring data discoverability 
is to define a minimal set of metadata that is easy 
to provide accurately and should accompany the 
publication of every dataset. In neuroscience, 
although an agreed upon standard has not yet 
been widely adopted, a proposed standard has been 
created in “Minimal Information for Neuroscience 
Datasets,” or MINDS (Hill, 2016). MINDS includes 
metadata describing a variety of attributes: specimen 
or subject details (e.g., species, age, and strain), 
contributors; brain location (using a standard atlas or 
brain parcellation ontology), methods (e.g., method 
types, analysis methods, equipment, parameters, 
and specific protocols), data category (e.g., EEG, 
intracellular recordings, magnetic resonance imaging 
[MRI], or functional MRI), data-file format, and 
persistent identifiers showing where the data are 
stored. However, to ensure consistent discoverability, 
the values of such a minimal metadata set should 
adhere to either a controlled vocabulary with clearly 
defined terms or an ontology, discussed next.

Organizing Data with Ontologies
Ontologies provide a way of formally representing 
names, properties, and relationships of a set of 
entities or concepts within a particular domain. 
Ontology actually comes from two Greek words: 
onto meaning existence or being real, and logia 
meaning science or study. So ontology is actually 
the science of what exists or is real. In computer 
science, ontologies are often used to provide 
data models and controlled vocabularies for data. 
Linguistic ontologies may be glossaries, dictionaries, 
controlled vocabularies, or taxonomies.

Ontologies can serve as useful tools for organizing data 
and expressing knowledge. For one, they are providing 
a controlled vocabulary for referring to a set of specific 
entities or concepts. In addition, they can contain 
the relationships between these entities and define 
specific properties of these entities. Using ontologies 
enables a machine-readable representation of a set of 
concepts, their properties, and their relationships. For 
example, defining a cell type first requires formalizing 
a list of essential properties for describing it (e.g. cell 
morphology, electrophysiological properties, and 
synaptic connectivity).

Ontologies for Neocortical 
Microcircuitry
For the dataset used in the Blue Brain project for the 
initial Somatosensory cortex model, a large variety 
of data covers many different aspects. These include 
electrophysiological data, per-synaptic responses, 
and gene expression morphological data. These data 
must be organized by annotating their structure using 
structured ontologies in order to understand how 
to build a model from them, what their key entities 
are, what their relationships are, and which of their 
properties you are modeling.

Online Neuroscience  
Ontology Resources
It is inadvisable to start from scratch when building 
a terminology or ontology. Fortunately, many groups 
have established useful starting points for any 
neuroscience need.

National Center for Biomedical 
Ontology
The National Center for Biomedical Ontology 
(NCBO) is based at Stanford University but includes 
collaborators from around the world. Its mission 
is to develop the software and services to apply 
ontologies to the biological, medical, and clinical 
sciences. The organization aims to formalize all 
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knowledge and data that are relevant to improving 
our understanding of human biology and health. 
The NCBO emphasizes establishing semantic 
interoperability in order to enable reproducible and 
valuable queries and inferences across independently 
developed knowledge resources. It also recommends 
standard formats and methodologies for ontology 
development, maintenance, and usage (https://
www.bioontology.org). The primary resource 
NCBO maintains is the BioPortal, which integrates 
biomedical ontologies from many sources (https://
bioportal.bioontology.org).

Neuroscience Information Framework
The Neuroscience Information Framework (NIF) 
(https://neuinfo.org) has established an extensive 
catalog of neuroscience data resources from around 
the world (Gardner et al., 2008). It has established 
an extensive infrastructure for data registration, 
search, and sharing. Using this infrastructure, the 
organization provides the NIF Discovery Portal—a 
semantic search engine that uses standard NIF 

terminologies to enable users to refine their searches. 
The NIF Registry is a community resource catalog 
of curated digital resources of value to researchers 
and students (https://neuinfo.org/Resources). The 
NIF Data Sharing service is the largest collection 
of neuroscience data, biomedical resources, and 
neuroscience ontology on the web (https://neuinfo.
org/data/search?q=*&l=#all). The NIF LinkOut 
Broker provides links between data published with 
PubMed IDs and the published articles (https://
neuinfo.org/about/linkoutbroker). Finally, NIF has 
far-reaching expertise and experience in building, 
enhancing, and maintaining ontologies and 
vocabularies for neuroscientists (https://neuinfo.org/
about/nifvocabularies).

International Neuroinformatics 
Coordinating Facility
The International Neuroinformatics Coordinating 
Facility (INCF) is an international nonprofit 
organization initiated by the OECD Global Science 
Forum (Bjaalie and Grillner, 2007). Membership is 

Figure 1. 3D reconstruction of 55 m-types of neurons identified from studies of the hindlimb portion of rat primary somatosen-
sory cortex. I, II/III, IV, V, and VI refer to different cortical layers. Axons in blue, dendrites in red. BP, bipolar cell; BPC, pyramidal cell 
with bipolar apical-like dendrites; BTC, bitufted cell; ChC, chandelier cell; DAC, descending axon cell; DBC, double bouquet cell; 
HAC, horizontal axon cell; IPC, intermediate neural progenitor cell; LAC, large axon cell; LBC, large basket cell; MC, Martinotti cell; 
NBC, nest basket cell; NGC-DA, neurogliaform cell–dense axons; NGC-SA, neurogliaform cell–slender axons; PC, pyramidal cell; 
SAC, small axon cell; SBC, small basket cell; SP, star pyramidal cell; SS, spiny stellate cell; STPC, untufted pyramidal cell; TPC-L1, 
tufted pyramidal cell, dendrites terminating in L1; TPC-L4, tufted pyramidal cell, dendrites terminating in L4; TTPC1, thick tufted 
pyramidal cell with a late bifurcating apical tuft; TTPC2, thick tufted pyramidal cell with an early bifurcating apical tuft; UTPC, 
untufted pyramidal cell. Reprinted with permission from Markram et al. (2015), Fig. 2. Copyright 2015, Elsevier.
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typically at the national level, with country nodes 
organizing national activities and international 
activities coordinated by the INCF secretariat 
in Stockholm, Sweden. The organization has 
community-driven interest groups and activities 
pertaining to data standards, data sharing 
infrastructure, ontologies, modeling, and brain 
atlasing (https://www.incf.org).

KnowledgeSpace
The KnowledgeSpace (https://www.knowledge-
space.org) is an open community encyclopedia that 
links neuroscience concepts to data, models, and 
literature from around the world. It is the result of 
a partnership among NIF, INCF, the EU Human 
Brain Project, and the Blue Brain Project. It provides 
a search interface to find neuroscience terms (e.g., 
specific cell types, brain regions, ion channels, and 
diseases) and uses the NIF infrastructure to search 
for related data, models, and literature from relevant 
databases and electronic resources worldwide.

Neuron Morphology Types 
(M-Types)
In the Blue Brain Project, we have identified 55 
morphological types (m-types) of neocortical neuron 

(Markram et al., 2015). Figure 1 shows the different 
types of neurons (for cortical layers I–VI). On the 
left, you see the inhibitory interneurons, and on the 
right are the excitatory parameter cells and stellate 
cells, each with a unique name. At the top of the 
column are listed the cell-type abbreviations (e.g., 
in layer I are found neurogliaform cells [NGCs], 
and in layer V are found Martinotti cells [MCs] and 
thick tuft pyramidal cells [TTPCs]). These names 
are used to characterize the properties of neuron 
morphologies and are useful for organizing and being 
consistent about how you refer to different types of 
neurons within a particular brain region.

Electrical Firing Types (E-Types)
The Blue Brain ontology for electrical firing type 
(e-type) neurons is rooted in the convention adopted 
for the Petilla classification for firing properties of 
interneurons (Petilla Interneuron Nomenclature 
Group et al., 2008). This classification is based on 
features of the firing response of a neuron in response 
to a whole-cell patch-clamp current injection into 
the soma. This classification can be performed based 
on the neuron firing response only in an in vitro 
condition; in in vivo conditions, the neuron may 
exhibit significantly different firing behavior.

