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Introduction

Data skills and data science are moving away from being specialties that a small minority of 
computational scientists get excited about to becoming central tools used by the bulk of neuroscientists. 
The objectives for this short course are twofold. First, we will teach basic, useful data skills that should 
be in the toolkit of virtually all neuroscientists. Second, we will survey the field of more advanced 
data science methods to give participants an overview of which techniques to use under which 
circumstances.

The course is structured around hands-on programming exercises. Lectures will go hand in hand with 
tutorials. During the day, the focus will be on participants solving many frequently encountered data 
analysis problems themselves, aided by lectures given by leading experts.

The course will cover a broad range of topics. It will start with basic topics, including data cleanup, 
data visualization, and fundamental statistical ideas. It will then progress to everyday problems such as 
fitting functions to tuning curves, adding error bars, and decoding. More advanced topics will include 
generalized linear models, dimensionality reduction, time-series data, and networks. In this way, the 
course should impart a solid understanding of the basic techniques used for neural data analysis.
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The Basics of Neural Coding
How do neurons represent the 
world?
At first glance, there seems to be a world of difference 
between fundamental physiological features of 
neurons, such as firing rates and tuning curves, and 
the quantitative measurements of perception and 
behavior. Yet we know that somehow, neuronal 
processes must underlie all of perception and 
behavior. The goal in this chapter is to indicate how 
this gap can be bridged. We will start by summarizing 
how neurons encode variables in the world.

Historically, we have treated the brain as a “black box” 
that performs probabilistic inference. This suffices if 
one is interested primarily in modeling behavior. 
However, in systems neuroscience, elucidating the 
link between biological and psychological states is 
a central objective. In this chapter, we explore the 
connection between behavior and neural activity 
from the perspective of our normative framework. 
Because we have seen that abundant evidence exists 
for Bayesian optimality at the behavioral level, at least 
in simple tasks, we will ask the following questions:

• How do neurons represent states of the world?

• How do neurons represent likelihood functions?

• How do neurons use these representations to 
calculate posterior distributions?

The Bayesian normative framework offers a means 
of addressing these questions that runs counter 
to the bulk of neural modeling work. Modelers 
often construct neural networks out of simulated, 
more or less biophysically plausible elements, and 
examine their emergent dynamics. In many cases, 
this “bottom-up” approach has the disadvantage that 
the link of these networks to behavior is tenuous or 
only qualitative. In contrast, it is possible to take a 
top-down approach to neural computation, in which 
the construction of a neural model is guided by a 
normative behavioral model. In this approach, the 
search for a neural implementation of a perceptual 
phenomenon is guided simultaneously by behavioral 
and physiological constraints.

In this chapter, we will first computationally describe 
neurons, formalizing them as a generative model 
that produces outputs in response to either direct 
inputs or to a stimulus given to the brain. We will 
introduce the concepts of a neural population and 
neural variability. Using these concepts, we can 
understand how neurons can encode a probability 

distribution and therefore can carry implicit 
knowledge of uncertainty. As an introduction to 
neural modeling and population coding, the present 
chapter is limited in scope. Our main goal here is to 
provide the necessary background information for an 
understanding of the representation of probability at 
the neural level.

A focus on generative models  
of neurons
When we define the generative model with respect 
to world states and sensory observations, we 
conveniently represent the sensory observation as 
a measurement that lives in the same space as the 
stimulus. For instance, we conceive a sound stimulus 
at a particular location as producing an observation 
drawn from a Gaussian distribution centered at that 
location. At the neurobiological level, however, 
the sensory observation is not such a measurement, 
but rather neuronal activity evoked by the sensory 
stimulus: neurons encode the physical stimulus as 
a pattern of spiking activity, and the brain must 
somehow decode this activity in order to infer the 
world state. Here we take a first look at the neuronal 
level, and we consider the mapping from sensory 
stimuli to the spiking activity produced in sensory 
neurons. Once we fully specify how sensory stimuli 
give rise, in a probabilistic way, to neural activities, 
we will be in a position to formulate how neurons 
may encode uncertain stimuli and how the brain can 
infer the state of the world from neuronal activity.

The brain does not have direct access to the sensory 
input, I. Rather, the sensory input activates receptor 
cells such as auditory hair cells or photoreceptors, 
which in turn activate nerve fibers (axons), causing 
electrical impulses (action potentials or spikes) to 
travel into the CNS. These impulses are the data upon 
which the brain makes inferences about the world. The 
activity of neurons in a relevant brain area in response 
to a stimulus, denoted r, constitutes the internal 
representation or observation of that stimulus. Neural 
activity is variable: when the same sensory input I is 
presented repeatedly, r will be different every time. 
This is to the result of stochastic processes that inject 
variability: photon noise, stochastic neurotransmitter 
release, stochastic opening and closing of ion channels, 
etc. Thus, a probability distribution p(r | I) is needed 
to describe the neural activity.

Since activity r is variable even when the input I is 
kept fixed, and I is variable even when the stimulus s 
is kept fixed, it follows that r is variable when s is kept 
fixed, even if the nuisance parameters are not variable. 
This neural variability is captured in a probability 
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distribution p(r | s). The main goal of this chapter is 
to define and motivate mathematical descriptions of 
p(r | s). We would like you to think of r as the spiking 
activity in early sensory cortex, such as primary visual 
cortex area V1. The stimulus is a basic feature in the 
outside world, such as position, orientation, etc.

Neurons as Mappings from an 
Input to an Output
There are many ways of modeling neurons, ranging 
from detailed biophysical models of the structure and 
function of individual ion channels, to highly abstract 
models of neurons as information processing units. 
For our purposes, we treat neurons as simple input–
output systems (Fig. 1). A neuron receives inputs from 
a group of other neurons. Over the relevant time scale, 
it receives a number of spikes from each of the input 
neurons and produces (or emits) a number of output 
spikes. A neuron is thus characterized by its transfer 
function, spikes = f(input spikes).

We will work toward asking the question, “How 
could a given computation be implemented?” and 

not so much, “Which specific neural circuits actually 
implement that computation?” That being said, 
for making testable physiological predictions, it is 
clearly important to focus on a particular species 
and brain area. However, even so, the localization 
of the computation is of secondary interest to the 
mechanisms of the computation. Our goal is to 
understand potentially ubiquitous neural processing 
mechanisms rather than to model a specific circuit.

Tuning Curves
The concept of “tuning curves” became popular 
with the pioneering experiments of Hubel and 
Wiesel in the late 1950s (Hubel and Wiesel, 1959). 
They recorded from the V1 region in cat while 
stimulating with illuminated oriented bars (Fig. 2a). 
They found that the response of a cortical neuron 
was systematically related to the orientation of the 
stimulus. There exists one orientation of the stimulus 
where the neuron fires most rapidly: the neuron’s 
preferred orientation. For other orientations, the 
activity decreases with increasing angle relative to 
the preferred orientation. A plot of the mean firing 

Figure 1. Biology of a neuron: neurons as input–output devices. Neurons transmit electrical impulses (action potentials, aka 
spikes) away from their cell bodies, along output structures (axons). In a majority of cases in the mammalian nervous system (the 
so-called chemical synapse), when the spike reaches the end of an axon (axon terminal), it induces the release of neurotransmit-
ter molecules that diffuse across a narrow synaptic cleft and bind to receptors on the input structure (dendrites) of the post-
synaptic neuron. The effect of the transmitter released by a given input neuron may be inhibitory (reducing the probability that 
the postsynaptic neuron will fire spikes of its own) or excitatory (increasing the probability that the postsynaptic neuron will fire), 
depending on the transmitter released and on the receptor that binds it.

Each neuron receives input from a (typically large) number of other neurons. For simplicity, this figure shows a single postsynaptic 
neuron receiving just four inputs. Each of the input neurons fires a number of spikes over a relevant time interval. These result in 
neurotransmitter release onto our neuron of interest. The postsynaptic neuron integrates these inputs and produces an output 
spike train of its own. For our purposes, we will simplify the modeling of the neuron to modeling the number of output spikes, 
either in response to a stimulus or in response to the numbers of input spikes it receives from other neurons.
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rate (e.g., spikes per s) as a function of angle describes 
the neuron’s tuning curve. In the case of many visual 
neurons, this is a unimodal function (Fig. 2b).

Tuning curves can have a wide variety of shapes, 
depending on the species, the brain area, and the 
stimulus features. For example, in motor cortex, we 
find that neural responses influence the direction 
of movement of the hand of a monkey. Instead of 
narrow unimodal functions, we usually find broad 
tuning curves. In auditory cortex, the frequency 
of the sounds stimulus affects the firing rate of the 
neuron in a complex tuning curve. And in the 
hippocampus, a region of the mammalian brain 
involved in memory acquisition and navigation, there 
is a two-dimensional representation of positions. In 
experiments with rats, firing rates of hippocampal 
neurons depend on both x and y positions. The 

important thing in all these cases is that reasonably 
simple tuning curves characterize the mapping from 
sensory stimuli to the activity of neurons.

Bell-shaped tuning curves
When modeling tuning curves, scientists usually use 
simple functions. When we model tuning curves 
like those found for neurons in V1, we typically use 
bell-shaped tuning curves. Because rotating a bar by 
180 degrees leads to the same response, we usually 
use circular Gaussian functions (Von Mises function,  
Fig. 3a). By contrast, when scientists deal with 
auditory stimuli of varying amplitude, tuning curves 
typically show increasing activities. Piecewise linear 
functions can be used for such scenarios (Fig. 3b). 
We will now consider some tuning curve functions 
in more detail.

a

c

b

Figure 2. Tuning curves. a, Tuning curves for orientation in macaque primary visual cortex (V1). The dashed line represents the 
spontaneous firing rate. Reproduced from Shapley et al. (2003), their Fig. 10. Copyright 2003, Cell Press. b, Normalized tuning 
curves for the direction of air current in four interneurons in the cercal system of the cricket. Reproduced from Theunissen and 
Miller (1991). Copyright 1991, the American Physiological Society. c, Tuning curves for the width of the groove in a tactile grating 
in macaque second somatosensory cortex (S2). Different curves are for different magnitudes of the contact force (expressed as 
mass). Reproduced from Pruett et al. (2000), their Figs. 3A and 4A. Copyright 2000, the American Physiological Society.
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It should be noted that, even though the tuning 
curve might look bell-shaped or even be described by 
a Gaussian function, it is certainly not a probability 
distribution. That is, it is not normalized and generally 
has no direct relation to probability distributions.

In V1, neurons are tuned to the orientation of a 
visual stimulus, such as a bar. The tuning curve 
is typically unimodal and symmetric around the 
preferred orientation. Furthermore, the mean spike 
rate is the same at any angle and at that angle plus 
or minus 180 degrees (as the bar stimulus is identical 
when rotated by 180 degrees). A common way to 
describe such a curve is to use a Von Mises function 
(also called a circular Gaussian) (Fig. 3a):

fi(s) = gek(cos (s – si) – 1) + b.  (1)

Here, κ is called the concentration parameter. The 
higher κ, the more narrowly the neuron is tuned. 
This function has been used to fit tuning curves over 
orientation, such as those in Fig. 2a.

Monotonic tuning curves
The tuning curve describes a neuron’s mean activity 
as a function of the presented stimulus. Tuning 
curves are usually bell-shaped or monotonic. Various 
mathematical functions have been used to model 
them. A non–bell-shaped tuning curve occurs in 
some neurons. An example is a monotonic tuning 
curve such as those shown in Fig. 2b. Several 
possibilities can be considered. The simplest form is 
a rectified linear function:

 fi(s) = [gs + b]+ , (2)

where g is positive for monotonically increasing, and 
negative for monotonically decreasing tuning curves. 

Note that these neurons do not truly have a preferred 
stimulus (for the monotonically decreasing tuning 
curves, you could say it is 0, but that does not help 
much). A clear problem of a rectified linear function 
is that it is unbounded: as s increases, f(s) does not 
stay below any maximum value. This is unrealistic, 
since neurons have a limited dynamic range and 
cannot fire more than a certain number of spikes per 
second, no matter how large s becomes.

It may come as a surprise that the exact shape of the 
tuning curve is not critical to most of the theory we 
will discuss here. The theory will be general and work 
for tuning curves of any shape. However, the shape 
is of great practical relevance, since it is the starting 
point of any implementation of neural population 
activity. Moreover, we will occasionally use a specific 
functional form to allow for analytical calculations.

More detailed models for the tuning 
curve
It is possible to describe the mapping from stimulus s to 
the output of a V1 neuron in much more detail. Instead 
of describing the world state as a scalar orientation, 
we can describe the entire two-dimensional image 
as a vector I = (I1, I2,…Im), where m is the number 
of pixels. Figure 3 shows examples of images of an 
oriented bar similar to the ones used by Hubel and 
Wiesel (1959). As the orientation of the bar changes, 
the entire image changes, so we can consider I to be a 
function of s and write it as I(s).

Each neuron has a spatial filter, which means that it 
will respond positively to light in certain locations in 
the image and negatively to light in other locations. 
In other words, the neuron associates a weight, 
positive or negative, with every pixel in the image. 
We call this filter or weight vector w, and it can itself 
be visualized as an image. A typical V1 filter is shown 
in Figure 3; this is built so that if the image contains 
an orientation at the location of the filter, then the 
neuron will respond strongly. The neuron’s average 
spike count in response to the image is then a sum of 
the pixel intensities multiplied by the corresponding 
weights:

f (s) = w1I1 (s) + w2I2 (s) + … + wmIm (s) = w • I (s).   (3)

Because orientation is varied, this produces a tuning 
curve similar to the one in Figure 3. Spike counts 
would still be generated from a Poisson variability 
with mean f(s), just like in the main text. The model 
of tuning curves in Equation 3 is called a “linear 
model,” because f(s) is a linear combination of image 
intensities; it is not a linear function of orientation s.  

Stimulus Stimulus 

-   0 2 

Von Mises Piecewise linear a b 

Figure 3. Model tuning curves. Two types of functions are 
commonly used to model tuning curves: bell-shaped (a) or 
monotonic (b). The stimulus ranges are merely illustrative. 
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There are many ways to extend this model. For 
instance, one can postulate that f(s) is a nonlinear 
(but monotonically increasing) function of w × I(s). 
The resulting family of models is called LNP models, 
where L stands for linear (Eq. 3), N for nonlinear, and 
P for Poisson.

Variability
So far, we have discussed a neuron’s selectivity: which 
stimuli it spikes to or “likes,” as described by its tuning 
curve. However, if we view neuronal activity as 
resulting from a statistical generative model, we need 
to specify both neurons’ stimulus-dependent activity 
as well as their (also potentially stimulus-dependent) 
variability. For an identical, repeated stimulus, how 
much variation exists in the response from trial to 
trial? This variability will be critical for performing 
inference at the neural level. Here we will focus on 
Poisson variability.

Poisson variability
Poisson variability (Fig. 4a) is defined for a spike 
count, e.g., the number of spikes elicited by a flash 
of light that is presented for 10 ms. Spike count is a 
nonnegative integer; it can be 0. Suppose a stimulus 
s is presented, and the mean spike count of a neuron 
in response to this stimulus is λ = f(s), which does not 
need to be an integer. λi is also called the “rate” of 

the Poisson process. Then the actual spike count will 
vary from trial to trial, around λ. For every possible 
count r, we seek its probability. A “Poisson process” 
(or in our context, a Poisson spike train) is defined 
as follows. Imagine a fixed time interval, and divide 
it into small bins (e.g., 1 ms each). We assume that 
each bin can contain 0 spikes or 1 spike, and that 
the occurrence of a spike is independent of whether 
and when spikes occurred earlier (it is sometimes said 
that a Poisson process “has no memory”). It can be 
proved in such a case (see Sample Problems) that 
for a Poisson process with mean λ, the probability of 
observing a total of ri spikes on a single trial is given 
by the Poisson distribution:

 1  
p(ri | λi) = —  e–λiλi

ri . (4)
 ri!  

Here, r! (read “r factorial”) is defined as 1 × 2 × 3 × … × r.

The Poisson distribution is shown for λ = 3.2 and  
λ = 9.5 in Figure 4b. Keep in mind that, while r is an 
integer, λ can be any positive number. For low λ, the 
distribution is less symmetrical than for high means. 
In fact, at high mean firing rates, the distribution 
looks roughly Gaussian. However, note that the 
Poisson distribution is discrete, so drawing it as a 
continuous curve would be a mistake.