Figure 2. A, 11 e-types show diverse firing patterns in response to depolarizing step current injections into neocortical neurons. 
B, An exemplar neuron (L23 NBC) with a diversity of 6 e-types. Percentages indicate the relative frequency of e-type occurrence. 
C, Fractions of e-types recorded experimentally in each of the 55 m-types, making up 207 me-combinations. Solid lines, layer 
boundaries. AC, accommodating; IR, irregular; NAC, non-accommodating; NBC, nest basket cell; STUT, stuttering. A, Calibra-
tion: vertical, 20 mV; horizontal, 200 ms. Reprinted with permission from Markram et al. (2015), Fig. 4. Copyright 2015, Elsevier.
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The e-type classification comprises the initial firing 
properties followed by the sustained firing properties. 
The initial firing type is therefore either burst (b), 
continuous (c), or delay (d), which describes the 
initial response of the cell to a depolarizing current. 
In some traces, one can see where there may be a brief 
burst at the beginning, an immediate firing response, 
or perhaps a brief delay in which no spikes occur. The 
initial firing type captures these properties.

Similarly, for the sustained firing type, some cells 
adapt when their interspike interval decreases, 
whereas others are nonadapting when their interspike 
interval remains constant. Still others are considered 
fast-spiking, exhibiting deeper hyperpolarizations 
after a spike and firing at higher frequencies. Yet 
other cells show irregular spiking in which their 
interspike interval may be quite variable.

These properties have been identified as definitive 
for interneuron firing characteristics and form the 
basis of the e-type classification. Table 1 relates 
these interneuron classes to other cell properties 
and types described in the literature. For example, 
there are many ways to talk about a cell type and 
many dimensions along which one can measure 
a neuron to characterize it. These may include, 
for example, genes that are expressed or proteins 

that are present in the cell as molecular markers. 
Electrical and morphological properties, as 
discussed, form additional measurement dimensions. 
Notably, synaptic projection targets and synaptic 
types may also help to define cell type. Here we 
focus on characterizing cell types based on their 
morphological and electrophysiological (morpho-
electric) properties.

Morpho-electric Combinations 
(Me-Combinations)
The morpho-electric cell-type (me-type) ontology is 
actually based on the combinations of e-types that 
occur with m-types. Thus, these “me-combinations” 
are made up of the two ontologies we talked about 
earlier. Not all combinations of morphologies and 
electrical types occur; rather, only a subset of these 
yields 207 me-combinations. We have compiled 
data on how many of these occur and with what 
probability (Fig. 2c).

Synapse Types
The connections among cell types are defined 
by different categories synapses and the specific 
properties that govern them. There are excitatory 
and inhibitory synapses, with each type of synapse 
mediated by multiple neurotransmitters (e.g., 

Table 1. Relation of interneuron classes to classification schemes found in the literature.

Interneurons can be categorized according to which primary marker they express (calcium-binding proteins: parvalbumin [PV], cal-
bindin [CB], and calretinin [CR]; neuropeptides: somatostatin [SOM], vasoactive intestinal polypeptide [VIP], neuropeptide Y [NPY], 
and cholecystokinin [CCK]). We assign several possible e-types to each m-type based on the Petilla convention (Petilla Interneuron 
Nomenclature Group et al., 2008). AC, accommodating; IR, irregular; NAC, non-accommodating; STUT, stuttering. Reprinted with 
permission from Markram et al. (2015), Table 1. Copyright 2015, Elsevier.
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AMPA, NMDA, GABAA, and GABAB). An 
important defining characteristic of these synapses 
is the dynamics of their short-term plasticity in 
relation to depression and facilitation: the way in 
which synapses become “stronger” or “weaker” with 
increased presynaptic firing. As a typical example, 
depressing synapses produce less quantal release 
(packets of neurotransmitters) with each subsequent 
presynaptic release as the available pool of readily 
releasable vesicles decreases. This characteristic, 
combined with postsynaptic receptor saturation, 
results in different short-term plasticity profiles 
for synapses (Fig. 3). Therefore, synapse types are 
named after two key properties: the sign of the 
synapse (excitatory or inhibitory) and the profile 
of the dynamics (facilitating, depressing, or pseudo-
linear). Which synapse type occurs between different 
me-combinations has been mapped and depends on 
the presynaptic and postsynaptic me-combinations 
(Markram et al., 2015).

Microcircuitry
To define the properties of a microcircuit, we need 
to combine many of the elements we have described 
thus far. We start by defining the volumetric 
boundaries of the microcircuit in the atlas space. The 
cell densities are described as the number of cells of 
a given cell type (me-combination) per unit volume. 
We used this approach to describe a somatosensory 
cortex microcircuit and observed that, in general, 
these same properties can be used to describe 
microcircuits throughout the brain. The minimal 

boundary sufficient to create a complete microcircuit 
was defined according to the volume boundary that 
would enclose a sufficient number of cells (at the 
correct cell density) to saturate the dendritic density 
(Markram et al., 2015). The composition recipe 
gives the relative density of all m-types, e-types, and 
me-combinations. In addition, the total number 
of cells within the volume provides the upper 
constraint on cell density. The map of synaptic types, 
described earlier, provides further key properties of 
the microcircuit as it dictates the synapse types that 
mediate interactions between each me-combination. 
Finally, a type-specific average bouton density is 
critical to making a functional conversion to the 
actual number of synapses (Reimann et al., 2015).

Semantic data integration
Semantic metadata enable the integration of data in a 
reproducible and reusable way once the ontology has 
encoded the relationships and similarity of concepts. 
For example, similar or related m-types or e-types are 
categorized in common branches of the ontology. 
As our knowledge advances and the ontologies are 
revised, the new version of the ontology may result 
in different, similar, or related concepts. This new 
version can change the result of the integration 
to reflect current knowledge. However, because 
ontologies are versioned, one can revert to any 
version as needed to reproduce any analyses.

Organizing data with brain atlases
A brain region ontology may require a clear spatial 

boundary, naming, and other 
properties that capture the 
relationships between nearby or 
related brain regions. The Allen 
Mouse Brain Atlas (a project of 
the Allen Brain Atlas, http://www.
brain-map.org) was built using the 
Swanson taxonomy to capture the 
structures within the cortex, the 
substructures, and the relationship 
of, for example, the cortex to the 
diencephalon. In addition, each 
brain region is linked to three-
dimensional (3D) volumetric 
boundaries in the Allen Mouse 
Common Coordinate Framework 
(Oh et al., 2014). Thus, a brain 
atlas ontology can both use data 
structures for describing the 3D 
boundary within the standard 
space as well as linking these 
regions to a standard name and 
abbreviation.

Figure 3. The different types of short-term plasticity profiles for cortical synapses. 
Calibration: vertical, 0.4 mV; horizontal, 200 ms. Reprinted with permission from 
Markram et al. (2015), Fig. 9B. Copyright 2015, Elsevier.
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Describing data with provenance
The World Wide Web Consortium (W3C) has 
developed a standard for describing the provenance 
of any type of data with an extensible data model 
and ontology called PROV (https://www.w3.org/
TR/prov-overview). An example of a neuroscience-
relevant data model developed using PROV is 
the Neuroimaging Data Model, which supports 
tracking the provenance of neuroimaging data and 
generating reproducible analysis results (Maumet et 
al., 2016). Rich descriptions of the provenance of 
datasets and models are essential for discoverability, 
reproducibility, reuse, quality assessment, and 
attribution. Figure 4 shows an example of another 
domain-specific provenance data model, developed 
to describe neuron morphologies.

Other data models are in development to support 
additional neuroscience datasets, including 
electrophysiology, brain atlases, and computational 
models. They reuse or extend community-defined 
schemas (e.g., Schema.org or Bioschemas.org) and 
ontologies (e.g., brain parcellation schemes, cell 
types, taxonomies), providing the basis for validating 
all submissions according to these schema and their 
related ontologies. This system enables neuroscientists 
and modelers to discover data, models, and literature 
according to metadata properties such as specimen, 
protocol, brain region, data type, and cell type and 
makes it possible to discover datasets via semantic 

relationships (data produced 
using similar protocols, common 
brain regions, similar types of data 
or models, and related cell types). 
Datasets can also be discovered 
via provenance relationships (i.e., 
which datasets originated from 
the same animal, from the same 
cell, or from the same laboratory, 
or which models were built from 
specific data). The provenance 
metadata support reproducibility 
by capturing aspects of the 
experimental design as well as 
the protocols, solutions, software, 
and other tools that were used to 
generate the dataset or model. 
Important in the context of 
team science, such provenance 
information enables researchers 
to rapidly summarize the full 
attribution of datasets (including 
institution, principal investigator, 

postdocs, technicians, students, analysts, and 
curators).

Conclusion
Organizing data to support data-driven modeling and 
analysis requires systematic naming and labeling of 
the data. Standardized names and ontologies that 
capture the key relationships among classes of entities 
are essential for reusable querying and computation. 
Numerous online resources and organizations provide 
useful starting points and support for developing 
new vocabularies and ontologies. These ontologies, 
along with standardized brain atlases, provide useful 
mechanisms for reproducible data integration of 
diverse neuroscience data. Provenance-based data 
models are essential for enabling the description of the 
experimental context that generated experimental 
data artifacts as well as the protocols, methods, 
software, and scientists or engineers that produced 
them. All these elements are key to discovering, 
organizing, and integrating heterogeneous data for 
reproducible analysis and modeling in neuroscience. 
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Introduction 
New silicon technology is enabling large-scale 
electrophysiological recordings in vivo from hundreds 
to thousands of channels. Interpreting these 
recordings requires scalable and accurate automated 
methods for spike sorting, which should minimize the 
time required for manual curation of the results. Here 
we introduce KiloSort, a new integrated spike sorting 
framework that uses template matching both during 
spike detection and during spike clustering. KiloSort 
models the electrical voltage as a sum of template 
waveforms triggered on the spike times, which allows 
overlapping spikes to be identified and resolved. 
Unlike previous algorithms that compress the data 
using principal component analysis (PCA), KiloSort 
operates on the raw data, allowing it to construct a 
more accurate model of the waveforms. Processing 
times are faster than in previous algorithms thanks 
to batch-based optimization on graphics processing 
units (GPUs). We compare KiloSort to an established 
algorithm and show favorable performance, at much 
reduced processing times. A novel post-clustering 
merging step based on the continuity of the templates 
further substantially reduced the number of manual 
operations required on these data, for the neurons 
with near-zero error rates, paving the way for fully 
automated spike sorting of multichannel electrode 
recordings.

The oldest and most reliable method for recording 
neural activity involves lowering an electrode into the 
brain and recording the local electrical activity around 
the electrode tip. Action potentials of single neurons 
can then be observed as a stereotypical temporal 
deflection of the voltage, called a spike waveform. 
When multiple neurons close to the electrode fire 
action potentials, their spikes must be identified and 
assigned to the correct cell based on the features of the 
recorded waveforms, a process known as spike sorting 
(Harris et al., 2000; Hill et al., 2011; Einevoll et al., 
2012; Quiroga, 2012; Pillow et al., 2013; Ekanadham 
et al., 2014; Franke et al., 2015). Spike sorting is 
substantially helped by the ability to simultaneously 
measure the voltage at multiple closely spaced sites in 
the extracellular medium. In this case, the recorded 
waveforms can be seen to have characteristic spatial 
shapes determined by each cell’s location and 
physiological characteristics. Together, the spatial 
and temporal shape of the waveform provides all the 
information that can be used to assign a given spike 
to a cell.

New high-density electrodes, currently being tested, 
can record from several hundred closely spaced 
recording sites. Fast algorithms are necessary to 

quickly and accurately spike sort tens of millions of 
spikes coming from 100 to 1000 cells from recordings 
performed with such next-generation electrodes 
in awake, behaving animals. Here we present a 
new algorithm that provides accurate spike sorting 
results with run times that scale near-linearly with 
the number of recording channels. The algorithm 
takes advantage of the computing capabilities 
of low-cost, commercially available GPUs to 
enable approximately real-time spike sorting from 
384-channel probes.

High-density electrophysiology and 
structured sources of noise
Next-generation high-density neural probes allow 
the spikes of most neurons to be recorded on 5 to 
50 channels simultaneously (Fig. 1b). This provides 
a substantial amount of information per spike, 
but because other neurons also fire on the same 
channels, a clustering algorithm is still required to 
demix the signals and assign spikes to the correct 
cluster. Although the dense spacing of channels 
provides a large amount of information for each 
spike, structured sources of noise can still negatively 
impact the spike sorting problem. For example, the 
superimposed waveforms of neurons distant from the 
electrode (nonsortable units) add up and constitute 
a continuous random background (Fig. 1a) against 
which the features of sortable spikes (Fig. 1b) must 
be distinguished. In behaving animals, another 
major confound is given by the movement of the 
electrode relative to the tissue, which creates an 
apparent inverse movement of the waveform along 
the channels of the probe (Fig. 1c).

Previous work
A traditional approach to spike sorting divides 
the problem into several stages. In the first stage, 
spikes are detected that have maximum amplitudes 
above a predefined threshold, and these spikes are 
projected into a common low-dimensional space, 
typically obtained by PCA. In the second stage, the 
spikes are clustered in this low-dimensional space 
using a variety of approaches, such as mixtures of 
Gaussians (Rossant et al., 2016) or peak-density-
based approaches (Rodriguez and Laio, 2014). 
Some newer algorithms also include a third stage of 
template matching in which overlapping spikes are 
found in the raw data that may have been missed in 
the first detection phase. Finally, a manual stage in 
a GUI is required for awake recordings, to manually 
perform merge and split operations on the imperfect 
automated results.
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Here, we instead combine these steps into a single 
model with a cost function based on the error 
of reconstructing the entire raw voltage dataset 
with the templates of a set of candidate neurons. 
We derive approximate inference and learning 
algorithms that can be successfully applied to very 
large channel count data. This approach is related 
to a previous study (Ekanadham et al., 2014), but 
whereas the previous work scale was impractically 
slow for recordings with large numbers of channels, 
our further modeling and algorithmic innovations 
have enabled the approach to be used quickly and 
accurately on real datasets. We improved on the 
generative model of Ekanadham and colleagues: 
from a spiking process with continuous L1-penalized 
traces, to a model of spikes as discrete temporal 
events. The approach of Ekanadham et al. (2014) 
does not scale well to high-channel count probes 
because it requires the solution of a generic convex 
optimization problem in many dimensions.

Model Formulation
We start with a generative model of the raw 
electrical voltage. Unlike previous approaches, we 
do not precommit to the times of the spikes, nor do 
we project the waveforms of the spikes to a lower-
dimensional PCA space. Both these steps discard 
potentially useful information, as we show below.

Preprocessing: common average 
referencing, temporal filtering, and 
spatial whitening
To remove low-frequency fluctuations, such as the 
local field potential (LFP), we high-pass filter each 
channel of the raw data at 300 Hz. To diminish 
the effect of artifacts shared across all channels, we 
subtract at each timepoint the median of the signal 
across all recording sites, an operation known as 
“common average referencing.” This step is best 
performed after high-pass filtering because the LFP 
magnitude is variable across channels but can be 
comparable in size to the artifacts.

Finally, we whiten the data in space to remove noise 
that is correlated across channels (Fig. 1c). The 
correlated noise is caused mostly by far neurons with 
small spikes (Neto et al., 2016), which have a large 
spatial spread over the surface of the probe. Because 
very many such neurons are found at all recording 
sites, their noise averages out to have normal statistics 
with a stereotypical cross-correlation pattern 
across channels (Fig. 1c). We distinguish the noise 
covariance from that of the large, sortable spikes by 
removing the times of putative spikes (detected with 
a threshold criterion) from the calculation of the 
covariance matrix. We use a symmetrical whitening 
matrix that maintains the spatial structure of the data, 

© 2017 Harris

Fast and Accurate Spike Sorting of High-Channel Count Probes with KiloSort

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
samples (25kHz)

20

40

60

80

100

120

ch
an

ne
ls

a

b c correlation of channel noise

20 40 60 80 100 120
channels

20

40

60

80

100

120

ch
an

ne
ls

Figure 1. Data from high-channel count recordings. a, High-pass filtered and channel-whitened data. Negative peaks are action 
potentials. b, Example mean waveforms, centered on their peaks. c, Example cross-correlation matrix across channels (before 
whitening).
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known as ZCA, defined as WZCA = Σ−½ = ED−½ ET,  
where E, D are the singular vectors and singular 
values of the estimated covariance matrix Σ. To 
regularize D, we add a small value to its diagonal. 
For very large channel counts, estimation of the 
full covariance matrix Σ is noisy, and we therefore 
compute the columns of the whitening matrix WZCA 
independently for each channel, based on its nearest 
32 channels.