Figure 4. Poisson variability. a, Hypothetical spike trains evoked in the same neuron by the same stimulus, repeated four times 
(trials). Not only do the spike times differ between trials, but the spike counts also differ. b, Histograms of the spike count of a 
single Poisson neuron, with different mean rates. c, In a Poisson process, the variance is equal to the mean. This is illustrated by 
simulating 100 spike counts for each value of the mean and calculating the variance. Variance is plotted against the mean. The 
diagonal is the unity line. 
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An important property of the Poisson distribution is 
that the variance of a Poisson-distributed variable is 
equal to its mean: if the mean firing rate of a Poisson 
neuron is λ, then the variance of this neuron’s spike 
count is also λ (Problem 2 and Fig. 4c). The ratio 
of the variance to mean of a neuron’s spike count is 
called the “Fano factor”; for a Poisson process, the 
Fano factor is 1.

For our generative model of neural firing, we need to 
specify the probability of a firing rate, r, as a function 
of the stimulus, s. To do this, we note that λ is a 
function of the stimulus: it is the height of the tuning 
curve (the neuron’s average firing rate) at stimulus 
level s. Therefore, in terms of the stimulus, Equation 4  
can be written as

 1  
p(ri | s) = —  e–fi(s) fi (s)ri . (5)
 ri!  

This is the form we will use frequently. Note that 
the neuron’s tuning curve, fi(s), plays a role in the 
neuron’s variability, but that it was not necessary 
to commit to any specific tuning curve shape to 
derive the form of the variability. In other words, 
Poisson variability can go together with any type of 
tuning curve, whether bell-shaped or monotonic. It 
is a common mistake to confuse the tuning curve 
with variability. This is understandable when one 
compares plots like those in Figures 3a and 4b, but 
the meaning of the axes in these plots is completely 
different. The relationship between the tuning curve 
and the variability in firing is illustrated in Figure 5.

It may at first appear that stimuli that evoke higher 
firing rates will be less informative, because higher 
firing rates are associated with more variability (e.g., 

spike rate variance = mean spike rate for a Poisson 
process). However, higher firing rates in fact convey 
more information. To see this, consider the mean as 
the signal and the standard deviation (SD) of the 
variability as the noise. Then the noise (square root of 
the variance) equals the square root of the mean. The 
signal-to-noise ratio therefore increases as the square 
root of the mean. We will later make this statement 
more precisely for the case of a population of neurons.

Numerical example
The rate of a Poisson neuron is λI = 3.2. What is the 
probability that this neuron is silent? That it fires  
1 spike? That it fires 10 spikes?

Solution: From Equation 4, the probability that the 
neuron fires 0 spikes is 1/0! × exp(–3.2) × 3.20 = 
exp(–3.2) = 0.04, or 4%. The probability that the 
neuron fires 1 spike is 1/1! × exp(–3.2) × 3.21 =  
exp(–3.2) × 3.2 = 0.04 = 0.13, or 13%. The 
probability that the neuron fires 10 spikes is 1/10! × 
exp(–3.2) × 3.210 = 0.001, or 0.1%.

More realistic models
Poisson variability is reasonably physiologically 
realistic, but with a number of caveats. Real Fano 
factors of cortical neurons are often close to 1, but can 
take values as low as 0.3 and as high as 1.8. Another 
unrealistic aspect of Poisson variability is that it assumes 
that spikes are independent of previous spikes. This is 
clearly not true: after a neuron fires a spike, it cannot 
fire again for a short duration, called the “refractory 
period” (typically several milliseconds). Thus, during 
that period, the probability of firing a spike is 0, 
contradicting the way we defined the Poisson process. 
There exists a literature that extends the models we 

discuss here to more realistic 
models, but it is beyond the 
scope of this chapter.

The origin of variability
The origin of neural variability 
is unknown and likely a 
combination of factors. Part 
of it has an external origin: 
when the same value of a visual 
stimulus variable is presented, 
this might not mean that the 
retinal image is identical. In 
many experiments, stimulus 
reliability is controlled by 
manipulating the amount 
of external noise. In those 
cases, the retinal image will 
be different even though 

Figure 5. Poisson firing rate variability. The tuning curve (blue) shows mean spikes per 
second evoked by the stimulus. The shaded gray region illustrates the variability in firing 
rate upon the administration of repeated, identical trials.
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the stimulus variable of interest is the same. Ideally, 
variability is measured under repeated presentations 
of the exact same physical image. This has been done 
in area MT (middle temporal) in the macaque, and 
response variability was still found. This variability 
can be attributed to internal factors. Internal sources 
of variability include neurotransmitter release and 
synaptic failure, both of which are stochastic processes.

Key points
A neuron’s response to a particular stimulus varies 
from trial to trial. Such variability or “noise” can 
be described by a probability distribution: Poisson 
or Gaussian are common choices. In real neurons, 
variance is approximately proportional to the mean. 
The origin of variability is not yet understood.

Population Codes
Neurons are often part of populations that respond 
to the same state-of-the-world variable. Population 
activity is described through the tuning curves of 
individual neurons as well as their joint variability. 
“Neural populations” are groups of neurons that are 
all selective for a particular stimulus feature. The 
neurons in a population are often but not necessarily 
located close to each other in the brain, and they often 
have similarly shaped tuning curves but with different 
preferred stimulus values; a population consisting of 
neurons with the identical tuning curve would not be 
particularly useful, since all neurons would “cover” the 
same restricted region of stimulus space.

A “population code” refers to the stimulus-evoked 
firing rates of a population of neurons with different 
tuning curves. Population codes are believed to be 
widespread in the nervous system. For instance, in 
areas V1 and V4 of the macaque, population codes 
exist for orientation, color, and spatial frequency. In 
the hippocampus in rats, a population code exists 
for the animal’s body location. The cercal system of 
the cricket has a population code for wind direction. 
Secondary somatosensory area (S2) in the macaque 
has population codes for surface roughness, speed, 
and force. The post-subiculum in rat contains a 
population code for head direction. Primary motor 
cortex (M1) in macaque uses populations coding for 
direction of reach. Even abstract concepts such as 
number appear to be encoded by population codes in 
the prefrontal cortex.

The firing rates of the set of neurons depicted in 
Figure 2a form a population code; in fact, the cricket 
cercal system population consists of exactly the four 
neurons shown there. An idealized example with 
Gaussian tuning curves is drawn in Figure 6a. In this 

example, we show 10 neurons with preferred stimuli 
equally spaced on an interval. Such equal spacing is an 
idealization just as an exact Gaussian shape is. Yet, this 
is usually how a population code is simulated. We call 
the preferred stimuli s1, …, sN, where N is the number 
of neurons in the population. The tuning curves differ 
only in their preferred stimuli, so Equation 1 is valid; 
fi(s) is the tuning curve of the neuron with preferred 
stimulus si. The set of tuning curves of all neurons in 
the population, {f1(s), …, fN(s)}, is denoted as a vector-
valued function f(s).

Just as we modeled the variability of a single neuron’s 
spike count, we can model the variability of the entire 
population. We denote by r the vector of spike counts 
of the neurons in the population: r = (r1, …, rN). 
This is also called a “population pattern of activity.” 
The probability of observing a pattern of activity r in 
response to a stimulus s is denoted as p(r | s). The 
mean population pattern of activity over many trials 
is a smooth curve that resembles the tuning curve 
(Fig. 6b). Whereas the tuning curve shows the mean 
activity of one neuron in response to different stimuli, 
the population pattern shows the mean activity of 
every neuron in response to a single stimulus.

The vector notation for population activity is simply 
for convenience; it does not have a deeper meaning. 
One could just as well write r1, …, rN wherever r 
appears (and similarly for f), but this would make 
equations unnecessarily cluttered. Within the vector 
r (or f), the ordering of the neurons has no meaning 
at all. We will typically order them by their preferred 
stimulus, only to make visualizations of population 
patterns like the one in Figure 6c look sensible.

In analogy to the single-neuron case, we now discuss 
Poisson and Gaussian variability in the population.

Independent Poisson variability in a 
population
The simplest assumption we can make about the 
population is that for a given stimulus, the responses 
of the neurons are drawn independently from each 
other, and that each response follows a Poisson 
distribution (but with its own mean). If random 
variables are independent from each other (in this 
case, for a given stimulus), their joint probability 
distribution is the product of the individual 
distributions (again for a given stimulus). This means 
that we can write the population variability as

 N

p(r | s) = p(r1 | s)…p(rN | s) = Πp(ri | s). (6)
 i=1
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The last equality is just a notation for the product. 
Now we substitute Equation 5 for p(ri | s):

 
N  1  

p(r | s) = Π —  e–fi(s) fi (s)ri  (7)
   ri!   . i=1

This is the probability distribution of independent 
Poisson variability. Figure 6c shows patterns of 
activity drawn from this distribution, if tuning curves 
are Gaussian. In Problem 3, you will simulate such 
patterns yourself. Spike count is plotted as a function 
of the preferred stimulus of the neuron. Each dot 
corresponds to the activity of one neuron. We could 
have plotted them in any order, but visually, it is most 
insightful to order the neurons by their preferred 
stimulus. Each pattern in Figure 6c is the population 

analog of one spike count in the histograms of Figure 4b.  
For the population, it is impossible to draw the 
histogram, since r is now an N-dimensional vector, 
and we cannot draw histograms in N dimensions. 
Nevertheless, we can still calculate the probability of 
each pattern of activity like those in Figure 6c.

Numerical example
We assume a population of 9 independent Poisson 
neurons with Gaussian tuning curves and preferred 
orientations from –40 to 40 in steps of 10. The 
tuning curve parameters have values g = 10, b = 0, 
and σtc = 20. A stimulus s = 0 is presented to this 
population. What is the probability of observing a 
pattern of activity r = (3, 1, 7, 5, 8, 8, 7, 0, 2)?
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Figure 6. Neural population. a, Idealized bell-shaped tuning curves of a population of 18 neurons responding to an arbitrary 
periodic stimulus. Preferred stimuli are equally spaced. b, Mean activity of all neurons in the population in (a), ordered by their 
preferred stimulus, in response to a stimulus value of 90. c, Six single-trial patterns of activity drawn from an independent Poisson 
population with Gaussian tuning curves and gain g = 10.



19

NOTES

The Basics of Neural Coding

© 2016 Kording

Solution: Under our assumptions about the tuning 
curves, the mean activity of the ith neuron is  
fi(s = 0) = 10 × exp(–si

2/800). Across the population, 
this gives mean activities (1.3, 3.2, 6.1, 8.8, 10, 8.8, 
6.1, 3.2, 1.3). Then from Equation 7:

p(r | s = 0) = e–1.3 × 1.33/3! × e–3.2 × 3.21/1! ×  … ×  e–1.3 
× 1.32/2! = 2.4 × 10–9.

This number is striking because it is so small. How 
can it be that a pattern of activity that is not so 
different from the mean activities is so improbable? 
The reason is that this is one out of a huge number 
of possible patterns of activity. To get an idea of this 
number, let’s do a rough estimation. Let’s suppose 
that it is nearly impossible that any individual 
neuron will be firing 20 or more spikes, given the 
mean rates. Then, each neuron’s activity can take 20 
values (including 0). There are 9 neurons, and they 
are independent of each other, so the total number of 
patterns is 920 = 1.2 × 1019. If each of these patterns 
had been equally likely, each would have had a 
probability of 1/(1.2 × 1019) = 8.3 × 10–20. Compared 
with this, the probability of the pattern we calculated 
above is actually very large! We conclude that it is 
expected that in an independent Poisson population, 
each pattern has a low probability, and the more 
neurons, the lower this probability. If the neurons 
were Poisson but not independent, fewer patterns 
would be possible, and the probability of a given 
pattern would tend to be higher.

The patterns in Figure 4 make clear that an individual 
pattern of activity is roughly shaped like the Gaussian 
tuning curve, but with a different x-axis: preferred 
stimulus as opposed to stimulus. In fact, if one were 
to average over many patterns of activity elicited by 
the same stimulus s, one would get a mean activity 
described by the set of numbers fi(s) for i = 1,…, N.  
Looking back at Equation 1, we see that we can plot 
fi(s) as a function of the preferred stimulus si, with s 
being fixed. This is a Gaussian shape, just like fi(s) 
was a Gaussian shape as a function of s, with si being 
fixed. In other words, the mean population response 
to one repeated stimulus has the same shape as the 
mean response of a single neuron as a function of 
the stimulus. This is true for any tuning curve in 
which si and s can be swapped without affecting the 
functional form, such as Von Mises curves (Eq. 1).

Sample Problems
Problem 1
Why are monotonic tuning curves always over 
magnitude-type variables such as width, and not over 
circular variables such as orientation?

Problem 2
Are the following statements true or false? Explain.

a) The closer a stimulus is to the preferred stimulus 
of a Poisson neuron, the lower is the response 
variance of this neuron when the stimulus is 
presented repeatedly.

b) When neurons have similar and equally spaced 
tuning curves, then the mean population pattern 
of activity in response to a stimulus has the same 
width as the tuning curve.

c) When neurons have similar and equally spaced 
tuning curves, then the neural posterior has the 
same width as the tuning curve.

d) The variance of a single neuron responding to a 
stimulus can be determined from the value of its 
tuning curve at that stimulus value.

e) In any population, the variability of population 
activity is known if one knows the variability of 
each single neuron.

Problem 3
We assume a population of 9 independent Poisson 
neurons with Gaussian tuning curves and preferred 
orientations from –40 to 40 in steps of 10. The tuning 
curve parameters have values g = 10, b = 0, and σtc = 20.  
A stimulus s = 0 is presented to this population. What 
is the probability that all neurons stay silent?

Problem 4: Properties of the Poisson 
distribution
a) Prove that Equation 4 implies that the mean 
value of ri is indeed fi(s). Recall that the mean of ri 

is defined as
 ∞
⟨ri⟩ = Σ ri p(ri | λi).
 ri=0

You will also need to use a variant of Equation 4.

b) Prove that Equation 4 implies that the variance of 
a Poisson process is equal to its mean. Recall that 
the variance of ri can be written as 

  ∞
Var (ri) = ⟨ri

2⟩ – ⟨ri⟩2 = Σ ri
2 p(ri | λi) – ⟨ri⟩2

 ri=0

Problem 5
In a population of independent Poisson neurons 
with Gaussian tuning curves, examine the claim that  
Σi fi(s) is more or less independent of s.
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Problem 6
Prove that independent Poisson variability, Equation 7, 
is a special case of Poisson-like variability:

a) Rewrite Equation 7 in the form of Equation 4

b) Verify that Equation 4 holds for h(s) found in  
part (a).

Advanced Problem 7
In a sequence of R independent events with two 
possible outcomes, the probability of having one of 
both outcomes appear r times is described by the 
binomial distribution,

 R λ λ
p(r) = (  ) ( —)r ( 1 – — )R–r

.
 r R R

Here, (Rr) is the binomial coefficient,
R!

r! (R – r)! . Prove 
that the Poisson distribution is a good approximation 
of the binomial distribution if the sequence is long  
(R large) and the probability of the outcome of 
interest (λ/R) is small.

Advanced Problem 8
Prove that for large means, a Poisson distribution 
resembles a Gaussian distribution with variance 
equal to the mean.

Advanced Problem 9
Show that in the limit of large κ, the Von Mises 
function (Eq. 1) becomes the Gaussian function. 
Hint: in this limit, the Von Mises function becomes 
very strongly peaked around si, and we can use the 
Taylor series expansion cos(x) ≈ 1 − x2/2.

Problem 10
Consider a population of neurons with known tuning 
curves, subject to independent noise.

a) If the noise is drawn from a normal distribution 
with fixed variance, prove that the maximum-
likelihood decoder is equivalent to the template-
matching decoder.

b) If the noise follows a Poisson distribution, tuning 
curves are Gaussian with zero baseline, and  
Σ fi (s)
 i

is independent of s, to which decoder is 
the maximum-likelihood decoder equivalent? 
Prove your answer.

Problem 11
Show that when neural variability is independent, 
and Poisson tuning curves are Von Mises function 
with zero baseline, and Σ fi (s)

 i
 is independent of s, 

the maximum-likelihood decoder is equivalent to 
the population vector.

Problem 12
A Bayesian observer decodes a stimulus s from a 
neural population under a cost function, C (ŝ,s).

a) Prove that if the cost function is the squared error, 
the Bayesian estimate is the mean of the posterior 
distribution.

b) Derive the Bayesian estimate if the cost function 
is the absolute error, C (ŝ,s) = |ŝ – s|.

c) What is the cost function corresponding to the 
maximum–a posteriori decoder?

Problem 13
In a discrimination task, an observer decides on 
each trial whether a stimulus has value s1 or s2. The 
stimulus elicits activity r in a neural population with 
tuning curves fi(s). Assume that r is drawn from an 
independent Poisson distribution and that Σ fi (s)

 i
is 

independent of s.

a) Calculate the log likelihood ratio and prove that 
the maximum-likelihood decision is based on the 
sign (positive or negative) of the inner product of 
r with a vector w. Find an expression for the ith 
component wi in terms of the numbers fi(s1) and 
fi(s2).

b) What does the absolute value of w × r mean to 
the observer? Explain.

c) Compute the mean and variance of w × r from 
part (a) when r is generated by s1, and when r is 
generated by s2. “Sensitivity” or discriminability 
is defined as the difference between both means 
divided by the square root of the mean of both 
variances. Find an expression for discriminability 
in terms of the sets of numbers fi(s1) and fi(s2) (for 
all i).
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Lab Problems
Problem 14: Simulating a Poisson process
a) Define 1000 time points. At each time point, 

determine whether a spike is fired by generating 
a random number that leads to a “yes” probability 
of 0.0032 (this corresponds to a mean of 3.2 
spikes over all 1000 time points). Count the total 
number of spikes generated. Repeat for 10,000 
trials. Plot a histogram of spike count and compare 
with Figure 4a. Compute the Fano factor.

b) Repeat for a mean of 9.5 spikes. Compare the 
resulting histograms with Figure 4b.

c) If your simulation software has a built-in command 
to randomly generate numbers according to a 
Poisson distribution (e.g., poissrnd in MATLAB), 
repeat steps (a) and (b) using this command.

d) A property of a Poisson process is that the time 
between two subsequent spikes (interspike 
interval, denoted here Δt) follows an exponential 
distribution: p(Δt) = exp(–Δt/λ)/λ, where λ is 
the mean of the Poisson process. Verify this by 
plotting the histogram of interspike intervals 
across all Poisson spike trains you generated 
in (a) and comparing it with the exponential 
distribution.

Problem 15
DatasetReal (downloadable at http://klab.smpp.
northwestern.edu/wiki/images/1/17/DatasetReal.
mat) contains recordings from 35 neurons in the 
primary motor cortex and ~200 trials, roughly half of 
which were recorded while the monkey was moving 
left, while the others were recorded while the monkey 
was moving right (courtesy of the Miller Lab). Let’s 
assume a Gaussian distribution of spike counts, given 
the direction of movement.

a) Calculate for each neuron the average firing rates 
for left and right movement and the associated 
SDs.

b) Do all neurons have similar average firing rates for 
left and right movements? Which of the neurons 
exhibit a significant difference between left and 
right movement?

c) What would be a good measure for strength 
of tuning of a neuron? Which neuron has the 
strongest tuning to direction?

d) If you decoded movement direction based on just 
this neuron, how well would you do on average?

e) If you combined data from all neurons using a 
naive Bayesian approach, how good could you be 
at solving the problem?

f) Is this a difficult problem? Could it have real-world 
relevance? Can you think of an application of 
naive Bayesian decoding that is more exciting?

 1 1
p(right | spikes)∞— p(right)Π  e (spikesi =μright,i)2/(2σ2

right,i)

 Z σright,i

This same approach of assuming that all cues are 
independent, even when they are not, is used in 
many domains of machine learning. A naive Bayesian 
approach is often used to solve real classification 
problems and is, for certain problems, a competitive 
machine learning technique. It is particularly strong 
when there are very little available data.
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Introduction
In this chapter, we introduce the standard spike-
wrangling techniques that any neuroscientist should 
be familiar with. Specifically, we illustrate how to 
build programs that can analyze and display the 
information contained in spike trains (Rieke 1999). 
We start by showing how to represent and graph the 
spiking activity of a single neuron in a single train 
and then build toward creating a raster plot that 
depicts the spiking information of a single neuron 
over multiple trials. From there, we develop another 
useful representation of the information in a spike 
train: the peristimulus time histogram (PSTH). We 
also cover how to compute latency to first spike and 
how to represent this joint information as a heat map. 
Throughout, we use this simple but highly relevant 
example from neuroscience to illustrate key concepts 
in programming, such as the perils of hard coding or 
the use of for loops.

We will show how to characterize spike trains in 
several relevant languages, such as MATLAB and 
Python (Peters 2004), and introduce the canonical 
data analysis cascade, which is—to the best of our 
knowledge—the most efficient way to organize the 
processing of large-scale data analysis projects.

Neurons
Neurons are peculiarly social. Some neurons are 
veritable chatterboxes, some are rather quiet, and 
some are even trying to silence others. Some neurons 
prefer to talk only to close neighbors, whereas others 
send messages to comrades in far distant regions. 
In this sense, all neuroscience is necessarily social 
neuroscience. Of course, neurons don’t communicate 
with each other via spoken words. Rather, they 
use action potentials—also known as voltage 
“spikes”—as their universal means of long-distance 
communication. Every neuron sends spikes in its 
own idiosyncratic fashion, and every neuron uses its 
dendritic arbor to receive signals from other neurons 
in turn. The interface points between neurons are 
known as “synapses.” A neuron may have many 
points (anywhere from 1 for neurons in the retina 
to >100,000 for neurons in the cerebellum) of 
communication—synapses—with other neurons. 
Although spikes are not exchanged directly (the 
signal crossing the synapse is chemical in nature in 
almost all synapses), it is the voltage spikes that drive 
the neural communication machinery. Specifically, 
spikes traveling down the axon of the presynaptic 
neuron trigger the chemical action in the synapse 
that enacts further voltage changes, and perhaps 
more spikes in the postsynaptic neuron.

Neurons use spikes as their preferred medium 
of communication. It is fair to say that a major 
challenge faced by contemporary neuroscientists is to 
elucidate the meaning of these spikes. Put differently, 
the neuroscience community is trying to “crack the 
neural code.” Our starting point in this pursuit is the 
signal itself—the spikes. Because of their nature as 
all-or-none events, we will represent the occurrence 
of spikes over time as numbers, specifically zeroes 
for “no spike” or ones for “spike.” So consider the 
following list of numbers:

[0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,1,0,0,0]

By itself, this list of numbers is meaningless. However, 
let’s assume that we have a neuron in a dish, that the 
neuron is alive, that it is capable of sending spikes, 
that this neuron will generally not send any spikes in 
the dark, and that this neuron will send some amount 
of spikes if you shine a green light (at a wavelength 
of 550 nm) on it. Let’s also assume that we have a 
recording electrode near the point where this neuron 
sends spikes, and that our electrode has the fancy 
ability of telling our computer whether or not the 
neuron is spiking over time, as captured in the vector 
with 0s and 1s above. This scenario is schematized 
in Figure 1.

© 2016 Wallisch

Figure 1. Extracellular electrode recording voltage spikes from 
an individual neuron in a dish.
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Without knowing yet why the spikes occurred, we 
can make a couple remarks about this list of numbers 
representing spikes. First, we know how many spikes 
are in the list:

Pseudocode Sum up the numbers in the vector

Python >>> sum([0,0,0,0,0,0,0,0,0,1,0,
1,0,1,0,0,0,1,0,0,0]) 
 4

MATLAB >> sum([0,0,0,0,0,0,0,0,0,1,0,1
,0,1,0,0,0,1,0,0,0]) 
ans = 4

But you didn’t need Python or MATLAB to tell you 
that there are four 1s in this list, because you can see 
that immediately. It is, however, convenient for us to 
measure how long the list is using the function len in 
Python and length in MATLAB:

Pseudocode Count the number of elements in the 
longest dimension of the vector

Python >>> len([0,0,0,0,0,0,0,0,0,1,0,
1,0,1,0,0,0,1,0,0,0])
21

MATLAB >> length([0,0,0,0,0,0,0,0,0, 
1,0,1,0,1,0,0,0,1,0,0,0]) 
ans = 21

This means that the list of numbers has 21 entries 
or elements. Recall that each number in the list 
represents whether or not the neuron sent a spike 
at that time, that the 0 on the far left of the list 
represents time = 0, and that each successive number 
on the list represents whether or not the neuron 
sends a spike at that time. We could say:

Pseudocode Create a list of 21 successive integers representing time and align it with the 21 neuron states

Python range(21), [0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,1,0,0,0]
([0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20],
 [0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,1,0,0,0]) 

MATLAB >> [linspace(0,20,21); [0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,1,0,0,0]]
ans =
   0   1   2   3   4   5   6   7   8   9  10  
   0    0     0     0     0     0     0     0     0     1     0
 
     11    12    13    14    15    16    17    18    19    20
      1     0     1     0     0     0     1     0     0     0

We interpret this to mean that at times 0, 1, 2, 3, 4, 
5, 6, 7, and 8, the neuron is not spiking. At time 9 
it spikes, at time 10 it is quiet, at time 11 it spikes, 
at time 12 it is quiet, at time 13 it spikes, at times 14 
through 16 is it quiet, and then at time 17 it spikes 
one last time before being quiet again.

We said earlier that this neuron tends to spike if it 
is illuminated with green light, but not in darkness. 
What we are simulating here is a tool known as 
“optogenetics,” in which neurons will actually 
increase their activity in response to light (Boyden 
et al., 2005; Tye and Deisseroth, 2012).

So let’s indicate the time points during which such 
a green light was on in green italics, leaving the rest 
of the time points black (representing times during 
which the light was off):

[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17, 
18,19,20]

Let us assume now that each time point above is in 
units of milliseconds. What this means is that we 
started recording from the neuron at time 0 when 
the light was off. After 4 ms of recording, on the 
fifth millisecond, the green light was turned on. 
The light then stays on for 9 ms—through the 13th 
millisecond—before shutting off.
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With this knowledge of the stimulus conditions, we 
can determine a characteristic feature of this neuron: 
its “first spike latency to stimulus.” This parameter 
is generally used by neuroscientists to establish how 
“fast” or “ready to spike” any given neuron is.

We now know just enough about the stimulus and 
the neuron to be good neuroscientists and form a 
hypothesis. Let’s hypothesize that the neuron always 
fires a spike 4 ms after a light is turned on.

Let’s put the string of 0s and 1s into a variable now:

Pseudocode Assign data to variable spikeTrain

Python >>> spikeTrain = [0,0,0,0,0,0,0, 
0,0,1,0,1,0,1,0,0,0,1,0,0,0]

MATLAB >> spikeTrain = [0,0,0,0,0,0,0,
0,0,1,0,1,0,1,0,0,0,1,0,0,0];

With the spikes now stored in spikeTrain, we can pull 
out spikes at different time points. That is, we can 
ask, say, at time t = 5, when the light is first turned 
on, is the neuron spiking?

Pseudocode Output the contents of variable spikeTrain at 
the position corresponding to t = 5

Python >>> spikeTrain[5] 
0

MATLAB >> spikeTrain(6) 
ans = 0

The answer is a resounding no. But what about if we 
want to know if the cell spikes at any time after t = 5?

Pseudocode Output all elements of spikeTrain after the 
position corresponding to  t = 5

Python >>> spikeTrain[5:] 
 [0,0,0,0,1,0,1,0,1,0,0,0, 
1,0,0,0]

MATLAB >> spikeTrain(6:end) 
ans = 0  0  0  0  1  0  1  0  1  
0  0  0  1  0  0  0

Note that here we see some subtle but critical 
differences in Python versus MATLAB. First, in 
MATLAB, the first element of a vector is element “1,” 
whereas the corresponding first element in Python is 
“0.” So to access the same element (here the one at 
time 5), we have to add 1 to the MATLAB index. 
Second, the colon operator : returns all elements from 
a starting point until an endpoint. Python assumes 
you want all elements until the end of the vector if 
no endpoint is specified, whereas the corresponding 
MATLAB command to specify “all elements until 
the end of the vector” is “end.” Finally, note that the 
MATLAB command uses parentheses, whereas the 
Python command uses square brackets.

This output—in Python or MATLAB—represents the 
neuron’s spiking activity after the green light turned 
on. If the first output value in the list were a 1, then 
the neuron’s latency to first spike would be 0 ms, i.e., 
the neuron’s response would be coincident with the 
light turning on. But things rarely happen instantly in 
biology, let alone neuroscience. Rather, whatever makes 
our neuron spike in response to light takes some time to 
flip some internal switches before the spike occurs. The 

Figure 2. A spike train, as seen on an oscilloscope. Voltage spikes recorded from an individual neuron are plotted over time.
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record of the successive spiking of a neuron over time is 
called the “spike train” (Fig. 2), and various measures to 
characterize the spike train have been proposed.

The time it takes for a neuron to be responsive 
(that is, for a neuron to spike in response to a 
stimulus—in our case, to the light) is known as the 
“response latency.” Different ways exist to measure 
response latency, but for a single light pulse and a 
single recording from a neuron that spikes relatively 
infrequently (or sparsely), the time it takes for the 
first spike to occur is a good measure. So let’s calculate 
the latency to first spike by typing:

Pseudocode Find the first value in the elements of 
spikeTrain that matches 1

Python >>> spikeTrain[5:].index(1) 
 4

MATLAB >> find(spikeTrain(6:end)==1); 
ans(1)-1 
ans = 4

Note that in the MATLAB version of this code, we 
concatenate two commands in the same line by the 
use of the semicolon operator. We have to bring the 
result into the same time base as the Python code by 
adding 1 to the start point and then subtracting it 
again from the result. If we had started with calling 
the first element time “1,” we would have had to 
subtract 1 from Python to get the right index and 
then add 1 to the answer.

Here we took our list of values in the variable 
spikeTrain that occurred after a time of 5 ms and used 
the Python function index (find in MATLAB) to locate 
the first value in this variable that represents the spike 
train that matches 1 (representing a spike). We can 
make this more flexible by giving the light onset time 
5 a variable name and the spike indicator value 1 a 
variable name. Generally speaking, it is a bad idea to 
hard-code values that are given to functions explicitly. 
It is almost always better to use variables because code 
that uses variables is much easier to maintain.

Pseudocode Assign values to variables, then pass those 
to the function to avoid hard-coding

Python >>> lightOnsetTime = 5 
>>> spikeValue = 1 
>>> spikeTrain[lightOnset 
Time:].index(spikeValue) 
 4

MATLAB >> lightOnsetTime = 5; 
>> spikeValue = 1; 
>> mShift = 1; 
>> find(spikeTrain(lightOnset 
Time+mShift:end)==spikeValue); 
ans(1)-mShift 
ans = 4

This version, without the hard-coding, also makes 
it clearer what is going on in the MATLAB case. 
Because of MATLAB’s indexing conventions, we 
know that MATLAB indices are always shifted by 1 
relative to Python. So we allocate this to a constant 
(“mShift”), add it to the lightOnsetTime, and then 
subtract it again from the result. Note that the 
output is the same, which is reassuring, as our results 
should depend on the properties of the neuron we 
study, not the software we use to analyze the data we 
record from it.

Again, in order to find the latency to first spike, we take 
the variable spikeTrain, which contains all of the 1s and 
0s that represent the presence or absence of spiking at a 
given time bin, and look only at the times after the light 
onset. We then look for the first time that the vector 
after light onset contains a 1. Technically speaking, this 
command returns the number of bins between light 
onset and the first spike, but because we know that the 
bin width is 1 ms, we can interpret the result as a time: 
the latency is 4 ms. In order to be able to reuse a result 
that we just calculated in this fashion, we should assign 
the results of a command to a variable. In this case, we 
will call it “latencyToFirstSpike.” Generally speaking, it 
is advisable to use variable names that are meaningful, 
as that makes code much more readable.

Pseudocode Calculate latency to first spike and assign 
it to a variable with meaningful name

Python >>> latencyToFirstSpike = 
spikeTrain[lightOnsetTime:].
index(spikeValue) 
>>> print latencyToFirstSpike 
 4

MATLAB >> temp = find(spikeTrain(light 
OnsetTime+mShift:end)== 
spikeValue); 
>> latencyToFirstSpike = 
temp(1)-mShift 
latencyToFirstSpike = 4

Note that in the example above, the MATLAB 
computations are done in two steps. We first declare a 
temporary variable temp that finds *all* instances in 
which spikes occur after light onset. Then in a second 
step, we find the index of the first element and correct 
for the MATLAB indexing shift by subtracting 1 and 
assigning that to the variable latencyToFirstSpike.

Python has its own set of idiosyncrasies—these 
brief calculations in MATLAB involve only regular 
parentheses. In Python, square brackets [ ] are used 
when specifying the range of values within a list of 
numbers. In contrast, regular parentheses ( ) are used 
to invoke functions with the particular parameters 
within the parentheses as inputs. In this case, we 
pass the variable spikeValue to the function index, 
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which is a built-in function—index is not the only 
such function. Python has many functions that we’ll 
be using, and when we do, we’ll use parentheses to 
give them values to operate on.

Now we have our estimate of the neuron’s latency  
(4 ms). As the readers of your research papers are 
likely to be primates, and primates are predominantly 
visually guided animals, we should make a plot to 
illustrate the spiking activity of the neuron (Fig. 3).