Modeling mean spike waveforms 
with singular value decomposition
When single spike waveforms are recorded across a 
large number of channels, most channels will have 
no signal and only noise. To prevent these channels 
from biasing the spike sorting problem, previous 
approaches estimated a mask over those channels 
with sufficient signal-to-noise ratio to be included 
in a given spike. To further reduce noise and lower 
the dimensionality of the data for computational 
reasons, the spikes are usually projected into a small 
number of temporal principal components (PCs) per 
channel (typically three). Here we suggest a different 
method for simultaneous spatial denoising/masking 
and for lowering the dimensionality of spikes. This 
method is based on the observation that mean spike 
waveforms are very well explained by a singular 
value decomposition (SVD) of their spatiotemporal 
waveform, with as few as three components (Figs. 2a,b). 
However the spatial and temporal components of the 
SVD vary substantially from neuron to neuron; hence, 
the same set of temporal basis functions per channel 
cannot be used to model all neurons (Figs. 2a,b), as 
typically done in standard approaches. We analyzed 

the ability of the classical and proposed methods for 
dimensionality reduction and found that the proposed 
decomposition can reconstruct waveforms with 
approximately five times less residual variance than 
the classical approach. This allows the decomposition 
to capture small but highly distinguishable features 
of the spikes, which ultimately can help distinguish 
among neurons with very similar waveforms.

Integrated template matching 
framework
To define a generative model of the electrical recorded 
voltage, we take advantage of the approximately 
linear additivity of electrical potentials from different 
sources in the extracellular medium. We combine the 
spike times of all neurons into an Nspikes-dimensional 
vector s, such that the waveforms start at time 
samples s + 1. We define the cluster identity of spike 
k as σ(k), taking values into the set {1, 2, 3, ..., N}, 
where N is the total number of neurons. We define 
the unit-norm waveform of neuron n as the matrix 
Kn = Un Wn, of size number of channels by number 
of sample timepoints ts (typically 61). The matrix Kn 
is defined by its low-dimensional deconstruction into 
three pairs of spatial and temporal basis functions, 
Un and Wn, such that the norm of Un Wn is 1. The 
value of the electrical voltage at time t on channel i 
is defined by

V(i,t)  = V0(i,t) + N(0, ε)
s(k) ≥ t–ts

V0(i,t) =  ∑  xkKσ(k) (i, t – s(k))	        (1)
k,s(k) < t

xk ∼ N (μσ(k), λμ2
σ(k)),

© 2017 Harris

Fast and Accurate Spike Sorting of High-Channel Count Probes with KiloSort

raw waveform temporal PC (common) spatiotemporal PC (private)
101 102 103

temporal PC (common)

101

102

103

sp
at

io
te

m
po

ra
l P

C
 (p

riv
at

e)

residual waveform variancea b
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in one dataset.
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where xk > 0 is the amplitude of spike k. Spike 
amplitudes in the data can vary significantly even 
for spikes from the same neuron, due to factors like 
burst adaptation and drift. We modeled the mean 
and variance of the amplitude variability, with the 
variance of the distribution scaling with the square of 
the mean. λ and E are hyperparameters that control 
the relative scaling with respect to each other of the 
reconstruction error and the prior on the amplitude. 
In practice, we set these constant for all recordings.

This model formulation leads to the following cost 
function, which we minimize with respect to the spike 
times, cluster assignments, amplitudes and templates

	 ε	 xk𝓛(s,x,K,σ) = ║V – V0║2 +  – ∑ (—  –1)
2      (2)	 λ	 k	 μσk

Learning and Inference in the 
Model
To optimize the cost function, we alternate between 
finding the best spike times s, cluster assignments σ, 
and amplitudes x (template matching) and optimizing 
the template K parametrization with respect to s, σ, x 
(template optimization). We initialize the templates 
using a simple scaled K-means clustering model, 
which we in turn initialize with prototypical spikes 
determined from the data. After the final spike times 
and amplitudes have been extracted, we run a final 
post-optimization merging algorithm that finds pairs 
of clusters whose spikes form a single continuous 
density. These steps are separately described in detail 
below.

Stacked initializations with scaled 
K-means and prototypical spikes
The density of spikes can vary substantially across the 
probe, depending on the location of each recording 
site in the brain. Thus, initializing the optimization 
in a density-dependent way can assign more clusters 
to regions that require more, relieving the main 
optimization from the local minima–prone problem 
of moving templates from one part of the probe to 
another. For the initialization, we therefore start by 
detecting spikes using a threshold rule, and as we 
load more of the recording, we keep a running subset 
of prototypical spikes that are sufficiently different 
from each other by an L2 norm criterion. We avoid 
overlapping spikes to be counted as prototypical 
spikes by enforcing a minimum spatiotemporal peak 
isolation criterion on the detected spikes. Of the 
prototypical spikes thus detected, we consider a fixed 
number N that had the most matches to other spikes 
in the recording.

We then use this initial set of spikes to initialize a 
scaled K-means algorithm. This algorithm uses the 
same cost function described in Equation 2, with spike 
times s fixed to those found by a threshold criterion. 
Unlike standard K-means, each spike is allowed to 
have variable amplitude (Coates et al., 2011).

Learning the templates via stochastic 
batch optimization
The main optimization reestimates the spike times 
s at each iteration. The “online” nature of the 
optimization helps to accelerate the algorithm and 
to avoid local minima. For template optimization, we 
use a simple running average update rule

An
new(i, t0) ←(1 – p)jn An

old(i, t0) +
	 σ(k)=n

(1 – (1 – p)jn)  ∑ V(i,s(k) +t0), 
	 k∈batch	

(3)

where An is the running average waveform for cluster 
n, jn represents the number of spikes from cluster n 
identified in the current batch, and the running 
average weighs past samples exponentially with 
a forgetting constant p. Thus, An approximately 
represents the average of the past p samples assigned 
to cluster n. Note that different clusters will therefore 
update their mean waveforms at different rates, 
depending on their number of spikes per batch. 
Since firing rates vary over two orders of magnitude 
in typical recordings (from < 0.5 to 50 spikes/s), the 
adaptive running average procedure allows clusters 
with rare spikes to nonetheless average enough of 
their spikes to generate a smooth average template.

Like most clustering algorithms, the model we 
developed here is prone to nonoptimal local minima. 
We use several techniques to ameliorate this problem. 
First, we anneal several parameters during learning to 
encourage exploration of the parameter space, which 
stems from the randomness induced by the stochastic 
batches. We anneal the forgetting constant p from 
a small value (typically 20) at the beginning of the 
optimization to a large value at the end (typically 
several hundred). We also anneal from small to large 
the ratio ε/λ, which controls the relative impact of 
the reconstruction term and amplitude bias term 
in Equation 2. Therefore, at the beginning of the 
optimization, spikes assigned to the same cluster are 
allowed to have more variable amplitudes. Finally, 
we anneal the threshold for spike detection (see 
below) to allow a greater mismatch between spikes 
and the available templates at the beginning of 
the optimization. As optimization progresses, the 
templates become more precise, and spikes increase 
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their projections onto their preferred template, 
thereby allowing higher thresholds to separate them 
from the noise.

Inferring spike times and amplitudes 
via template matching
The inference step of the proposed model attempts 
to find the best spike times, cluster assignments, 
and amplitudes, given a set of templates {Kn}n with 
low-rank decompositions Kn = Un Wn and mean 
amplitudes µn. The templates are obtained from 
the running average waveform An, after an SVD 
decomposition to give An ∼ μn Kn = μn Un Wn, 
with ║UnWn║= 1, with Un orthonormal and Wn 
orthogonal. The primary roles of the low-rank 
representation are to guarantee fast inferences and to 
regularize the waveform model.

We adopt a parallelized matching pursuit algorithm 
to iteratively estimate the best fitting templates and 
subtract them off from the raw data. In standard 
matching pursuit, the best fitting template is identified 
over the entire batch, its best reconstruction is 
subtracted from the raw data, and then the next best 
fitting template is identified iteratively until the amount 
of explained variance falls below a threshold, which 
constitutes the stopping criterion. To find the best 
fitting template, we estimate for each time t and each 
template n the decrease in the cost function obtained 
by introducing template n at location t, with the best 
fitting amplitude x. This is equivalent to minimizing a 
standard quadratic function of the form ax2 − 2bx + c 
over the scalar variable x, with a, −2b, and c derived as 
the coefficients of x2, x, and 1 from Equation 2

ε	 ε
a = 1 + — ; b = (KnV)(t) + — ; c = λμ2

n	       (4)
λμ2

n	 λμn

where  represents the operation of temporal filtering 
(convolution with the time-reversed filter). Here the 
filtering is understood as channel-wise filtering followed 
by a summation of all filtered traces, which computes 
the dot product between the template and the voltage 
snippet starting at each timepoint t. The decrease in 
cost dC(n, t) that would occur if a spike of neuron n 
were added at time t, and the best x are given by

xbest =  b –  a

dC(n,t) = b
2
– c     		         (5) –  a

Computing b requires filtering the data V with all the 
templates Kn, which amounts to a very large number 
of operations, particularly when the data have many 
channels. However, our low-rank decomposition 
allows us to reduce the number of operations by a 

factor of Nchan/Nrank, where Nchan is the number of 
channels (typically >100) and Nrank is the rank of the 
decomposed template (typically 3). This follows from 
the observation that

VKn = V(UnWn)
=∑(Un(:, j)T . V) Wn(j, :),              (6)

j

where Un (:, j) is understood as the j-th column of 
matrix Un, and similarly Wn (j, :) is the j-th row of 
Wn. We have thus replaced the matrix convolution 
V  Kn with a matrix product UT

nV and Nrank one-
dimensional convolutions. We implemented the 
matrix products and filtering operations efficiently 
using consumer GPU hardware. Iterative updates 
of dC after template subtraction can be obtained 
quickly using precomputed cross-template products, 
as typically done in matching pursuit. The iterative 
optimization stops when a predefined threshold 
criterion on dC is larger than all elements of dC.

Owing to its greedy nature, matching pursuit can 
perform badly at reducing the cost function in 
certain problems. It is, however, appropriate to our 
problem because spikes are very rare events, and 
overlaps are typically small—particularly in high 
dimensions over the entire probe. Further, typical 
datasets contain millions of spikes, and only the 
simple form of matching pursuit can be efficiently 
employed. We implemented the simple matching 
pursuit formulation efficiently on consumer GPU 
hardware. Consider the cost improvement matrix 
dC (n, t). When the largest element of this matrix 
is found and the template subtracted, no values of 
dC need to change except those very close in time to 
the fitted template (ts samples away). Thus, instead of 
finding the global maximum of dC, we can find local 
maxima above the threshold criterion and impose a 
minimal distance (ts) between such local maxima. 
The identified spikes can then be processed in parallel 
without affecting each other’s representations.

We found it unnecessary to iterate the (relatively 
expensive) parallel matching pursuit algorithm during 
the optimization of the templates. We obtained similar 
templates when we aborted the parallel matching 
pursuit after the first parallel detection step, without 
detecting any further overlapping spikes. To improve 
the efficiency of the optimization, we therefore applied 
the full parallel template matching algorithm only on 
the final pass, thus obtaining the overlapping spikes.

Benchmarks
First, we timed the algorithm on several large-scale 
datasets. The average run times for 32-, 128-, and 
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384-channel recordings were 10, 29, and 140 min,  
respectively, on a single GPU-equipped workstation. 
These were significant improvements over an 
established framework called KlustaKwik (Rossant et 
al., 2016), which needed approximately 480 channel 
recordings and 10,000–20,000 min when run on 
32- and 128-channel datasets on a standard CPU 
cluster (we did not attempt to run KlustaKwik on 
384-channel recordings).

The significant improvements in speed could 
have come at the expense of accuracy losses. We 
compared KiloSort and KlustaKwik on 32- and 
128-channel recordings using a technique known 
as “hybrid ground truth” (Rossant et al., 2016). To 
create these data, we first selected all the clusters 
from a recording that had been previously analyzed 
with KlustaKwik and curated by a human expert. 
For each cluster, we extracted its raw waveform and 
denoised it with an SVD decomposition (keeping 
the top seven dimensions of variability). We then 
added the denoised waveforms at a different but 
nearby spatial location on the probe with a constant 
channel shift, randomly chosen for each neuron. To 
avoid increasing the spike density at any location 
on the probe, we also subtracted from the denoised 
waveform from its original location.

Finally, we ran both KiloSort and KlustaKwik on 
16 instantiations of the hybrid ground truth. We 

matched ground truth cells with clusters identified 
by the algorithms to find the maximizer of the  
score = 1 − false-positive rate − miss rate, where the 
false-positive rate was normalized by the number 
of spikes in the test cluster, and the miss rate was 
normalized by the number of spikes in the ground truth 
cluster. Values close to 1 indicate well-sorted units. 
Both KiloSort and KlustaKwik performed well, though 
KiloSort produced significantly more cells with well-
isolated clusters (53% vs 35% units with scores > 0.9).

We also estimated the best achievable score following 
manual sorting of the automated results. To minimize 
human operator work, algorithms are typically biased 
toward producing more clusters than can be expected 
in the recording because manually merging an 
oversplit cluster is easier, less time-consuming, and less 
error-prone than splitting an overmerged cluster (the 
latter requires choosing a carefully defined separation 
surface). Both KiloSort and KlustaKwik had such 
a bias, producing between two and four times more 
clusters than the expected number of neurons.

To estimate the best achievable score after operator 
merges, we took advantage of the ground truth data and 
automatically merged candidate clusters (Figs. 3a–c)  
so as to greedily maximize their score. Final best 
results as well as the required number of matches 
are shown in Figures 3d–g (KiloSort vs KlustaKwik, 
69% vs 60% units with scores > 0.9). The relative 
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Figure 3. Hybrid ground truth performance of proposed (KiloSort) versus established (KlustaKwik) spike sorting algorithm. a, 
Distribution of false-positive rates. b, Distribution of misses. c, Total score. d, e, f, Same as a, b, and c after greedy best possible 
merges. g, Number of merges required to reach best score. GT, ground truth.
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performance improvement of KiloSort is clearly 
driven by fewer misses (Fig. 3e), which are likely the 
result of its ability to detect overlapping spikes.

Extension: Post Hoc Template 
Merging
We found that we can further reduce human 
operator work by performing most of the merges 
in an automated way. The most common oversplit 
clusters show remarkable continuity of their spike 
densities (Fig. 4). In other words, no discrimination 
boundary can be identified orthogonal to which the 
oversplit cluster appears bimodal. Instead, these 
clusters arise as a consequence of the algorithm 
partitioning clusters with large variance into 
multiple templates, so as to better explain their total 
variance. In KiloSort, we can exploit the fact that 
the decision boundaries between any two clusters are 
in fact planes (which we show below). If two clusters 
belong to the same neuron, their one-dimensional 
projections in the space orthogonal to the decision 
boundary will show a continuous distribution (Figs. 
4c,d,g,h), and the clusters can be merged. We use 
this idea to sequentially merge any two clusters with 
continuous distributions in their two-dimensional 
feature spaces. Note that the best PCs for each 
cluster’s main channel are much less indicative of a 
potential merge (Figs. 4b,f).

To see why the decision boundaries in KiloSort 
are linear, consider two templates Ki and Kj, and 

consider that we have arrived at the instance  
of template matching in which a spike k needs 
to be assigned to one of these two templates. 
Their respective cost function improvements are  
dC(i, t) = ai

2/bi and dC(j, t) = aj
2/bj, using the 

convention from Equation 4. The decision of 
assigning spike k to one or the other of these 
templates is then equivalent to determining the sign 
of dC(i, t) − dC(j, t), which is a linear discriminant 
of the feature projections

sign(dC (i, t) − dC (j, t)) = sign(ai/bi
½ − aj/bj

½),   (7)

where bi and bj do not depend on the data, and ai,j 
are linear functions of the raw voltage; hence, the 
decision boundary between any two templates is 
linear (Fig. 4).

Discussion
We have demonstrated here a new framework for 
spike sorting of high-channel count electrophysiology 
data, which offers substantial accuracy and speed 
improvements over previous frameworks while 
reducing the amount of manual work required to 
isolate single units. KiloSort is currently enabling spike 
sorting of ≤1000 neurons recorded simultaneously in 
awake behaving animals and will help to enable the 
next generation of large-scale neuroscience. The code 
is available online at https://github.com/cortex-lab/
KiloSort.
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Figure 4. PC and feature-space projections of two pairs of clusters that should be merged. a, e, Mean waveforms of merge 
candidates. b, f, Spike projections into the top PCs of each candidate cluster. c, g, Template feature projections for the templates 
corresponding to the candidate clusters. d, h, Discriminant of the feature projections from c and g (see Eq. 7). 
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NOTESIntroduction
It is well recognized by the scientific community 
that neuroscience has gained a great deal of 
momentum in recent years, with new funding 
agencies and opportunities following suit (Society 
for Neuroscience, n.d.). As a result, data collection 
is occurring at unprecedented rates across a wide 
array of populations and scales: from healthy human 
populations (Mennes et al., 2013; Van Essen et al., 
2013; Sudlow et al., 2015; National Institute of 
Mental Health, n.d.) to those with neurological and 
psychiatric disorders (Jack et al., 2008; Di Martino 
et al., 2014; Wang et al., 2016) to small mammalian 
species (Kreshuk et al., 2014; Kasthuri et al., 2015). 
These vast supplies of data naturally require similar 
advances in technology for organization, processing, 
and visualization and must be multifaceted in order 
to intuitively allow users to harness the full potential 
of their datasets.