To plot the spiking activity, we need to know the 
time of every spike in the list. People sometimes call 
these the “spike timestamps,” but we’ll just call them 
“spikeTimes”:

Pseudocode Find and then output the times at which 
the neuron spikes 

Python >>> spikeTimes = [i for i,x in 
enumerate(spikeTrain) if x==1] 
>>> print spikeTimes 
 [9, 11, 13, 17]

MATLAB >> spikeTimes = find(spikeTrain==1)-
mShift 
spikeTimes =  9    11    13    17

The Python part of this is a whopping nest of 
code! Let’s untangle it a bit. First, see how we 
put the list of numbers spikeTrain (a bunch of 
1s and 0s) into the function enumerate. Don’t 
bother typing enumerate(spikeTrain) into your 
command line or trying to print it yet. The function 
enumerate(spikeTrain) cycles through the list 
spikeTrain and keeps track of the index of each 
element in spikeTrain.

The middle part of the code i,x in 
enumerate(spikeTrain) means that we will be going 
through each element in spikeTrain and naming 
each element along the way “x,” and wherever “x” is 
in the list spikeTrain, we’ll call that location “i.”

A diagram might help:

i will successively be each element in  
[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20] 

x will successively be each element in  
[0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,1,0,0,0]

Let’s look at that line of code again:

>>> spikeTimes = [i for i,x in 
enumerate(spikeTrain) if x==1]

Note that Python or MATLAB makes use of double 
equals signs to test for the equality of two values. 
It is worth noting that a single equals sign is an 

assignment operator, assigning whatever is on the 
right (usually the result of a computation) to the left 
(usually a variable).

We now understand that the line means to give us 
the indices of i where x = 1.

i is 
[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20] 

and x is [0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,1,0,0,0]

As you can see, this is the case for the indices i of 9, 
11, 13, and 17. And now, given this line, Python can 
see it too and return it to you (and put it into the 
variable “spikeTimes” as well).

We can conceive of this problem in reverse, too:

If x = 1, where x is each element in  
[0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,1,0,0,0] 
gives us the corresponding value in i: 

[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]

Where we underlined the is and xs, where x = 1.

That’s a lot of work—the equivalent MATLAB 
code seems much simpler—and would be simpler 
yet if we didn’t have to bring the result into a 
format that conforms to Python’s zero-indexing 
conventions—but that is a small price to pay to use 
a real programming language, like hackers do. After 
all, social life is all about tribal signaling.

But let’s not lose sight of the fact that the point of 
doing this was so we can graph it. To graph (or “plot,” 
as we will call it from now on) something in Python, 
we need to import a library of functions designed 
for this purpose. This library is called “matplotlib,” a 

Figure 3. Cartoons can efficiently illustrate important 
principles.
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library that gives us all the plotting tools we need at 
this point.

Pseudocode Import library of plotting functions

Python >>> import matplotlib.pyplot 
as plt

MATLAB No equivalent. These plotting functions 
already come with MATLAB 

This means we’ve loaded the function pyplot, a 
function of the library matplotlib, but when we loaded 
it we gave it a shorthand (plt) so we can refer to it 
more easily—and with a nickname of our choice. 
You’ll find that the strategy of importing functions as 
two- or three-letter shorthands will save you a lot of 
typing. We recommend it.

We will now create a figure to work on:

Pseudocode Open figure

Python >>> fig = plt.figure()

MATLAB >> figure

This establishes a frame to work within. Within 
this frame, we can have from one to many smaller 
windows, or “subplots.” For now, we’re plotting a 
small set of spikes, so we need only one subplot.

Pseudocode Place a subplot (or axes) into the figure

Python >>> ax=plt.subplot(111)

MATLAB No equivalent. If there is only one 
pair of axes, it will take up the entire 
figure by default. You could still type 
subplot(1,1,1) and place axes, but this 
step is not necessary.

What the 111 means will be a little clearer once we 
have multiple subplots in a figure. For now, just know 
that if you want only one plot in your figure, you are 
saying that you want one large subplot, and therefore 
use subplot(111). We call this subplot “ax” in honor 
of the axes of a Cartesian plot, which is the kind we 
want here.

To plot the spike times, we’ll use the common 
visualization method of a spike raster plot. In such 
a plot, each spike is represented as a vertical line (at 
the time when it occurred, with time on the x-axis).

Pseudocode Plot vertical lines at the times when a 
spike occurred, then show the figure

Python >>> plt.vlines(spikeTimes, 0, 
1) 
>>> plt.show()

MATLAB >> line(repmat(spikeTimes,2,1),
repmat([0; ],1,4),ʻcolorʼ,ʻkʼ) 
shg

Let’s look at the plot this code produces in order to 
discuss what it means:

Figure 4. A bare-bones raster plot of a single trial.

Voilà! We have our first plot of neuroscience data. 
Shockingly, we have neither axis labels nor units—
yet. Before we rectify this problem, let’s discuss how 
the figure was brought about by the commands 
directly above.

In Python, we invoke the function vlines (a 
subfunction of the plotting package we called plt) by 
putting a period between them. This is generally the 
way to invoke subfunctions of imported packages. We 
then use parentheses to give values to this function. 
The three arguments we pass to the function vlines 
are: first a list of spike times, second the minimum 
value of the vertical lines—0, and third the maximum 
value of the vertical lines—1.

In MATLAB, there is no function for vertical lines 
specifically, so we use the general purpose function 
line. It takes matrices to specify x and y coordinates 
and plots one line for each column where row values 
indicate start and end positions of the lines. We have 
to create these matrices first, so we create two 2 × 4 
matrices with the repmat function.
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We also have to set the color of the lines to black (the 
default MATLAB color is blue) in order to match the 
plot produced by Python. The function shg shows the 
current graph.

This plot illustrates when the neuron spikes, but 
doesn’t contain any information about the light 
stimulus yet. Let’s make the time during which the 
light is on a shaded green:

Pseudocode Add a shaded green rectangle from times 
5 to 14

Python In : plt.axvspan(5,14,alpha=0.1, 
color=ʻgʼ)

MATLAB rectangle (ʻPositionʼ,[5,
0,9,1],ʻFaceColorʼ,[0.7 1 
0.7],ʻlinestyleʼ,ʻnoneʼ)

This creates a shaded green box that spans the figure 
vertically and is bounded horizontally at 5 and 14.

Python: The alpha value makes the box transparent 
(smaller alpha values make the color appear lighter).

MATLAB: Specifies the color of the box by giving it 
an RGB triplet, in this case, a light green.

Let’s now specify the range of times our x-axis should 
span by invoking the xlim function so that we can 
see times during which the neuron did not fire, i.e., 
before visual stimulation:

Pseudocode Setting the range of the x-axis to include 
the entire time interval of interest

Python In : plt.xlim([0,20])

MATLAB xlim([0 20])

Before showing this figure to anyone, we strongly 
recommend adding a label to the x-axis and a title 
to the figure.

Pseudocode Add meaningful axis and figure labels, 
which is critical in science

Python >>>  plt.title(‘this neuron 
spikes in response to a single 
light stimulus’) 
>>> plt.xlabel(‘time (in 
milliseconds)’)

MATLAB >> title(‘this neuron spikes 
in response to a single light 
stimulus’) 
>> xlabel(‘time (in 
milliseconds)’)

Figure 5. A raster plot of a single trial with axis labels, title, 
and stimulation condition.

Because of the noise inherent in the system as well as 
the measurements, data from a single trial are rarely 
sufficient to reach reliable conclusions about the 
connection between visual stimulation and the neu-
ral response.
What if there is some mechanism inside the neuron 
that causes it to spike highly unreliably? What if we 
are recording the signals of this neuron in a noisy 
environment? In theory, we would need to stimulate 
the neuron an infinite number of times and collect 
an infinite number of responses in order to be really 
sure. But most people are not theorists, living in a 
non-platonic world. As such, we neuroscientists 
have to make do with less than infinite amounts of 
data. Say we had just enough funding to allow us to 
collect data from 10 spike trains and 10 identical 
(green) light stimuli. These data are contained in the 
tenSpikeTrains variable.



32

NOTES

© 2016 Wallisch

Pseudocode Representing the 10 spike trains in the respective formats 

Python >>> tenSpikeTrains = [[0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,0, 
1,1,0,0,0,1,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0],[0,0,0,0,0,0,
0,0,1,1,0,1,0,0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0],[0,0,0,0,
0,0,0,0,0,0,1,1,0,0,0,1,0,0,0,1,0],[0,0,0,0,0,0,0,0,1,1,1,0,0,1,1,0,0,1,1,0,0],[1,0,
0,0,0,0,0,0,0,0,1,1,0,0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0,0], 
[0,0,0,0,0,0,1,0,0,1,0,1,0,0,0,0,0,1,1,0,0]]

MATLAB
analogous

>> tenSpikeTrains = {[0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,0,
1,1,0,0,0,1,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0],[0,0,0,0,0, 
0,0,0,1,1,0,1,0,0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0],[0,0,
0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,0,0,1,0],[0,0,0,0,0,0,0,0,1,1,1,0,0,1,1,0,0,1,1,0,0], 
[1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0, 
0,0],[0,0,0,0,0,0,1,0,0,1,0,1,0,0,0,0,0,1,1,0,0]}

MATLAB
suitable

>> tenSpikeTrains = [0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,1,0,0,0; 0,0,0,0,0,0,0,0,1,1, 
0,0,0,1,0,0,0,1,0,0,0;0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0;0,0,0,0,0,0,0,0,1,1,
0,1,0,0,0,0,0,0,1,0,0;0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,
1,1,0,0,0,1,0,0,0,1,0;0,0,0,0,0,0,0,0,1,1,1,0,0,1,1,0,0,1,1,0,0;1,0,0,0,0,0,0,0,0,0,
1,1,0,0,0,0,1,0,0,0,0;0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0,0;0,0,0,0,0,0,1,0,0,1,
0,1,0,0,0,0,0,1,1,0,0]

Note that Python uses nested square brackets here. It 
appears, from the placement of the square brackets, 
that there are 10 lists (each inside square brackets) 
nested inside one all-encompassing list (note the 
double square brackets at the very beginning and 
end of tenSpikeTrains). In fact, this is the case, and 
tenSpikeTrains is technically a list of lists. We can 
represent these spike trains like that in MATLAB 
too, by using cells (the “MATLAB analogous” code), 
but the most suitable way to represent these data 
in MATLAB are as a 10 × 21 matrix (“MATLAB 
suitable”). In other words, we represent each spike 
train as entries in 21 consecutive columns, and 
each individual spike train as a separate row. So at 

every point in the MATLAB suitable code above, 
where there is a ],[ in Python, there is a semicolon 
in MATLAB. This works because the time base 
(21 bins with a width of 1 ms) is the same for each 
spike train. If this were not case, e.g., if there were 
missing data, using cells would be more apt. Matrices 
are ordered arrangements of numbers, and cells are 
ordered arrangements of matrices. So Cell:Matrix as 
Matrix:Number in MATLAB. Cells can accommodate 
matrices with different dimensionalities in each 
entry, so they are very helpful but make it harder to 
do some computations on them. In addition, they 
complicate the notation—note the curly braces { } 
that indicate we are dealing with cells.

Returning to the data, if we look at the first entry of tenSpikeTrains, we find:

Pseudocode Return the contents of the first spike train

Python >>> tenSpikeTrains[0] 
 [0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,1,0,0,0]

MATLAB
analogous

>> tenSpikeTrains{1} 
ans = 0  0  0  0  0  0  0  0  0  1  0  1  0  1  0  0  0  1  0  0  0

MATLAB 
suitable

>> tenSpikeTrains(1,:) 
ans = 0  0  0  0  0  0  0  0  0  1  0  1  0  1  0  0  0  1  0  0  0

The first spike train is contained in the first row (MATLAB suitable) or first cell (MATLAB analogous) or 
the 0th list (Python). This is the flipside of Python zero indexing. It made sense that the first time of a time 
series would be time zero, but the first element of a list is still the first element, not the zeroth element. So 
each indexing convention (0 for Python, 1 for MATLAB) has use cases where it is more “natural,” which is 
why both of them are still around.
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Regardless of implementation, the command doesn’t 
return a single value, but a list. How many elements 
are in this master list?

Pseudocode How many elements does the variable 
tenSpikeTrains have?

Python >>> len(tenSpikeTrains) 
 10

MATLAB 
analogous

>> length(tenSpikeTrains) 
ans = 10

MATLAB 
suitable

>> size(tenSpikeTrains,1) 
ans = 10

In the “MATLAB suitable” case, we have to count 
the number of rows, which is achieved by telling the 
size function to evaluate the first dimension (rows).

You might have expected much more than that (~200), 
but the len function in Python looks at how many things 
are inside the list much in the same way that a bundle 
of bananas counts as only one item at the grocery store 
when you are in the express lane. It simply returns the 
number of elements (in this case, lists) it contains. The 
same is true for the MATLAB analogous case—the cell 
has 10 entries, each of which is a matrix (and each of 
which represents an individual spike train). Accessing 
cell contents and doing computations on them is 
beyond the scope of this chapter, so we’ll continue 
solely with the “suitable” case below.

In order to make a raster plot for the data from *all* 
the trials, we use a similar approach we used for 
plotting the data from a single trial, except we cycle 
through each list in the list. To do this, we will use a 
for loop (see below).1

As for Python, there are a few noteworthy things 
about this code, starting with the for loop. We know 
that the length of tenSpikeTrains is 10, so we can 
think of the for loop line of code as:

for trial in range(10)2:

We can also see that range(10) is:

>>> range(10) 
[0,1,2,3,4,5,6,7,8,9]

That’s right, range(10) is equal to the list 
[0,1,2,3,4,5,6,7,8,9]. In MATLAB, the command 
1:size(tenSpikeTrains,1) achieves exactly the same 
result.

We can thus think of the for loop line of code in 
Python:

for trial in range(len(tenSpikeTrains)):

as equivalent to

for trial in [0,1,2,3,4,5,6,7,8,9]:

This means we are going to go to the next line of 
code after the for loop 10 times, and each time we go 
to the next line, the variable trial will increase to the 
next value in the list (starting with 0). It is called a 
for loop because it loops through a list of values. The 
principles of the for loop in Python are reflected in 
the for loop used in MATLAB:

for ii = 1:size(tenSpikeTrains,1)

So what’s up the line after the for loop? There are 
the ellipses and some spaces before we get to the 

1 for loops are your friend for easy plotting, and your enemy in heavy computation. If you are cycling through a network simulation or 
calculation, too many nested for loops will bring even the most powerful computer to its knees. As you begin to learn more programming 
tools, always be asking yourself if the code can be written without use of a for loop. But for now, using a for loop is fine, particularly 
because it is usually much clearer to understand what is going on when using loops.

2 We put this line of code front and center to emphasize and talk about it, not for you to retype it into the command line or think that 
code usually sits centered on the page.

Python MATLAB (suitable)

>>> fig = plt.figure() 
>>> ax = plt.subplot(1,1,1)  
>>> for trial in range(len(tenSpikeTrains)):
...   spikeTimes = [i for i,x in enumerate 

(tenSpikeTrains[trial]) if x==1]
...  plt.vlines(spikeTimes,trial,trial+1)

>>> plt.axvspan(5,14,alpha=0.1,color=ʻgʼ) 
>>> plt.xlim([0,20]) 
>>> plt.show()

ax=figure
rectangle(ʻPositionʼ,[5,0,9,11],ʻFaceColorʼ, ... 
[0.7 1 0.7],ʻlinestyleʼ,ʻnoneʼ) 
for ii = 1:size(tenSpikeTrains,1) 
    spikeTimes = find(tenSpikeTrains(ii,:)==1)-
mShift; 
     line(repmat(spikeTimes,2,1), 

repmat([ii-0.5;ii+0.5],1,length 
(spikeTimes)),ʻcolorʼ,ʻkʼ)

end 
xlim([0 20]) 
shg
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spikeTimes line, which is very similar to how we got 
spikeTimes before. Ellipses are a placeholder for white 
space. In effect, they represent white space explicitly.

>>> for trial in range(len(tenSpikeTrains)):

... spikeTimes = [i for i,x in enumerate 
(tenSpikeTrains[trial]) if x==1]

... plt.vlines(spikeTimes,trial,trial+1)

It will keep creating indented lines and staying inside 
the grasp of the for loop until you hit return on a 
blank line. This indicates to Python that the for loop 
has ended. Notice how the line of code

>>> spikeTimes = [i for i,x in enumerate 
(tenSpikeTrains[trial]) if x==1]

is similar to how we got spikeTimes for a single trial. 
This time, though, we have our 1s and 0s within lists 
inside of the list tenSpikeTrains, so the variable 
trial, which iterates through the values 0 to 9, will call 
each of the 10 lists inside the list tenSpikeTrains. 
spikeTimes is now a temporary variable, and each 
time trial is updated in the for loop, and spikeTimes 
is reassigned to a new list of spike times.