An exemplar of such tools is BrainBrowser (Sherif et 
al., 2014), which allows for interactive visualization, 
enabling familiar and comprehensive interaction 
with images. Once a user is well versed in the 
quality and nature of their data, the next step entails 
choosing a tool for analysis to “decode” the raw data 
to try answering specific, and often challenging, 
scientific questions. It has historically been common 
practice for a single research group to pose and 
attempt to answer such questions using their own 
datasets; however, this approach is increasingly 
being questioned as issues with reproducibility and 
statistical power ensue. As a result, data sharing 
(or data publishing) has emerged as an increasingly 
popular practice in neuroscience, allowing researchers 
to pool data and build sufficiently powered datasets 
to develop more impactful and generalizable findings.

Taking this in stride, the Montreal Neurological 
Institute and Hospital recently announced its 
initiative to become the first fully open institute 
(Montreal Neurological Institute and Hospital, 
n.d.) in the hopes that enabling open access to 
various biospecimen, neuroimaging, behavioral, 
and clinical data will propel scientific discovery. 
This sentiment is already widely embraced by the 
data-sharing neuroscientific community, but several 
challenges have become apparent in the pursuit of 
this approach. Among these challenges is developing 
computational infrastructure as a critical backbone 
for such initiatives. Several efforts have been 
launched globally to lower the barrier to data sharing 
and deploying software pipelines for neuroimaging 
data (Rex et al., 2003; Marcus et al., 2006; Scott et 
al., 2011; Das et al., 2011, 2016; Sherif et al., 2014). 
The BigBrain project (Amunts et al., 2013) is a 

key example that demonstrates the full life cycle of 
the open science process: from data collection and 
tool development to the creation of an open access 
dataset for the community to explore and exploit.

This chapter explores the tools and platforms 
developed at the Montreal Neurological Institute 
(MNI) to enhance the goals of reproducibility and 
the proliferation of a wide array of shared datasets. 
It is this infrastructure that aided in the success of 
the BigBrain project, including several other big 
data projects, and will enable similar initiatives to 
be launched in future. The MNI ecosystem is an 
amalgamation of several complementary platforms: 
the Longitudinal Online Research and Imaging 
System (LORIS), a neuroimaging visualization 
tool (BrainBrowser), a descriptive command-
line framework for increasing pipeline portability 
(Boutiques), and a centralized resource for housing 
and analyzing neuroimaging data (CBRAIN).

Data Sharing and Reproducibility
In order to adopt best practices in data sharing, as 
well as the interoperability of platforms leveraged 
to do so, the development of standards helps 
researchers meet minimum requirements and 
greatly improves efficiency. One could consider as 
an example how inefficient the web would be if the 
community did not agree on the HTML standard 
(cf. the recommendations of the World Wide Web 
Consortium). Organizations such as the International 
Conference on Cognitive Neurodynamics (Bjaalie, 
2008) focus resources and hold workshops to help 
develop and improve such standards, and such 
collaborative efforts have continued to gain traction 
and influence in the neuroimaging community. 
A tangible product of this movement can be seen 
in the recent COBIDAS manuscript (published 
by the Organization for Human Brain Mapping’s 
Committee on Best Practice in Data Analysis and 
Sharing) (Nichols et al., 2017), which suggests best 
practices for data sharing and analysis. With this quest 
for interoperability under way, a data organization 
standard, the Brain Imaging Data Structures (BIDS) 
(Gorgolewski et al., 2016), has emerged that enables 
datasets and repositories to be easily interchanged for 
analysis with an increasing array of compatible tools 
(Gorgolewski et al., 2017).

As these standards and their ecosystem spread, 
publishing datasets and acquiring DOIs for other 
research products (e.g., code) accelerates the 
potential for feedback, contribution, adoption, 
and citation of one’s work within the community, 
leading to increased efficiency. Similarly, because 
quantifying the reproducibility of analyses has 

© 2017 Evans
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become increasingly desirable, platforms such as 
CBRAIN (Sherif et al., 2014) and LORIS (Das et al., 
2011), which keep strict provenance records of data, 
tools, and execution instructions, allow tools and 
datasets to be evaluated robustly. Thus, these tools 
encourage a level of transparency and provenance 
tracking in all steps of data management and analysis 
and contribute to the execution of reproducible 
neuroscience.

Developing and adopting standards, as well as openly 
sharing or publishing data and code and other 
research products, all propagate the idea of open 
science. In turn, this process lowers the financial 
and technical barrier for entry to performing high-
quality, big-data neuroscience research.

In the following sections, we will explore several 
data sharing tools (Table 1) that represent various 
pieces of this puzzle. By integrating these tools (as 
well as ensuring interoperability with other similar 
emerging efforts), the requirements for performing 
computational neuroscience are quickly being 
reduced to simply possessing a web browser.

LORIS: data collection and 
management
The platform used to host the BigBrain is LORIS, an 
online databasing resource created and maintained 
by our group at the McGill Centre for Integrative 
Neuroscience. In addition to brain specimen data 
such as BigBrain, LORIS has the functionality to 
store genetic, behavioral, and clinical data and uses 
the aforementioned BrainBrowser tool for visualizing 
neuroimaging data.

The LORIS system (Das et al., 2011, 2016) was 
designed specifically for heterogeneous data 
acquisition, curation, and dissemination and 
serves as the backbone for the Tannenbaum Open 

Science Initiative at MNI. It is a web-based data 
management system, freely available on GitHub 
as open-source software. LORIS has a modular, 
extensible architecture that can support multiple 
data modalities, including demographic metadata 
and behavioral/clinical, neuroimaging, and genomic 
data, and provides a flexible and robust platform for 
many types of multisite studies and projects. LORIS 
also provides a built-in multimodal querying web 
browser for elaborate population subsampling.

BrainBrowser: visualization
BrainBrowser is an HTML5 visualization tool that 
leverages the capabilities of WebGL and provides 
a web-based exploration of volumetric and surface-
based datasets (Sherif et al., 2014). Applications of 
BrainBrowser include quality control and annotation 
of neuroimaging datasets, and it has been included in 
both the LORIS and CBRAIN ecosystems. Several 
features of BrainBrowser are being developed, such 
as tagging, intensity thresholding, and enhanced 
three-dimensional (3D) overlays. In addition, 
new functionalities are being built to enhance the 
user experience and enable the visualization and 
streaming of larger datasets without significant 
performance issues.

CBRAIN and Boutiques: pipeline 
standardization, deployment, 
and high-performance computing 
management
Given high-performance computing (HPC) 
infrastructure, it is still often difficult for researchers 
to effectively deploy software tools in a manner that 
scales for large datasets, as doing so requires knowledge 
about cluster/supercomputer configuration and 
credentials. To meet researchers’ needs in this area, 
the CBRAIN platform provides an interface to both 
tools and HPC and processing capabilities, and it 

Table 1. Data sharing tools that contribute to reproducible neuroscience.

Tool Brief Description URLs

LORIS Platform for data collection, management, quality control, and sharing http://loris.ca/ 
https://github.com/aces/Loris/ 

BrainBrowser Web-based viewer for volumetric and surface-based neuroimaging data https://brainbrowser.cbrain.mcgill.ca 
https://github.com/aces/brainbrowser 

CBRAIN Platform for tool and data management for web-accessible deployment 
in HPC environments

http://mcin-cnim.ca/technology/cbrain/ 
https://github.com/aces/cbrain 

Boutiques Descriptive command-line framework for repeatedly deploying pipelines http://boutiques.github.io/ 
https://github.com/boutiques/boutiques

BigBrain Human brain scan collected at 20 µm isotropic resolution http://bigbrainviewer.acelab.ca/ 
https://mcin-cnim.ca/research/bigbrain/ 
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abstracts the complexities of implementing and 
configuring software. By leveraging the Boutiques 
descriptive framework (Glatard et al., 2015), which 
enables tool users or developers to specify instructions 
for how command-line arguments can be formulated, 
we are able to programmatically create views, validate 
inputs, and launch tasks on HPC resources.

Container environments such as Docker and 
Singularity enable these descriptors to be packaged 
and shipped to resources without manually configuring 
tools. In this way, they can increase the portability and 
scalability of analysis as well as ensure that the exact 
same environment has been reused (albeit to the 
limit of the underlying platform’s lowest layer). The 
CBRAIN platform (Sherif et al., 2014) enables users 
to upload and manage their data from a web browser 
and submit tasks to HPC nodes. Although CBRAIN 
is an open-source project that can be launched by any 
institute, the main Canadian installation operating 
on Compute Canada and Calcul Québec resources 
has more than 500 users from more than 145 sites 
across 22 countries, has registered over 1 million user 
files, and run jobs totaling over 24 million CPU core 
hours to date. Popular workflows and tools such as 
CIVET, FreeSurfer Software Suite, FMRIB Software 
Library (FSL), NITRC’s Neuroimaging Analysis Kit 
(NIAK), NeuroData’s MR Graphs package (ndmg), 
and others have been integrated with CBRAIN, 
enabling users to analyze their data using a variety of 
tools with ease.

BigBrain: brain imaging at an 
unprecedented scale
Enabling an unprecedented look at the human brain, 
BigBrain (Amunts et al., 2013) spans microscopic 
and macroscopic scales. Whereas previously available 
reference brains were restricted to a single scale (e.g., 
whole-brain magnetic resonance imaging in humans 
or electron microscopy of small sections from mice), 
BigBrain is an ultra-high-resolution 3D model of a 
full human brain at 20 μm resolution, coming closer 
to visualizing both spaces than any previous dataset.

BigBrain is free, publicly available, and provides 
the opportunity for considerable neuroanatomical 
insights because it allows features to be extracted 
at high resolution for modeling and simulation. 
Supporting tools such as Atelier3D and BigBrain 
Viewer enable users to explore the BigBrain as 
well as overlay their annotations or segmentations 
for evaluation, refinement, and sharing. Ongoing 
development continues to make these data and 
interactions more accessible for users who wish to 

query, download, or process BigBrain with limited 
computational expertise or resources. These features 
make the BigBrain a unique resource for the benefit 
of the entire neuroscience community.

Workshop Demonstrations
Participants of this workshop will have the 
opportunity to cycle among three demonstrations: 
(1) LORIS and BrainBrowser, (2) CBRAIN and 
Boutiques, and (3) BigBrain. Table 2 summarizes 
suggested preparations to be made by attendees in 
order to get the most out of the workshop. Together 
we will:

1.	Demonstrate LORIS and BrainBrowser as an 
efficient and featureful solution for storing, 
manipulating, managing, and sharing neuroimaging 
data;

2.	Demonstrate CBRAIN and Boutiques as a 
powerful coupling that enables rapidly going from 
tool development or execution on a small scale to 
HPC environments; and

3.	Explore the unique BigBrain dataset through an 
interactive and responsive viewer.
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Introduction
Reference brains are indispensable tools in human 
brain mapping, enabling integration of multimodal 
data into an anatomically realistic standard 
space. Available reference brains, however, are 
restricted to the macroscopic scale and do not 
provide information on the functionally important 
microscopic dimension. We created an ultra-high-
resolution three-dimensional (3D) model of a human 
brain at a nearly cellular resolution of 20 μm, based 
on the reconstruction of 7404 histological sections. 
“BigBrain” is a free, publicly available tool that 
provides considerable neuroanatomical insight into 
the human brain, thereby allowing the extraction 
of microscopic data for modeling and simulation 
(http://bigbrain.cbrain.mcgill.ca). BigBrain enables 
the testing of hypotheses on optimal path lengths 
between interconnected cortical regions or on 
spatial organization of genetic patterning, thereby 
redefining traditional neuroanatomy maps such as 

those of Brodmann and von Economo (Brodmann, 
1909; von Economo and Kosinkas, 1925).

Brain organization on multiple scales and regional 
segregation are key elements for the development 
of a realistic model of the human brain. Multiscale 
organization requires the integration of both 
multilevel and multimodal data, from the level of 
cells with their specific connectivity to the level of 
cognitive systems and the whole brain. Magnetic 
resonance imaging (MRI) enables the study of the 
structure and function of the living human brain, 
with a spatial resolution in the range of 1 mm for 
structural imaging and somewhat larger for functional 
MRI (fMRI) (Roland and Zilles, 1994; Toga et al., 
2006). This resolution is well above the cellular scale 
but has been sufficient for establishing human brain 
atlases to capture information at the level of brain 
areas, subcortical nuclei, gyri, and sulci (Talairach 
and Tournoux, 1988; Roland et al., 1994; Toga et al., 
2006; Evans et al., 2012).

Figure 1. Illustration of tissue and image processing. A, Photographs of the fixed brain: lateral left (top), lateral right (middle), and 
dorsal (bottom) views. B, MRI (coronal view) and C, 3D-reconstructed MRI volume of the fixed brain. D, Histological sectioning.  
E, Blockface image of a section (pseudocolored) resting on the mounting grid that served to align the blockface images. F, Series of 
blockface images. G, Cell-body-stained histological sections with the region of interest denoted (red box). This area is shown with 
higher magnification in H. I, Series of histological images that were 3D reconstructed using the blockface images F and the MRI 
C. Reprinted with permission from Amunts K et al. (2013), Figure 1. Copyright 2013, American Academy for the Advancement of 
Sciences.
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Cytoarchitectonic probabilistic maps enable the 
identification of microstructural correlates involved 
in a specific brain function, as determined by fMRI, 
e.g., during a cognitive task (Eickhoff et al., 2006; 
Zilles and Amunts, 2010). This approach is supported 
by combined physiological and imaging studies 
showing that the response properties of neurons 
change at the border of two areas (Luppino et al., 
1991; Nelissen et al., 2005). Existing human brain 
atlases do not allow for the integration of information 
at the level of cortical layers, columns, microcircuits, 
or cells (Fig. S1, available at http://www.sciencemag.
org/cgi/content/full/340/6139/1472/DC1), as has 
been shown recently for mouse or invertebrate 
brains (Li et al., 2010; Peng et al., 2010). Still, 
fine-grained anatomical resolution is a necessary 
prerequisite to fully understand the neurobiological 
basis of cognition, language, emotions, and other 
processes as well as to bridge the gap between large-
scale neural networks and local circuitry within the 
cerebral cortex and subcortical nuclei.

Creation of a Human Brain Model
We sought to create a human brain model at nearly 
cellular resolution by going considerably beyond 
the 1 mm resolution of presently available atlases, 
taking advantage of recent progress in computing 
capacities and image analysis, and relying on our 
experience in processing histological sections of the 
complete brain. Major challenges include, but are 
not limited to, the highly folded cerebral cortex, the 
large number of areas, considerable variability among 
brains, and the sheer size of the brain, with its nearly 
86 billion neurons and the same number of glial 
cells (Hilgetag and Barbas, 2009; Herculano-Houzel, 
2012). Compared with rodent or invertebrate brains, 
the human brain is extremely complex: For example, 
the volume of a human cerebral cortex is ~7500× 
larger than a mouse cortex, and the amount of white 
matter is 53,000× larger in humans than in mice. 
The recently published dataset of the digitized mouse 
brain with 1 µm resolution has a total uncompressed 
volume data of 8 TB (Li et al., 2010). The creation of 
a volume with similar spatial resolution for the human 
brain would result in ~21,000 TB. The interactive 
exploration (as opposed to simple storage) of such a 
dataset is beyond the capacities of current computing. 
Thus, among other methodological problems, data 
processing becomes a major challenge for any project 
aiming at the reconstruction of a human brain at 
cellular resolution.

To create the brain model, we used a large-scale 
microtome to cut a complete paraffin-embedded, 
65-year-old brain (male) coronally (Fig. 1). We 

then acquired 7400 sections at 20 µm thickness 
and stained them for cell bodies (Merker, 1983). 
Histological sections were digitized, resulting in 
images of maximally 13,000 × 11,000 pixels (10 ×  
10 µm pixel size). The total volume of this dataset 
was 1 TByte. The uninterrupted data acquisition 
time was ~1000 h. To generate a dataset with 
isotropic resolution, we downscaled all images to 20 
× 20 µm to match the section thickness of 20 µm.

Histological processing inevitably introduces 
artifacts, which pose problems at all stages of the 
3D reconstruction process. Defects include rips, 
tears, folds, missing and displaced pieces, distortion 
(shear), stain inhomogeneity, and crystallization. 
We performed both manual and automatic repairs 
to restore the integrity of all sections before the 3D 
reconstruction of the whole brain as a contiguous 
volume (Figs. S2–S4, available at http://www.
sciencemag.org/cgi/content/full/340/6139/1472/
DC1). The repaired sections were registered to 
the MRI, which served as an undistorted frame 
of reference, and further aligned section-to-
section with the use of nonlinear registration. All 
calculations were performed on high-performance 
computing (HPC) facilities within the Compute 
Canada network and were run on Jülich Research 
on Petaflop Architecture (JuRoPA) at the Jülich 
Supercomputing Centre (supplementary material, 
available at http://www.sciencemag.org/cgi/content/
full/340/6139/1472/DC1).