Let’s reiterate what enumerate does. This uniquely 
Python function allows us to build a for loop within 
a single line of code, as enumerate returns both each 
value in the list (like the for loop above) as well as 
the index of the value, where i is the index, and x 
is the value. Additionally, within this single line 
we condition returning the index i on the value x 
equaling 1. Thus, in this single line of code, we return 
the indices of the values equal to 1, in a Python-like 
fashion known as a “list comprehension.”

The MATLAB code tries to achieve the same result, 
but note that the ellipses (...) mark the end of the 
line. They indicate that the command continues in 
the next line. So the use of ellipses is very different in 
Python versus MATLAB. In Python, indicating that 
the command continues in the next line is done via 
a backslash: “\.”

For each trial in tenSpikeTrains, we plot vertical 
lines for the spikes, where the values trial, trial + 1, 
... , trial + 9 are stacked sequentially and vertically—
and where every “row” of the plot represents a trial.

Python or MATLAB has commenting conventions, 
which we are starting to use here—and from now on. 
Anything after the hashtag (#) in Python isn’t read 

as programming code and is ignored by the computer, 
meaning it is not interpreting it as an instruction 
and thus not attempting to execute it. In general, we 
recommend writing a sentence at the beginning of 
a paragraph of code to explain what that paragraph 
is supposed to do—and in broad terms, how—and 
then to comment on critical pieces of code, e.g., 
note what a variable is supposed to contain. The 
analogous symbol in MATLAB is the percentage sign 
(%). Anything written after it is understood to be a 
comment.

Let us now add figure labels and formatting to get 
Figure 6:

Python

plt.ylim([0,10]) 
plt.title(ʻthis neuron spikes to repeated trials 
of the same stimulusʼ) 
plt.xlabel(ʻtime (in milliseconds)ʼ) 
plt.ylabel(ʻtrial numberʼ) 
plt.yticks([x+0.5 for x in range(10)],[str(x+1) 
for x in range(10)]) #1

MATLAB (suitable)

ylim([0.5 10.5])
title(ʻthis neuron spikes to repeated trials of 
the same stimulusʼ) 
xlabel(ʻtime (in milliseconds)ʼ) 
ylabel(ʻTrial numberʼ) 
set(gca,ʻLayerʼ,ʻtopʼ) %2

#1 Align the y-ticks to be in the middle of each row, 
while (x + 1) sets first trial to 1.

%2 Set the label axis to the top so that the green 
rectangle doesn’t cover the axis.

A raster plot yields a snapshot of raw spike times 
elicited by the stimulus across trials. We can see that 
the first value we calculated, the first spike latency, 
seems to vary considerably between trials. On some 
trials the first spike occurs at 8 ms, on some trials the 
first spike happens at 9 ms, on one trial it comes at  
6 ms, on a handful of trials it is 10 ms, and on one trial 
there is a spike 4 ms before the light even comes on. 
We can also see that the neuron seems to discharge 
a spike a few times with each light stimulus, and it 
often also “fires” after the stimulus has turned off. 
There are many ways to classify the spiking activity 
of neurons, some qualitative, some quantitative (such 
as our example, “first spike latency”). Qualitatively, 
we can ask ourselves if, once this neuron fires, does 
it keep firing? That is, is its ongoing activity tied to 
the stimulus?
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There are many ways to quantify this, but it is a good 
habit to take a look at the raw data in the form of 
a raster plot to first get a qualitative sense of the 
spiking characteristics of the neuron. For instance, 
the raster plot in Figure 6 seems to convey that the 
neuron responds to this particular light stimulus after 
3–5 ms and that its activity is maintained to some 
degree after the stimulus has turned off.

Does this falsify our hypothesis that the neuron always 
spikes 4 ms after the light turns on? It certainly looks 
like it, since the spiking is not nearly as precise as we 
hoped it to be. But because we formed the hypothesis 
on a whim (based on the analysis of a single trial), we 
are free to change it. So let’s say we hypothesize that 
the neuron fires “tonically at a rate of 500 spikes per 
second” (sp/s) to green light stimuli.

Let’s unpack this statement. “Hypothesize that the 
neuron fires” is simple enough (the neuron discharges 
spikes), but we go on to make a prediction about the 
firing: that it fires “tonically.” “Tonic firing” is spiking 
activity that is sustained or ongoing. This contrasts 
with “phasic” or “transient” firing, which is locked 
to the timing of the stimulus. We can come up with 
some metrics for quantifying the tonicity of the firing, 
but let’s posit the qualitative hypothesis that it keeps 
firing and continue with the quantity “of 500 spikes 
per second.” In our experiment, we didn’t stimulate 
the neuron for an entire, continuous second, so we 
certainly won’t have 500 spikes to count. However, 
the unit of spike rates is sp/s, even if the instantaneous 
firing rate is sustained for much less than a second, in 
the same way that you don’t have to drive for an hour 
in order to travel at 100 miles per hour at some point 
in your ride.

To know how many spikes we ought to expect in our 
short interval, we simply have to solve for x in the 
algebraic equation where x is proportional to 500 
spikes as our stimulus length (9 ms—we really should 

have planned the experiment better in order to get 
easier math!) is to 1 s:

(x spikes)/(9 milliseconds)= 
 (500 spikes)/(1000 milliseconds) (1)

Solving for x, this leads us to expect 4.5 spikes for 
the duration of our 9 ms stimulus. The tail end of the 
stated hypothesis above was “to green light stimuli,” 
which we partly covered, and which we’ll make more 
complex just when we start to get a better grasp of 
our results.

We thus need a way to visualize and condense the 
many stimulus trials and responses we recorded. We 
turn to the PSTH to visualize as a bar graph the 
spiking activity of the neuron over time, just before 
and after each (peri)stimulus. We also make use of 
multiple subplots within a single figure to compare 
the rasters to the PSTH. This is a standard depiction 
of neural data in early exploratory analysis.

An individual subplot is a subdivision of a figure. 
The code below indicates that the subplots will be 
arranged so that there are 2 rows and 1 column of 
subplots, and that we’ll plot in the first of these. Note 
that although Python indexes lists by starting at 0, 
subplot indexing starts at 1. If this seems inconsistent, 
it is because it is.

Pseudocode Create the figure window using plt 
(originally imported via matplotlib) 
Create the first of 2 “subplots.” 

Python >>> fig=plt.figure() 
>>> ax=plt.subplot(2,1,1) 

MATLAB >> fig = figure; 
>> ax = subplot(2,1,1);

Figure 6. Raster plot of the neural response to 10 trials of 
a green light stimulus.  

Pseudocode

Create figure and specify subplot 
Draw the stimulus presentation area green 
For each of the ten trials 
Extract the spike times from the spike train variables 
Plot each row in the raster plot as vertical lines 
Set the x-axis limits 
Set the y-axis limits 
Set the title 
Set the x-axis label 
Set the y-axis label 
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We next create code for plotting (1) a subplot of spike rasters and (2) a PSTH based on that spiking activity. 
We highly advise that you comment so that (1) your “future me” can read and remember why you programmed 
something the way you did and what the variables stand for—which makes the code easier (or even possible) 
to maintain; and (2) so that other programmers can look at your code and have any chance of understanding 
what is going on.

In Figure 6, we created the variable spikeTimes for each trial and plotted those values right away, 
overwriting spikeTimes with each new trial.

Pseudocode Looping through trial 0, 1, ..., 9 
    Get the index (time) of each spike and append to allSpikeTimes 
    Plot vertical lines for each trial 
Add the vertically spanning green box 
Set the limits of the y-axis to 0 and 10 
Add a title, a y-axis label, and an x-axis label to this subplot 
#1 Customize the labels of the y-ticks 

Python fig=plt.figure() 
ax=plt.subplot(2,1,1) 
for trial in range(len(tenSpikeTrains)): 
    spikeTimes = [i for i,x in enumerate(tenSpikeTrains[trial]) if x==1] 
    plt.vlines(spikeTimes,trial,trial+1) 
plt.axvspan(5,14,alpha=0.1,color=ʻgʼ) 
plt.ylim([0,10]) 
plt.title(ʻthis neuron still spikes to repeated trials of the same stimulusʼ) 
plt.xlabel(ʻtime (in milliseconds)ʼ) 
plt.ylabel(ʻtrial numberʼ) 
plt.yticks([x+0.5 for x in range(10)],[str(x) for x in range(10)]) #1

MATLAB ax = subplot(2,1,1) 
rectangle(ʻPositionʼ,[5,0,9,11],ʻFaceColorʼ, [0.7 1 0.7],ʻlinestyleʼ,ʻnoneʼ) 
for ii = 1:size(tenSpikeTrains,1) 
    spikeTimes = find(tenSpikeTrains(ii,:)==1)-1 
    line(repmat(spikeTimes,2,1),repmat([ii-0.5; ii+0.5],1,length(spikeTimes)), 
    ʻcolorʼ,ʻkʼ) 
end 
xlim([-0.5 20]) 
ylim([0.5 10.5]) 
title(ʻthis neuron still spikes to repeated trials of the same stimulusʼ) 
xlabel(ʻtime (in milliseconds)ʼ) 
ylabel(ʻTrial numberʼ) 
ax.YTick = [0:1:10] 
set(gca,ʻLayerʼ,ʻtopʼ)

We next sum across our tenSpikeTrains to see the total number of spikes that occur across all trials, using 
the function bar in Python or MATLAB. This function gives us a bar plot of the spiking as a function of time.

We also save the figure. Note the extension .png at the end of the string. We could also specify .pdf or .jpg 
or a few other image types.
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Pseudocode Now for the PSTH. We create our second subplot. 
Add the green background during stimulus time. 
Plot the bar plot #1 format bar (x-values, y-values, bar width) 
Add labels to the x- and y-axes of this subplot 
Save the figure 
Let’s take a gander.

Python >>> ax=plt.subplot(2,1,2) 
>>> plt.axvspan(5,14,alpha=0.1,color=ʻgʼ) 
>>> ax.bar(range(21),np.sum(tenSpikeTrains,0),1) #1 
>>> plt.xlabel(ʻtime (in milliseconds)ʼ) 
>>> plt.ylabel(ʻ# of spike occurrences at this timeʼ) 
>>> plt.savefig(ʻFigure with subplots of rasters and PSTH.pngʼ) 
>>> plt.show()

MATLAB subplot(2,1,2) 
rectangle(ʻPositionʼ,[5,0,9,8],ʻFaceColorʼ,[0.7 1 0.7]... 
,ʻlinestyleʼ,ʻnoneʼ) 
hold on 
x=0:20; 
bar(x,sum(tenSpikeTrains)); 
xlim([-0.5 20]) 
ylim([0 8]) 
xlabel(ʻtime (in milliseconds)ʼ) 
ylabel(ʻ# of spikes counted at this timeʼ)

Let’s put it all together:

Python MATLAB

# The Python way for Figure 7.
fig=plt.figure()
ax=plt.subplot(211)
for trial in range(len(tenSpikeTrains)):
    spikeTimes = [i for i,x in enumerate 
    (tenSpikeTrains[trial]) if x==1]
    plt.vlines(spikeTimes,trial,trial+1)
plt.axvspan(5,14,alpha=0.1,color=ʻgʼ)
plt.ylim([0,10])
plt.title(ʻthis neuron still spikes to repeated 
trials of the same stimulusʼ)
plt.xlabel(ʻtime (in milliseconds)ʼ)
plt.ylabel(ʻtrial numberʼ)
plt.yticks([x+0.5 for x in range(10)], [str(x+1) 
for x in range(10)])

ax=plt.subplot(212)
plt.axvspan(5,14,alpha=0.1,color=ʻgʼ)
ax.bar(range(21),np.sum(tenSpikeTrains,0),1)
plt.xlabel(ʻtime (in milliseconds)ʼ)
plt.ylabel(ʻ# of spike occurrences at this 
timeʼ)
# End Python code for Figure 7

% What does the analogous MATLAB code % look 
like?
figure
subplot(2,1,1)
rectangle(ʻPositionʼ,[5,0,9,11],ʻFaceColorʼ,[0.7 
1 0.7],ʻlinestyleʼ,ʻnoneʼ)
for ii = 1:size(tenSpikeTrains,1)
spikeTimes = find(tenSpikeTrains(ii,:)==1)-1
line(repmat(spikeTimes,2,1),repmat([ii-0.5; ii+0
.5],1,length(spikeTimes)),ʻcolorʼ,ʻkʼ)
end
xlim([-0.5 20])
ylim([0.5 10.5])
title(ʻthis neuron still spikes to repeated 
trials of the same stimulusʼ)
xlabel(ʻtime (in milliseconds)ʼ)
ylabel(ʻTrial numberʼ)
set(gca,ʻLayerʼ,ʻtopʼ)
subplot(2,1,2)
rectangle(ʻPositionʼ,[5,0,9,8],ʻFaceColorʼ,[0.7 
1 0.7],ʻlinestyleʼ,ʻnoneʼ)
hold on
x=0:20;
bar(x,sum(tenSpikeTrains));
xlim([-0.5 20])
ylim([0 8])
xlabel(ʻtime (in milliseconds)ʼ)
ylabel(ʻ# of spikes counted at this timeʼ)
% End MATLAB code
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Pseudocode

§ Begin English explanation of code for Figure 7
Create the figure area
Specify that there are two rows and one column, and we’ll start 
with the first
Plot the vertical ticks lines
Shade the area green to indicate the time of light stimulation
Set the lower and upper bounds of the y-axis
Set the title of the plot to ‘this neuron still spikes to repeated 
trials of the same stimulus’
Set the x-axis label to ‘time (in milliseconds)’
Set the y-axis label to ‘trial number’
Set the y-axis tick locations and labels

Specify that we’re making a subplot layout with two rows, one 
column, plotting in the second row
Shade the stimulus area green
Make a histogram of all the spike times with bins from 0 to 20
Set the x-axis and y-axis labels
§ End English explanation of Python code for Figure 7 Figure 7. Neuron spikes to repeated trials of the same 

stimulus.  

Let’s go back to our hypothesis that the neuron fires 
“tonically at a rate of 500 spikes per second” to green 
light stimuli. We calculated that this would mean  
4.5 spikes on average for the duration of our particular 
stimulus. But how can we infer this spike rate from 
the PSTH above? First, let us plot a new figure in 
which we scale the number of spike occurrences at 
each time by the number of stimulus trials (setting 
aside the rasters for a moment). This will show us, on 
average, how often the neuron spikes at each time 
point and give us an estimate of the spike probability 
for each point in time.

We start by creating the figure and omit the subplot 
line, noting that you don’t need it for figures with 
single plots. Since we wanted to adjust the number 
of spikes for all the trials to form an estimate of spike 
probability, we will plot the mean of the spikes as a 
bar plot instead of a sum.

If the neuron spiked, on average, at a rate of 500 sp/s 
(every 1000 ms), then we might expect that for every 
millisecond there will be 0.5 spikes on average. Of 
course, we could not have performed this estimation 
with just a single trial, as one cannot count half a 
spike. By measuring repeated trials, we form a more 

robust estimate of the spike rate over time, with the 
prediction (from our hypothesis) that the neuron 
will maintain a spike probability of 0.5 during the 
time the stimulus is presented.

Let’s draw a horizontal dashed black line (note the 
linestyle which can make it dotted or dashed, 
among other line types, and the color = ‘k’ to denote 
black; we could have used ‘r’ for red, or ‘g’ for green, 
or ‘b’ for blue) at the 0.5 spike probability threshold. 
Had we wanted a vertical line, we could have used 
the Python function plt.axvline.