3D Analysis
Figure 2 shows three sample regions from primary 
sensory and motor cortices in the original coronal 
plane and the reconstructed sagittal and horizontal 
planes. Note the smooth contours in the virtual 
sections, confirming the high quality of the 3D 
reconstruction. The images in all three planes at  
20 µm reveal differences in the laminar pattern among 
brain areas and enable an observer-independent 
definition of borders between them (Schleicher et 
al., 2009). To prove the feasibility of our mapping 
approach in higher associative cortices with more 
subtle architectonic differences in between, we 
defined a border between Brodmann area (BA) 10 of 
the frontal pole and BA32 (dorsal anterior cingulate 
area 32) (Fig. 3). Although some artifacts caused 
by residual mismatches between aligned sections 
still exist, the border of interest has been detected 
in the original and the horizontal virtual plane at 
the identical location. Thus, the present “BigBrain” 
model allows for the recognition of the borders not 
only between primary cortical areas (feasible, at least 
to some extent with advanced MRI technology) 
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(Fatterpekar et al., 2002; Walters et al., 2007; Glasser 
and van Essen 2011; Sánchez-Panschuelo et al., 2012) 
but also between higher associative areas. Until now, 
the recognition of the latter borders, based on their 
laminar pattern, was accessible in two-dimensional 
(2D) histological sections and light-microscope 
images, but only at those locations where the cortex 
was cut orthogonal to the pial surface. The latter 
condition is often not fulfilled (Fig. 2A, coronal), 
thus making border definition based on quantitative 
criteria throughout the whole cortical ribbon in 2D 
sections impossible.

The 3D analysis indicates that the relationship 
among cortical folds and borders of cytoarchitectonic 
areas is heterogeneous. Whereas this relationship 
is considerably close for some areas, it seems to be 

less well defined for others. For example, the border 
between the primary motor and somatosensory cortex 
is localized in the fundus of the central sulcus (cs), 
independently from the orientation of the cutting 
plane (Fig. 2A). This is not the case for the primary 
auditory area Te1 (BA41), which is more or less 
restricted by Heschl’s gyrus (HG) in two planes (Fig. 
2C) but has no sulcal landmark in the third plane 
(Morosan et al., 2001). Whereas the sulcal pattern 
is associated with areal borders in other, nonprimary 
areas (e.g., BA35) (Augustinack et al., 2013), the 
border between the primary visual area BA17 (V1) 
and neighboring BA18 (V2) (Fig. 2B) does not 
seem to be related to a sulcus. The same is true for 
the border between BA10 and the neighboring 
cingulate cortex (Fig. 3). This variable relationship 
among cytoarchitectonic borders and macroscopic 

Figure 2. Primary cortical regions in the three planes of section. A, Sensorimotor (BA4, 3a and 3b); B, visual (BA17 [V1] and BA18 
[V2]); and C, auditory cortex (areas Te1.0, Te1.1 as part of BA41) (left column). Overviews of the whole-brain sections in the origi-
nal plane (A) and the 3D-reconstructed horizontal (B) and sagittal (C) planes. Crosshairs denote identical positions within a row. 
Columns I–III show coronal, sagittal, and horizontal planes, respectively. Section numbers are shown in the lower-left corner of 
each panel. D–G, Definition of borders for regions of interest from A to C, based on the Mahalanobis distance (Schleicher et al., 
2009). Corresponding borders are labeled by identically colored arrows (see also supplementary materials and Fig. 3). Reprinted 
with permission from Amunts K et al. (2013), Figure 2. Copyright 2013, American Academy for the Advancement of Sciences.
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landmarks has been analyzed in the past (Amunts et 
al., 2004; Fischl et al., 2008), but not in 3D space.

The spatial dimension, however, is relevant, because 
the directionality of hemispheric growth during 
embryonic and fetal development and the coupling 
of cortical areas via fiber tracts define the spatial 
organization of cortical areas and their connections, 
as well as sulci and gyri in the adult brain. The 
effect of early cortical regionalization on folding 

has been modeled by introducing 
geometric, mechanical, and growth 
asymmetries in the model (Toro 
et al., 2008). Another model 
considered variability between 
brains during ontogeny (Lefèvre and 
Mangin, 2010). A recent study has 
emphasized the strong geometric 
structure of fibers and pathways 
as a result of early development 
(Wedeen, 2012). A subsequent 
study reported that fiber connection 
patterns closely follow gyral 
folding patterns in the direction 
tangential to the cortical sphere 
(Chen et al., 2013). The concept 
of the tension-based morphogenesis 
effect provides a theory of folding 
processes caused by the tension of 
fiber tracts connecting brain regions 
(van Essen, 1997; Kriegsteine 
et al., 2006), whereas other 
theories identify differences in the 
relationship between supragranular 
and infragranular layers (i.e., 
cytoarchitectonic differences) as 
factors shaping cortical folding 
(Amstrong et al., 1991). The 
validation of all these concepts 
requires high-resolution spatial 
models of the human brain for 
testing the underlying hypotheses.

Implications of Findings 
and the BigBrain 
Dataset
The present findings and data on 
the localization of cortical areas 
with respect to gyri and sulci support 
the notion that their topographical 
relationship is not merely a pure 
geometric phenomenon but rather 
the result of an interference of 
developmental processes and the 
internal structure of areas, including 

their connectivity (Zilles and Amunts, 2012). A 
systematic analysis of cortical borders across the 
whole cortical ribbon is urgently needed. The 
variability in this relationship across individuals 
requires the generation of additional BigBrain 
datasets in the future: labor-intensive work that is 
currently under way.

To consider intersubject variability in the present 
dataset, vector fields have been calculated based on 

Figure 3. Definition of a boundary (Schleicher et al., 2009) in the frontal cortex. 
A, Surface rendering of the 3D reconstructed brain (rostral view) with the frontal 
pole removed. B, Coronal section 6704. R, right; L, left. C, 3D reconstructed hori-
zontal (2740) and D, sagittal (3588) sections. Yellow crosshairs are at identical 
position in A–F. E–J, Border definition in B and C. Green, mean profile of mesial 
BA10 (Bludau et al., 2014); blue, mean profile of BA32 (E, F). G, H, Mahalanobis 
distance as a function of position along the cortical ribbon. I, J, Localization of 
significant peaks (p < 0.01) in the Mahalanobis distance (see also supplementary 
materials). Reprinted with permission from Amunts K et al. (2013), Figure 3. 
Copyright 2013, American Academy for the Advancement of Sciences.
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a 400 µm isotropic downsampled volume, to define a 
homeomorphic transformation between the BigBrain 
and the Montreal Neurological Institute and Hospital 
(MNI) space, which embeds information about 
intersubject variability (supplementary material, 
available at http://www.sciencemag.org/cgi/content/
full/340/6139/1472/DC1). Thus, cytoarchitectonic 
or functional probability maps in MNI space can be 
mapped to the BigBrain dataset. We plan to establish 
links to other reference systems so as to combine 
high-resolution cytoarchitectonic data with, for 
example, gene expression maps (Jones et al., 2009), 
neural projections (Kasthuri and Lichtman, 2007), or 
future brain-activity maps (Alivisatos et al., 2013).

The BigBrain dataset will be made publicly available 
to promote the development of new tools for defining 
3D cytoarchitectonic borders. BigBrain allows the 
extraction of parameters of cortical organization 
by enabling measurements parallel to cell columns 
(e.g., cortical thickness, densities of cell bodies per 
column, surface measures). In this way, it provides a 
“gold standard” for calibrating in vivo measurements 
of cortical thickness and other measures.

The BigBrain dataset represents a new reference 
brain, moving from a macroanatomical perspective 
to microstructural resolution. This model provides 
a basis for addressing stereotaxic and topological 
positions in the brain at the micrometer range 
(e.g., with respect to cortical layers and sublayers). 
BigBrain will make it possible to localize findings 
obtained in cellular neuroscience and mapping 
studies targeting transmitter receptor distributions 
(Zilles and Amunts, 2009), fiber bundles (Axer et al., 
2011), and genetic data (Jones at al., 2009; Shen et 
al., 2012). The BigBrain model can also be exploited 
as a source for generating realistic input parameters 
for modeling and simulation. It thus represents a 
reference frame with nearly cellular resolution—a 
capability that has not been previously available for 
the human brain—while considering the regional 
heterogeneity of human brain organization.
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