Pseudocode Create the figure 
Plot bar graph of the mean spikes 
Add horizontal line as a spike threshold

Python fig=plt.figure() 
plt.bar(range(21), 
np.mean(tenSpikeTrains,0),1) 
plt.axhline(y=0.5,xmin=0,xmax= 
20,linestyle=ʻ--ʼ,color=ʻkʼ)

MATLAB figure 
bar(0:20,sum(tenSpikeTrains)./
size(tenSpikeTrains,1)); 
line(xlim,[0.5 0.5],ʻlinestyleʼ, 
ʻ--ʼ,ʻcolorʼ,ʻkʼ)
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Also label the axes and title, save the figure, and 
show it. Let’s put it all together, using the simplified 
bar plot:

Python

# The Python way for Figure 8 
fig=plt.figure() 
plt.axvspan(5,14,alpha=0.1,color=ʻgʼ) 
plt.bar(range(21), np.mean(tenSpikeTrains,0),1) 
plt.axhline(y=0.5,xmin=0,xmax=20,linestyle=ʻ--
ʼ,color=ʻkʼ) 
plt.title(ʻspike probability given 10 stimulus 
trialsʼ) 
plt.xlabel(ʻtime (in milliseconds)ʼ) 
plt.ylabel(ʻprobability of spike occurrences at 
this timeʼ) 
plt.savefig(ʻFigure 8 normalized PSTH with cutoff.
pngʼ) 
# End Python code for Figure 8

MATLAB

%What does the analogous MATLAB code look like?
figure 
rectangle(ʻPositionʼ,[5,0,9,11],ʻFaceColorʼ,[0.7 
1 0.7],ʻlinestyleʼ,ʻnoneʼ) 
xlim([-0.5 20]) 
ylim([0 1]) 
hold on 
bar(0:20,sum(tenSpikeTrains)./
size(tenSpikeTrains,1)); 
line(xlim,[0.5 0.5],ʻlinestyleʼ,ʻ--ʼ, 
ʻcolorʼ,ʻkʼ) 
title(ʻspike probability given 10 stimulus 
trialsʼ) 
xlabel(ʻtime (in milliseconds)ʼ) 
ylabel(ʻprobability of spiking at this timeʼ) 
% End MATLAB code

In MATLAB, we simply normalize by the number of 
spike trains. Again, we see the power of MATLAB 
when handling matrices. Thus, represent something 
as a matrix whenever possible, as it will allow you to 
bring powerful tools to bear.

Pseudocode

§ Begin English explanation of code for Figure 8 
Create the figure plotting area 
Put the green shading in the 
Plot a bar plot of the mean of tenSpikeTrains 
Plot a dashed black horizontal line at y = 0.5 
Set the title to ‘spike probability given 10 stimulus trials’ 
Set the x-axis label to ‘time (in milliseconds)’ 
Set the y-axis label to ‘probability of spike occurrences at this 
time’ 
Save the figure to ‘Figure 8 normalized PSTH with cutoff.png’ 
§ End English explanation of code for Figure 8

Figure 8. Spike probability given 10 stimulus trials.  

At first glance, it seems that our hypothesis of a 
consistent probability of 0.5 spikes over the stimulus 
interval does not hold and is false. For now, we note that 
there are several phenomena that are not consistent 
with our hypothesis. For instance, there is a latency 
period before the spikes start, and there is a phasic 
component of high spike probability around 4 ms  
and a tonically maintained probability around 0.4 or 
0.5 for the remainder of the stimulus thereafter, even 
continuing for a while after the stimulus turns off. So 
it looks as though things are more complicated than 
we initially expected—which in biology should be 
expected. To further illuminate what is going on, we 
could vary the intensity of the light and hypothesize 
that the neuron fires more spikes with a shorter latency 
for brighter stimuli.

© 2016 Wallisch
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Let’s load in the Python dictionary called tenIntensities.pkl (or in the case of MATLAB, the .mat file 
tenIntensities.mat).

Python dictionaries are arranged in a manner where all of the values are assigned to a key. The key can be 
either a text string or a number, and the value can be almost anything: a number, string, list, array, or even 
another dictionary. To view the keys for this dictionary in Python, we type:

>>> tenIntensities.keys()

['4_intensity',

 '2_intensity',

 '8_intensity',

 '0_intensity',

 '7_intensity',

 '5_intensity',

 '9_intensity',

 '6_intensity',

 '3_intensity',

 '1_intensity']

Each key corresponds to the intensity of the stimulus, ranging from 0 to 9. So to get the values for, say, the 
key 4_intensity, we type:

>>> tenIntensities[ʻ4_intensity’]

[[15.0, 15.0, 22.0, 25.0, 34.0, 23.0],

 [10.0, 32.0, 34.0, 22.0, 34.0],

 [13.0, 17.0],

 [9.0, 30.0, 36.0, 33.0],

 [8.0, 32.0, 31.0, 35.0, 19.0, 36.0, 19.0],

 [30.0, 13.0, 31.0, 36.0],

 [21.0, 31.0, 27.0, 30.0],

 [12.0, 15.0, 23.0, 39.0],

 [23.0, 30.0, 14.0, 23.0, 20.0, 23.0],

 [9.0, 16.0, 13.0, 27.0]]

We observe that each list within this value comprises another list of spike times. We use these spike times 
now to visualize the PSTHs over all stimuli.

Our raster and PSTH plotting techniques here are the same as before, with two main differences. The first (and 
most obvious from the output figure) is that we now have 20 subplots: 10 rows and two columns. In the Python 
package matplotlib, the first subplot, referenced as 1, is always at the top left. As we increase this index, our 
plot moves across each row to the right, to the end of the row, before moving down to the next column.

In the Python code, we make use of the numpy function histogram. It calculates the number of occurrences 
of values over a given range. It then returns the count of how many values occurred within each bin, and also 
returns the bins used, assigning these to the variables preceding the equals sign (it doesn’t plot anything). 
We use the variables obtained with np.histogram to make our histogram below with the function bar. In 
the code below, we also give numpy a nickname, “np,” which lets us refer to packages in a shorthand manner, 
e.g., : np.histogram():
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Python MATLAB

# The Python way for Figure 9 
import pickle 
with open(ʻtenIntensities.pklʼ, ʻrbʼ) as handle: 
    tenIntensities = pickle.load(handle) 
 
fig = plt.figure() 
numIntensities = len(tenIntensities) 
nbar={} 
for key in tenIntensities.keys(): 
    ax=plt.subplot(numIntensities,2,float 
    (key[0])*2+1) 
    for trial in range(10): # this relies on 
there being 10 trials per stimulus intensity
 
plt.vlines(tenIntensities[key] [trial],trial, 
trial+1) 
    plt.xlim([0,20]);plt.ylim([0,10]) 
    plt.ylabel(ʻintensity: ʻ+str(key[0])+ʻ\
ntrial #ʼ,style=ʻitalicʼ,fontsize=5) 
    plt.yticks(fontsize=5) 
    plt.axvspan(5,14,alpha=0.1*float(key[0]), 
color=ʻgʼ) 
    if float(key[0]) < 9: 
        plt.xlabel(ʻʼ);plt.xticks([]) 
    else:
        plt.xlabel(ʻtime in millisecondsʼ) 
    if float(key[0]) == 0: 
        plt.title(ʻraster plot of spiking for 
each intensityʼ,fontsize=10) 
 
    ax=plt.subplot(numIntensities,2,float 
(key[0])*2+2) 
    plt.axvspan(5,14,alpha=0.1*float(key[0]), 
color=ʻgʼ) 
    spikeTimes = [a for b in tenIntensities[key] 
for a in b] #1 
    nOut,bins=np.histogram(spikeTimes, 
bins=range(20)) 
    nbar[float(key[0])] = nOut/10. 
    plt.bar(bins[:-1],nOut/10.) 
    plt.xlim([0,20]); plt.ylim([0,1]) 
    plt.yticks(fontsize=5) 
    plt.ylabel(ʻspike probʼ,style=ʻitalicʼ, 
fontsize = 6) 
    if float(key[0]) == 0: 
        plt.title(ʻPSTH for each intensityʼ, 
fontsize=10) 
    if float(key[0]) < numIntensities-1: 
        plt.xlabel(ʻʼ); plt.xticks([]) 
    else: 
        plt.xlabel(ʻtime in millisecondsʼ) 
plt.savefig(ʻFigure subplot 10 intensity rasters 
and psths.pngʼ) 
# End Python code for Figure 9

load(ʻtenIntensities.matʼ) 
figure 
a= [1:2:20]; 
b =[2:2:20]; 
for ii = 1:size(A2,1) 
subplot(10,2,a(ii)) 
if ii == 1 
        title(ʻraster plot for each intensityʼ) 
    end 
rectangle(ʻPositionʼ,[5,0,9,11],ʻFaceColorʼ,[1-
(0.1.*ii) 1 1-(0.1.*ii)],ʻlinestyleʼ,ʻnoneʼ) 
for jj = 1:10 
spikeTimes = find(A2{ii,1}(jj,:)==1)-1 
line(repmat(spikeTimes,2,1),repmat([jj-0.5; jj+0
.5],1,length(spikeTimes)),ʻcolorʼ,ʻkʼ) 
xlim([0 20]) 
ylim([0.5 10.5]) 
set(gca,ʻxtickʼ,[]) 
end 
end 
 
%xlabel(ʻtime (in milliseconds)ʼ) 
%ylabel(ʻTrial numberʼ) 
set(gca,ʻLayerʼ,ʻtopʼ) 
 
for ii = 1:size(A2,1) 
subplot(10,2,b(ii)) 
    if ii == 1 
        title(ʻPSTH for each intensityʼ) 
    end 
rectangle(ʻPositionʼ,[5,0,9,8],ʻFaceColorʼ,[0.7 1 
0.7],ʻlinestyleʼ,ʻnoneʼ) 
hold on 
x=0:length(A2{ii,1})-1; 
bar(x,sum(A2{ii,1})); 
xlim([-0.5 20]) 
ylim([0 8]) 
set(gca,ʻxtickʼ,[]) 
%xlabel(ʻtime (in milliseconds)ʼ) 
%ylabel(ʻ# spikesʼ) 
end

In the Python code, we slipped in the initialization of the dictionary nbar, which we did with curly braces 
{ }. Later in the code, we assign values from nOut, which represents the number of occurrences of spikes for 
particular times, to keys of nbar. We access all the values of nbar below with nbar.values().

Our ability to measure latency to first spike here becomes quite difficult. We can qualitatively say that higher-
intensity stimuli cause shorter latency responses. We will relish for now our ability to make colorful plots out 
of the spike data.
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Pseudocode

§ Begin English explanation of code for Figure 9 
Create new figure 
Declare an empty dictionary nbar 
For each key in the dictionary tenIntensities 
    First column, raster plots for each intensity of the light 
stimulus. Plot in subplot corresponding to each intensity (an 
example key is: ‘7_intensity’, so key[0] is the 0th value of the 
string ‘7_intensity’, which is ‘7’, and float(‘7’) equals 7.0, We 
take that value times 2 and add 1 so that subplot indices count 
by row. For each trial, this relies on there being 10 trials per 
stimulus intensity. Plot vertical lines corresponding to the spike 
times. 
    Format the raster plots: set the x-axis and y-axis limits. Set the 
y-axis label to the intensity, use ‘\n’ as a carriage return, label 
the trial number,  italic, and fontsize, set the y-ticks’ fontsize. 
Add the green box, use the alpha value so that the transparency 
scales with intensity. If the intensity is <9, that is, if we are not 
plotting at the bottom.  Do not label the x-axis. 
    Else, that is, if the intensity is 9. Label the x-axis as ‘time in 
milliseconds.’ 
    If the intensity is 0, that is, if we are plotting at the top. Set 
the title to ‘raster plot of spiking for each intensity’ and fontsize 
to 10. 
    First, perform list comprehension to unpack list. In the second 
column, plot the PSTHs for each intensity of the light stimulus. 
Plot the subplot in the second column, with each increasing 
intensity moving down a row. Plot the green box and set the 
alpha value to correspond to the intensity of the stimulus. 
Extract all the spike times for a stimulus intensity. Get nOut, 
a histogram array binned by the value bins. Add the values in 
nOut/10. to the dictionary nbar with key float(key([0])). Plot the 
PSTH with bar function, calling all the bins except the last bin, 
and scaling nOut by the number of trials (10). 
    Format the PSTHs: set the x-axis and y-axis limits to [0, 20] 
and [0, 1], respectively. Set the y-axis fontsize. Set the y-label 
to ‘spike prob,’ make it italic, and set the fontsize to 6. If we are 
in the first row (at the top). Set the title to ‘PSTH for each 
intensity,’ with a fontsize of 10. 
    If we are in any plot above the bottom plot, turn off the 
x-label and x-ticks. 
    Else if we are at the bottom plot, set the x-label to ‘time in 
milliseconds.’ 
 
Save the figure. 
§ End English explanation of code for Figure 9 

Python MATLAB

# Begin the Python way for Figure 10 
fig = plt.figure() 
ax = plt.subplot(111) 
aa = ax.imshow(nbar.values(),cmap=ʻhotʼ, 
interpolation=’bilinear’) 
plt.yticks([x for x in range(10)],[str(x) for x 
in range(10)[::-1]]) 
plt.ylabel(’stimulus intensityʼ) 
plt.xlabel(’time in millisecondsʼ) 
plt.title(’heat map of mean spiking for various 
intensity stimuliʼ) 
cb = fig.colorbar(aa,shrink=0.5) 
cb.ax.set_ylabel(ʻmean spikes per time binʼ) 
# End Python way for Figure 10

for ii = 1:size(A2,1)
    A3(ii,:) = (sum(A2{ii,1})./10);
end
A3(:,22:100) = [];
figure
h = pcolor(A3);
set(h,ʻFacecolorʼ,ʻinterpʼ)
set(h,ʻLinestyleʼ,ʻnoneʼ)
set(gca,ʻYDirʼ,ʻreverseʼ)
colormap(ʻhotʼ)
h = colorbar;
ylabel(h, ̒ mean spikes per time binʼ)
xlabel(ʻtime (in milliseconds)ʼ)
ylabel(ʻstimulus intensityʼ)
title(ʻheat map of mean spiking for stimuli of 
varying intensityʼ)

Figure 9. Raster plot of spiking and PSTH for each light 
stimulus intensity.  
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Pseudocode

§ Begin English explanation of code for Figure 10 
Create plotting area 
Specify that we’re making one subplot 
Plot the values of nbar as an image with a hot colormap and the 
colors bilinearly interpolated 
Set where the y-ticks go and what their labels are 
Set the y-axis label to ‘stimulus intensity’ 
Set the x-axis label to ‘time in milliseconds’ 
Set the title to ‘heat map of mean spiking for various intensity 
stimuli’ 
Create a colorbar, use the shrink command to customize its 
height 
Set the colorbar label to ‘mean spikes per time bin’ 
§ End English explanation of code for Figure 10

Pseudocode Create figure plotting area 
Specify two rows and two columns to plot, select the first one 
Plot the bar values as image with colormap hot, bilinear interpolation, and aspect 1.2 
Turn the y-axis and x-axis tick marks off 
Specify two rows and two columns to plot, select the second one 
Plot the bar values as image with colormap bone, nearest interpolation, and aspect 1.2 
Turn the y-axis and x-axis tick marks off 
Specify two rows and two columns to plot, select the third one 
Plot the bar values as image with colormap jet, bicubic interpolation, and aspect 1.2 
Turn the y-axis and x-axis tick marks off 
Specify two rows and two columns to plot, select the fourth one 
Plot the bar values as image with colormap cool, nearest interpolation, and aspect 1.2 
Turn the y-axis and x-axis tick marks off 
Save figure

Python fig = plt.figure(); ax = plt.subplot(221) 
aa = ax.imshow(nbar.values(),cmap=‘hot’ ,interpolation=‘bilinear’,aspect=1.2) 
plt.yticks([]); plt.xticks([]) 
ax = plt.subplot(222) 
aa = ax.imshow(nbar.values(),cmap=‘bone’, interpolation=‘nearest’,aspect=1.2) 
plt.yticks([]); plt.xticks([]) 
ax = plt.subplot(223); 
aa = ax.imshow(nbar.values(),cmap=‘jet’, interpolation=‘bicubic’,aspect=1.2) 
plt.yticks([]); plt.xticks([]) 
ax = plt.subplot(224) 
aa = ax.imshow(nbar.values(),cmap=‘cool’, 
interpolation=‘nearest’,aspect=1.2) 
plt.yticks([]); plt.xticks([]) 
plt.savefig(‘Figure 10—four heat maps labels off.png’)

MATLAB figure 
ax1 = subplot(2,2,1) 
h = pcolor(A3); 
set(h,ʻFacecolorʼ,ʻinterpʼ) 
set(h,ʻLinestyleʼ,ʻnoneʼ) 
set(gca,ʻYDirʼ,ʻreverseʼ) 
colormap(ax1,ʻhotʼ) 
axis off 
ax2 = subplot(2,2,2) 
h = pcolor(A3); 
set(h,ʻLinestyleʼ,ʻnoneʼ) 
set(gca,ʻYDirʼ,ʻreverseʼ) 
colormap(ax2,ʻboneʼ) 
axis off 
ax3 = subplot(2,2,3) 
h = pcolor(A3); 
set(h,ʻFacecolorʼ,ʻinterpʼ) 
set(h,ʻLinestyleʼ,ʻnoneʼ) 
set(gca,ʻYDirʼ,ʻreverseʼ) 
colormap(ax3,ʻjetʼ) 
axis off 
ax4 = subplot(2,2,4) 
h = pcolor(A3); 
set(h,ʻLinestyleʼ,ʻnoneʼ) 
set(gca,ʻYDirʼ,ʻreverseʼ) 
colormap(ax4,ʻwinterʼ) 
axis off

Figure 10. Heat map of mean spiking for various intensity 
stimuli.
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So that’s it for basic spike wrangling. Admittedly, this 
was somewhat of a toy example, but we have to get 
started somewhere. You will find in your own dataset 
that you will need to employ a variety of wrangling 
methods to achieve your desired outcome—the goal 
here is to learn the various tools that help you to do so.

Questions We Did Not Address
In the 10 intensity stimulus-response set, what order 
were the stimuli presented in? Did all of the bright 
intensity stimuli occur sequentially before moving to 
a lower intensity stimulus?  If so, might the ordering 
of the stimuli influence the neuron’s response 
characteristics?  Might the neuron exhibit adaptation, 
where its firing probability adapts as a function of 
previous stimuli and its internal characteristics?  How 
much time of no stimuli was there between trials—
what was the intertrial interval, or ITI?  How might 
changing the ITI influence the neuron’s spiking?

What other optogenetic tools could we use to study 
the activity of single neurons?  How many photons are 
required for the activation of channelrhodopsin-2? 
What sort of latency of activation patterns would 
we expect for other optogenetic tools?  What sort of 
experimental preparation would be required to mimic 
the experiment in this chapter? And lastly, what sort 
of experimental apparatus would be necessary to 
record from a single neuron?

Thoughts on the Proper Unit of 
Measurement for Spiking Activity 
of Single Neurons
Data derive from the outcome of a measurement 
process. A unit of measurement is the fundamental 
unit we use to express the quantity of a given quality. 
For instance, the currently agreed upon unit of 
measurement for length in the SI system is the meter, 
defined as “the length of the path travelled by light 
in vacuum during a time interval of 1/299,792,458 
of a second.” (Taylor and Thompson, 2008). 
Consequently, all lengths that we wish to measure 

are then expressed in multiples of this reference 
length, e.g., 2 m or 0.5 m. This raises the question 
of what the appropriate unit of measurement for 
spiking activity (firing rate) is. The firing rate of a 
neuron in response to a given stimulus (or even in 
the absence of a stimulus) is a quality of the neuron. 
The implication is that the neuron in question 
discharges action potentials (or “spikes”) a certain 
number of times in a given interval, usually 1 s. 
The choice of this interval is probably what led to 
the fundamental confusion that one often sees in 
neuroscience publications. Firing rates are frequently 
expressed in terms of “Hz,” e.g., “the neuron fired 
at a rate of 30 Hz.” The “Hz” in question refers to 
the unit of measurement of a periodic, oscillatory 
process, namely 1 cycle (or period) per second. 
Unfortunately, this fundamentally mischaracterizes 
the very nature of action potentials. In contrast 
to harmonic oscillators (e.g., the motion of guitar 
strings), action potentials are neither cyclical nor 
periodic. Most frequently, they are conceptualized 
as “spikes,” or point processes, in which case only 
the time when they occurred and how often this 
happened in a given interval are meaningfully 
interpretable. Spiking activity of single neurons 
is notoriously aperiodic and highly irregular—
interspike intervals in a spike train are close to what 
would be expected from a Poisson process (Softky 
and Koch, 1993), and the variance of spike counts 
upon repeated stimulation suggests overdispersion 
(Taouali et al., 2016). Finally, it makes practical sense 
to avoid expressing firing rates in Hz simply in order 
to avoid the potential confusion when plotting them 
simultaneously with quantities that are appropriately 
expressed in Hz, such as the temporal frequency of a 
stimulus or the power of an analog signal in a certain 
frequency bin. The debate about the theoretical 
significance of neural oscillations is heated enough 
(Shadlen and Movshon, 1999) without implying 
that spike rates are inherently oscillatory as well.

But if it is not Hz, what is the proper unit for firing 
rate? Because spikes are typically defined by the 
voltage trace recorded from an electrode in the brain 
crossing a reasonable threshold—and recorded as 
the time at which this crossing happened—and then 
counted, it makes sense to express spikes in units 
of impulses per second (ips), sp/s, or simply events 
(threshold crossings) per second. All of these units 
are conceptually sound, and it is perhaps this range 
of equally suitable available options that prevented 
any of them from catching on as a consensus. In 
military contexts, the “rate of fire” (of rapid-firing 
guns) is typically expressed in rounds per second 
(rps), so by analogy, spikes per second (which is what 
we care about in a firing rate) is perhaps the most apt. 

Figure 11. Four heat maps.
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Historically, there has been a movement to replace 
these units with the eponym “Adrians,” in honor of the 
pioneering Lord Edgar Douglas Adrian, the original 
discoverer of the rate code (Adrian, 1926), who won 
the Nobel Prize in 1932 and is the purported great-
grandfather of many a neurophysiologist (neurotree.
org). However, this unit did not catch on either, and 
given the problematic nature of eponyms, this is 
perhaps just as well (Wallisch, 2011). Even so, almost 
anything would be better than expressing firing rates 
in Hz, which is fundamentally misleading. To repeat: 
a rate is not a frequency. For actual frequencies, the 
entire signal scales with it if the frequency changes. 
In contrast, the individual action potentials remain 
invariant regardless of spike rate. These are fast 
events that have to be sampled frequently—or at 
high frequency—in order to be captured, even (or 
particularly) if the actual spike rate is very low.

Correlating Spike Trains
This section introduces the first fully developed data 
analysis project as well as the conceptual framework 
to do so in a principled fashion: the canonical data 
analysis cascade. Here, we go through the entire data 
analysis cascade—from loading data to cleaning it, 
to representing it in the right format, to doing the 
actual analysis, to making output figures and saving 
the results.

The authors vividly remember our first five years 
of coding with Python or MATLAB: specifically, 
writing code to analyze data. The latter is rather 
different from coding for, let’s say, building a GUI. 
Everything becomes more complicated when data 
get involved, and we were admittedly rather lost 
during that entire time, writing convoluted code for 
programs that included thousands of lines—code that 
was impossible to maintain or understand even after 
a short period of time. In essence, we were lacking 
the principles of software development design for the 
analysis of data.

Since that time, we have discovered principles 
that work, which we will outline and detail in this 
section. It has not escaped our notice that these 
principles closely resemble what seems to have been 
implemented by the perceptual system (at least 
in the primate, to the degree of understanding we 
have now). This makes sense: perceptual systems 
are designed to analyze the environment in order 
to extract relevant actionable information. We will 
show this using the example of the visual system 
because it is (to date) the most studied and perhaps 
best understood. Perceptual systems have been in 
development for hundreds of millions of years under 
relentless evolutionary pressure, yielding a high-

performance analysis framework. As far as we can tell, 
all sensory systems (with the exception of olfaction, 
which is special) follow the five steps outlined next, 
and there are principled reasons for this.

Figure 12. A cartoon of the primate visual system up to area 
V1. This illustration omits quite a few structures, e.g., the 
superior colliculus and the suprachiasmatic nucleus, but shows 
the basic signal flow.

Step 1: Transduction
Every sensory system has to convert some kind of 
physical energy in the environment into the common 
currency of the brain. This currency consists of action 
potentials or spikes. In the case of vision, photons 
enter the eye through a narrow aperture (the pupil) 
and are focused on the retina by the lens. The retina 
transduces (i.e., converts) the physical energy into 
action potentials. What leaves the eye is a train of 
action potentials (a spike train, discussed earlier) 
carried by the optic nerve. The coding equivalent of 
this is to write dedicated “loader” code whose purpose 
is to load data from whatever format it was generated 
in. Each physiological data collection system creates 
its own data files; for example, .plx files, .nev files, 
.nex files, .xls files, and .txt files are some popular 
formats. For one to be able to do anything with these 
in Python or MATLAB, they have to be converted 
into a format that Python or MATLAB can use first.

Step 2: Filtering
Once a spike train reaches the cortex, it will 
be processed. This can be a problem either if it 
corresponds to information that is not relevant at the 
time or if it is malformed in some way. In other words, 
the brain needs a gatekeeper to keep this irrelevant 
information out. In the brain, this step corresponds 
to the thalamus—specifically, the LGN in the visual 
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system. This nucleus relays information from the 
retina to the visual cortex, but does so in a selective 
fashion. Of course, this raises the question of how the 
thalamus knows what irrelevant information is before 
it has been analyzed by cortex. The brain solves this 
problem in several ways, including via an analysis for 
low-level salient features, such as fast motion or high 
contrast, and then feeds that information back to the 
thalamus; many recurrent feedback loops fine-tune 
the filtering process.

Similarly, we strongly recommend implementing 
this step in code. It is very difficult to write analysis 
code that is flexible enough to handle data that 
are not usable, whether that is because parts of 
the data are missing, the study participant is not 
doing what he or she is supposed to, the data are 
corrupted, the electrode is not working, or the 
like. If such data enter the processing cascade, they 
usually render the result meaningless or break the 
code altogether. It is best to avoid such data being 
processed in the first place. This step can be called 
“cleaning,” “pruning,” or “filtering” the data. It is 
important that this step be performed agnostic to 
the results of the analysis. If you throw out data that 
do not conform to your hypothesis, you can get data 
supporting any hypothesis—this is considered “data 
doctoring,” so don’t do it. In contrast, this kind of 
integrity check before performing full-scale analysis 
is critical. Another analogy for this step is that of a 
gatekeeper—the CEO (the cortex) can’t be bothered 
with irrelevant information. If all of it were let in, 
then nothing would get done. That’s where a strict 
personal assistant comes in. Make sure to implement 
that gatekeeper in code.

Step 3: Formatting
The next step performed by the visual system is a 
categorical analysis of the data arriving from the 
thalamus. This step is performed by the early visual 
system, particularly V1. Here, the visual system 
determines the location and basic orientation of line 
segments (Hubel and Wiesel, 2004), for example, 
what is foreground and what is background figure 
(Craft et al., 2007). Heuristically, this step can be 
understood as setting the stage for further analysis, 
and not so much as doing a lot of analysis here already. 
The reasons for this will be understood more clearly 
when discussing the next step. Thus, we conceive of 
this step as “formatting” the data for further analysis: 
it is an absolutely critical step for data analysis. Once 
data are formatted properly, the rest of the analysis is 
usually rather straightforward. It might be unsettling 
to the beginner, but it is not unusual to spend *most* 
of one’s time writing analysis code in this step, simply 

“formatting” the data. Once data structures are set 
up properly, the actual analysis often corresponds 
to something very simple, such as “loop through all 
participants in these conditions, then compare their 
means.” Similarly, the visual system recognizes the 
importance of this step—in the primate, the “early” 
visual system makes up approximately half the visual 
system by area (Wallisch, 2014).

Step 4: Calculator
In the visual system, the calculation step is 
implemented by the extrastriate cortex—the cortical 
regions after striate cortex (or primary visual cortex) 
in the visual processing stream. Interestingly, whereas 
the previous steps have been done mostly in serial 
fashion (the feedback to thalamus notwithstanding), 
this step is better referred to as plural steps because 
they happen in parallel, meaning that the signal might 
split into two or more copies so that multiple processes 
can occur on it simultaneously (Wallisch and 
Movshon, 2008). The fundamental reason for this is 
that, in order to achieve the goal of the computation, 
many computations have to abstract from some 
aspects of the source information, in effect destroying 
it. This might be information that is also important 
but is better computed, in parallel, by another area. 
In effect, different parts of extrastriate cortex (at a 
minimum, dorsal and ventral stream) (Mishkin et al., 
1983) make copies of the information provided by V1 
and work on that toward some outcome. For instance, 
in order to compute the speed of objects, it might be 
necessary to abstract from their location and identity 
information that is also crucial to the organism, but 
cannot be computed at the same time by the same 
area or serially. A parallel approach is perhaps the best 
attempt to solve this problem.

We recommend doing something similar in code to 
implement this step. Specifically, we recommend 
creating as many parallel analysis streams as there 
are analysis goals. The number of analysis goals is 
given by how many theoretical questions need to 
be answered for any given project. For instance, it is 
conceivable that one analysis is concerned with the 
mean response of neurons under certain conditions, 
whereas another deals with its variability; in this 
case, the underlying analyses are best done on copies 
of the original dataset and are complementary to 
each other. More analyses (e.g., a correlational 
analysis) might build on these, as we will attempt 
here. We recommend labeling these steps 4a, 4b, 
4c, etc., in the code, signifying analysis steps that 
are in principle independent of each other but can 
rely on each other (e.g., 4c being executed after 4a). 
Note that parallel processing has a similar meaning 
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in computer science, in which computations are 
performed on data split onto different machines.

Figure 13. A cartoon of the extrastriate visual system after 
area V1.

Step 5: Output
This might come as a surprise to people living in the 
modern age, but the purpose of the visual system 
is not to provide fancy images for one’s viewing 
pleasure but to improve the survivability of the 
organism. This is true for sensory systems in general. 
Perception is not an end in itself: unless it results in 
motor output, the outcomes of its calculations are 
irrelevant. Over time, the system has been optimized 
to provide more adaptive outputs. In primates, 
the end result of the visual processing cascade in 
extrastriate areas is linked with motor cortex in order 
to transform the visual input to real-world outputs 
and memory systems to store information (the results 
of the computations on the inputs). We will do the 
same here, in code.

Specifically, we will hook up the outputs of step 4 
(e.g., 4a, 4b) to corresponding outputs (i.e., 5a, 5b). 
Sometimes, we just want to output some numbers to 
the screen. Often (but not always) in the real brain, 
not every computation results in a motor output—
this will be a corresponding figure that visualizes the 
outcome of a computation. Usually, we want to store 
the results so that we can load them in later without 
having to redo the entire analysis from scratch (this 
is particularly important, as some analyses are rather 
time-consuming). You will want to have as many 
output functions (or files) as there are outputs of step 4.

Summing Up
And that sums up the general purpose framework 
(“the canonical data analysis cascade”) that can be 
used for any data analysis project. We believe it is 
efficient and use it ourselves on a daily basis. As far as 
we can tell, most sensory systems do as well. Note that 
sometimes, some of these steps can be combined into 
one, e.g., by attempting to do the filtering (pruning/
cleaning) step at the same time as the formatting 
step in order to realize further efficiency gains. 
Sometimes you will want to combine calculation and 
output steps, although one usually can output the 
same information in multiple ways. As long as you 
are careful when doing so, there is no problem with 
combining steps, although we recommend separating 
the steps more strictly if you are an absolute novice 
until all of this becomes second nature.

Concluding Advice: Add Step 0 and 
Step 6
To conclude, we strongly advise re-creating these five 
principal steps in code when attempting any full-scale 
data analysis project. Specifically, we recommend 
partitioning analysis code into these steps, either 
by writing individual files that correspond to each 
step or by dividing up the code into self-contained 
segments. What is important is that each logical 
segment fits on a screen (or just about fits); if it 
does not, it will be very difficult to maintain. In our 
experience, analysis code has to be revisited with 
surprising regularity (e.g., when Reviewer 3 asks for 
additional analyses), and unfortunately, memory for 
code seems to be rather transient. In other words, if 
you do not organize and comment your code well, 
you will not understand the code you wrote, even 
after a relatively short time. This can put you in a 
difficult position, for instance, when pressed for time, 
as when grant deadlines loom or code reviews are 
pending. So it is best to avoid it.

In addition to these five steps implemented by sensory 
systems of the brain, we recommend adding a zeroth 
and a sixth step. The zeroth step is an “initialization” 
step. In the brain, this might correspond to birth, and 
similarly, you want to start from as nearly a blank slate 
as possible. In our experience, many logical errors 
in programming are caused by something lingering 
in memory that you forgot about that affects the 
execution of your code. These errors are hard to track 
down and can be catastrophic. It is best to avoid 
them in the first place, and the best way to do that 
is to clear the memory before doing anything else. In 
addition, in this step you will want to define some 
constants, parameters, or analysis flags. The reason to 
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do this here (and not strewn throughout the code) is 
that you have an easily accessible section—all in one 
place, at the beginning of the code—that governs its 
execution, e.g., options to run the analysis with or 
without normalization, settings for which baseline 
to use, and similar instructions. Even the brain at 
birth does not start with a completely blank slate, 
owing to the complex nature of the development of 
synaptic organization via both genetics and maternal 
environment, and there is a reason for that.

Finally, in the spirit of making the code 
maintainable—and even runable a couple of months 
after writing it, we recommend writing a file that 
corresponds to the sixth step. This step is a kind of 
“wrapper” and “readme” file that, if you wrote a file 
for each of the five steps, calls up the right files with 
the right parameters in the right order and provides 
some kind of documentation of what is going on.
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NOTESThe Contributions of Statistics
Most scientists who analyze data have had little exposure 
to the field of statistics, and what they know about it has 
either been self-taught from haphazard sources or come 
from a single introductory course. Although in many 
circumstances such limited knowledge is enough to get 
the job done, users of statistics who lack deeper training 
rarely appreciate the principles that drive the discipline. 
The book Analysis of Neural Data (Kass et al., 2014), 
which I wrote with Uri Eden and Emery Brown, attempts 
to highlight those principles in an accessible exposition, 
weaving them into the body of methods traditionally 
discussed in basic courses and including some topics 
that are more advanced. In this Short Course chapter, 
I summarize several of the key ideas, quoting liberally 
from the book. One of the reasons my colleague Emery 
Brown and I started down the long path toward writing 
that book was our shared discomfort with treatments 
of data reported in the many otherwise high-quality 
papers we were reading in the neuroscience literature. 
As we say in the book (hereafter, all quotes are from the 
book without explicit citation):

Many researchers have excellent quantitative 
skills and intuitions, and in most published work 
statistical procedures appear to be used correctly. 
Yet, in examining these papers we have been struck 
repeatedly by the absence of what we might call 
statistical thinking, or application of the statistical 
paradigm, and a resulting loss of opportunity to 
make full and effective use of the data. These cases 
typically do not involve an incorrect application of 
a statistical method (though that sometimes does 
happen). Rather, the lost opportunity is a failure 
to follow the general approach to the analysis of 
the data, which is what we mean by the label “the 
statistical paradigm.” (Kass et al., 2014, 2)

Overview: Two Fundamental 
Tenets of the Statistical Paradigm
After numerous conversations with colleagues, we 
have arrived at the conclusion that among many 
components of the statistical paradigm, summarized 
below, two are the most fundamental (Kass et al., 
2014, 8):

1. Statistical models are used to express knowledge 
and uncertainty about a signal in the presence of 
noise, via inductive reasoning.

2. Statistical methods may be analyzed to determine 
how well they are likely to perform. (Kass et al., 
2014, 9) 

I will briefly explain these ideas.

Statistical models
Statistical models describe regularity and variability 
of data in terms of probability distributions. The two 
examples below are from Kass et al. 2014, pages 9–13.

Example 1
Marshall and Halligan (1988) reported an interesting 
neuropsychological finding from a patient, identified 
as P.S. This patient was a 49-year-old woman who 
had suffered damage to her right parietal cortex that 
reduced her capacity to process visual information 
coming from the left side of her visual space. For 
example, she would frequently read words incorrectly 
by omitting left-most letters (“smile” became “mile”), 
and when asked to copy simple line drawings, she 
accurately drew the right-hand side of the figures but 
omitted the left-hand side without any conscious 
awareness of her error. To show that she could actually 
see what was on the left but was simply not responding 
to it—a phenomenon known as “blindsight”—the 
examiners presented P.S. with a pair of cards showing 
identical green line drawings of a house, except that 
on one of the cards, bright red flames were depicted on 
the left side of the house. They presented to P.S. both 
cards, one above the other (the one placed above being 
selected at random), and asked her to choose which 
house she would prefer to live in. She thought this 
was silly “because they’re the same,” but when forced 
to make a response chose the non-burning house on 
14 out of 17 trials. This would seem to indicate that 
she did, in fact, see the left side of the drawings but 
was unable to fully process the information. But how 
convincing is it that she chose the non-burning house 
on 14 out of 17 trials? Might she have been guessing?

If, instead, P.S. had chosen the non-burning house 
on 17 out of 17 trials, there would have been very 
strong evidence that her processing of the visual 
information affected her decision-making; on the 
other hand, a choice of 9 out of 17 clearly would have 
been consistent with guessing. The intermediate 
outcome (14 out of 17) is of interest as a problem 
in data analysis and scientific inference precisely 
because it feels fairly convincing but leaves us unsure: 
a thorough, quantitative analysis of the uncertainty 
would be very helpful.

The standard way to begin is to recognize the variability 
in the data, namely, that P.S. did not make the same 
choice on every trial; we then say that the choice 
made by P.S. on each trial was a random event, that 
the probability of her choosing the non-burning house 
on each trial was a value p, and that the responses on 
the different trials were independent of each other. 
These three assumptions use probability to describe the 
variability in the data. Once these three assumptions 
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NOTES are made, it becomes possible to quantify the 
uncertainty about p and the extent to which the data 
are inconsistent with the value p = 0.5, which would 
correspond to guessing. In other words, it becomes 
possible to make statistical inferences. Specifically, 
using standard statistical methods, we obtain an 
approximate 95% confidence interval (CI) of (0.64, 
1.0). This CI expresses strong confidence that, based 
on these data, p is substantially larger than 0.5.

In this example, we introduced an abstract quantity 
p in order to describe the variability of outcomes for 
the repeated-choice framework of the investigation. 
More specifically, we can label the choice “burning” 
as a value 1 and the choice “non-burning” as a value 
0; we let X be the abstract quantity that determines 
the choice so that on a given trial, we have either X = 
1 or X = 0; we say that p is the probability that X = 1, 
often written as p = P(X = 1); and, finally, if we let Y 
be the sum of the values of X across all 17 trials, then 
Y could, in principle, take any value from 0 to 17 and, 
beginning with p = P(X = 1), we can use probability 
theory to compute the probability of any value taken 
by   in terms of p, such as P(Y = 14). The probability 
distribution for Y is called a “binomial distribution,” 
and Y itself is called a “random variable.” Random 
variables are abstract mathematical objects that have 
probability distributions. We refer to the representation 
of the data by the random variable Y, together with the 
binomial distribution for Y, as a “statistical model.” It 
is important to note that there is both a systematic part 
of the variation, which is what we will care about and 
call “signal” (here it is represented by p), together with 
a remaining component of the variation, captured by 
the binomial distribution, which we call “noise.”

Notice here that I have followed a standard statistical 
convention in using a capital letter to stand for 
a random variable. This can be helpful in more 
complicated settings because it allows us to identify 
quickly key elements of the model that are assumed 
to be random variables.

An additional statistical convention is to use 
subscripts on random variables to identify specific 
instances. In this example, the instances would be 
the 17 trials, so we would have 17 outcome variables    
X1,X2,…,X17 and we would write
 17

Y = Σ Xi = X1 + X2 + … X17.
 i =1

The binomial model in this example combines signal 
and noise in a somewhat subtle way: the signal is a 
parameter of the binomial distribution, in the sense 
that we can compute the probability of each outcome 

once we know p (together with the number of trials). 
Conceptually, we might write

“outcome = signal + noise”,

where I have used quotes to indicate that we didn’t 
actually add the signal and noise. In the next example, 
involving a linear regression model, we do add signal 
and noise to get the outcome random variable. In 
linear regression, we relate x and y variables. The 
signal here has the form

y = f (x) 
f (x) = β0 + β1x,

where I have written the intercept and slope of the line 
as   β0 and  β1 to be consistent with the most common 
notation used in statistics. The corresponding 
statistical model introduces the random variable Y 
for the outcome of y and includes a noise random 
variable customarily denoted by ε. Because the data 
come as a set of (x, y) pairs, we use the subscript i to 
refer to data pair i, and the statistical model becomes

 Yi  = f (xi) + εi       (1)

and by again taking f (x) = β0 + β1x, we have a linear 
model.

Example 2
Hursh (1939) presented data on the relationship 
between a neuron’s conduction velocity and its axonal 
diameter, in adult cats. Hursh measured maximal 
velocity among fibers in several nerve bundles, and 
then measured the diameter of the largest fiber in the 
bundle. The resulting data, together with a fitted line, 
are shown in Figure 1. The fitted line is determined by 
least-squares. In this case, the line y = β0 + β1x  represents 
the approximate linear relationship between maximal 
velocity y and diameter x. The data follow the line 
pretty closely, with the intercept β0 being nearly equal 
to zero. This implies, for example, that if one fiber has 
twice the diameter of another, the first will propagate 
an action potential approximately twice as fast as the 
second. For the slope, we found β̂0 = 6.07 with standard 
error  SE(β̂1) = 0.14. We would report this by saying that, 
on average, action potential velocity increases by 6.07 
± 0.14 m/s for every micrometer increase in diameter of 
a neuron. An approximate 95% CI for the slope of the 
regression line is 6.07 ± 2(0.14) or (5.79, 6.35).

The distinction between data 
quantities and theoretical quantities
Fundamental to statistical reasoning is the distinction 
between random variables and the data they represent. 
For example, histograms are often used to display 
variation in the data, and this is usually represented 
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NOTESby the mathematical notion 
of a random variable having 
a probability distribution, 
with its probability density 
function (pdf) corresponding 
to the histogram. It is easy to 
confuse the two. When we 
speak of “the distribution of 
the data,” we may be referring 
to the way the histogram 
looks, but the data themselves 
do not follow a probability 
d i s t r ibut ion—probabi l i ty 
distributions apply only to 
random variables. Similarly, 
we may speak of the mean or 
variance of some assortment 
of numbers, and we can also 
speak of the mean and variance 
of a probability distribution. 
When we conceptualize data 
variation using probability 
distributions, it is easy to be 
sloppy in using a term like “the 
mean” by failing to say whether 
we are referring to the mean in 
the data or the mean in the probability distributions. 
It is fine to be sloppy sometimes, but it is important to 
recognize the fundamental distinction between data-
based quantities and theoretical quantities.

Specifically, the mean of a set of numbers x1, x2, …, xn is
 

1
 n

x = — Σ xi ,
 n  i =1

whereas the mean or expectation of a random 
variable X having pdf fX(x) is

μX = E (X) = Σ x fX (x),
 x

where the sum is over all the possible values of x. 
When there is a continuum of possible x values, we 
say that the distribution is “continuous” and we write

μx = E (X) = ∫x fX (x)dx.

Similarly, the variance of X in the continuous case is

σ 2
X  = V (X) = ∫(x – μX)2 fX (x)dx.

Often the subscript X is dropped, and the most 
common statistical notations for a theoretical mean 
and variance are μ and σ2, with σ = σ2 being the SD.

When data consist of a set of numbers x1, x2, …, xn  

representing repeated observation or measurement of 
some quantity under nearly identical experimental 
conditions, it is common to represent the observations, 
theoretically, as a set of random variables X1, X2, …,  
Xn, all of which follow the same distribution, with 
all being assumed to be statistically independent. In 
this case, the random variables constitute a random 
sample from the distribution of each X. In Example 1,  
the 17 trials were assumed to be homogeneous 
and independent in this sense—they would not be 
independent if the subject suffered from fatigue or 
some kind of tendency to answer based on previous 
answers. In Example 2, the εi variables were assumed 
to be homogeneous and independent. The most 
serious departures from this assumption of linear 
regression occur when there is temporal structure 
in the data, with adjacent values of “noise” being 
related to each other.

Statistical Theory
Statistical theory is used to understand the behavior 
of statistical procedures under various probabilistic 
assumptions. In statistics, the greek letter theta (θ) 
is used to denote a parameter to be estimated from 
the data. This parameter could be either a scalar or a 
vector. For instance, θ might be a binomial parameter, 
as in Example 1, where θ = p, or it could be the pair of 
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Figure 1. Conduction velocity of action potentials as a function of diameter. The 
x-axis is the diameter in micrometers; the y-axis is velocity in m/s. Also shown is  
the least-squares regression line. Reprinted with permission from Kass et al. (2014), 
Analysis of Neural Data, copyright 2014, Springer Science+Business Media.
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NOTES coefficients in a line, as in Example 2, where θ = (β0, 
β1). A common notation for an “estimator,” meaning a 
random variable that is used to estimate a parameter θ, 
is θ̂. Sometimes, especially when it is important to stress 
the generality of an estimation process (so that the 
quantity it is estimating is implicit rather than explicit), 
an estimator is written as a random variable T.

Additional information about essential ideas in 
statistical theory, including elaboration of the points 
made below, may be found in Kass et al. 2014, 
Chapter 8.

Mean-squared error
A relatively simple and very commonly applied 
criterion for evaluating how well an estimator T is 
able to estimate a parameter θ is mean squared error 
(MSE), defined by

MSE (T) = E((T – θ)2).

An interesting and important feature of MSE, which 
can be derived with a few lines of algebra, is that it 
combines two ways an estimator can perform poorly. 
The first involves the systematic tendency for the 
estimator T to miss its target value θ. An estimator’s 
“bias” is Bias(T) = E(T) – θ. When the bias is large, 
on average T will not be close to θ. The second is the 
variance V(T). If V(T) is large, then T will rarely be 
close to θ. Figure 2 illustrates, by analogy with shooting 
at a bull’s-eye target, the situations in which only the 
bias is large, only the variance is large, both are large 
(the worst case), and finally, both are small (the best 
case). Part of the appeal of MSE is that it combines 
bias and variance in a beautifully simple way:

MSE(T) = Bias(T)2 + Variance(T). (2)

Optimality
Using MSE, it is possible to evaluate alternative 
estimators of a parameter θ. A fundamental result 

high bias
low variance

low bias
high variance

low bias

low variance

high bias

high variance

Figure 2. Illustration of shots aimed at a bull’s-eye to illustrate the way estimates can miss their “target.” They may be systemati-
cally biased, or they may have high variability, or both. The best situation, of course, is when there is little systematic bias and little 
variability. Reprinted with permission from Kass et al. (2014), Analysis of Neural Data, copyright 2014, Springer Science+Business 
Media.
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(essentially, first arrived at by Fisher in 1922, but 
made more precise and general by many subsequent 
authors in work running through the 1970s) is that, 
in large samples of data, the method of maximum 
likelihood (ML) minimizes MSE. In this sense, 
maximum likelihood estimators (MLEs) are optimal. 
In addition, it may be shown that Bayes estimators 
are also optimal in this sense, and in fact, MLEs 
and Bayes estimators are approximately equal 
(again, for large samples of data). A different, but 
also fundamental, mathematical result is that Bayes 
classifiers are optimal in the sense of minimizing the 
average number of misclassified observations.

One key qualification to keep in mind about these 
optimality results is that they hold true for random 
variables that follow specified probability distributions. 
That is, they hold when it is assumed that a random 
variable follows a specific probability distribution (so 
that all probabilities for values of the random variable 
become known once the value of the parameter θ is 
known). When a knowledgeable data analyst chooses 
not to use ML or Bayes estimation, or not to apply 
a Bayes classifier, it is because he or she is worried 
that the probabilistic assumptions needed to justify 
optimality may be highly inaccurate representations 
of the variation in the data. Other procedures can 
be shown to perform relatively well, in certain 
circumstances, with less restrictive assumptions.

Confidence Intervals and the 
Bootstrap
The idea of a confidence interval
By themselves, estimates are of little value without 
some notion of their accuracy. Theory shows that in 
many cases, the squared bias in Equation 2 is much 
smaller than the variance, so the variance represents 
accuracy. The square root of the estimator variance 
has the same units as the estimator and the parameter 
being estimated. It is called the standard error (SE) of 
the estimator:

SE = V(T)

This definition of SE should not be confused with 
the standard error of mean (SEM), which is a special 
case. In fact, the SEM is applied so frequently that 
many people use SE to refer only to this special case. 
Here, however, I am using the general statistical 
terminology for SE.

In the many common situations where SE summarizes 
accuracy, it also typically happens that the estimator 
T is approximately normally distributed, for large 
samples. Specifically, because the bias is small, this 
means that T follows, approximately, a normal 

distribution with mean θ and SD SE. When a random 
variable X follows a normal distribution with mean μ 
and SD σ, the probability that X will take a value 
in the interval (μ – 2σ, μ + 2σ) is 0.95 (rounding to 
two digits). Therefore, in these common situations, 
for large samples, there will be a probability of 
0.95 that T will fall within 2SE of the target value 
θ. Now writing the estimator as θ̂ = T, we have the 
formulation of the usual ~95% CI:

~ 95% CI = (θ̂ – 2SE, θ̂ + 2SE).

This is the way we obtained intervals reported at 
the end of Examples 1 and 2. See Kass et al., 2014, 
Chapter 7, for further discussion of CIs.

Getting a distribution via computer 
simulation
In standard situations, there are readily available 
formulas for SE that are furnished by statistical 
software. However, as problems become somewhat 
more complicated, or if the quantity being estimated 
is not one considered by the software developers, it is 
necessary to obtain SE a different way. Often the most 
convenient method is to apply computer simulation. 
To write down the algorithm, we have to use the 
formula for T, i.e., the formula used to compute the 
value of T from the data (as in the formula for the 
sample mean used earlier). As a general notation, let 
us write this formula as a function h(x1, x2, …, xn)   
so that T = h(X1, X2, …, Xn) where Xi is the random 
variable representing the ith data value. I am 
assuming that all of the Xi random variables have 
the same distribution (and that they are statistically 
independent), which I will call the distribution of X. 
Here is the algorithm:

(1) For g = 1 to G,

Generate a sample U1
(g),U2

(g), …, Un
(g) based on the 

distribution of X.

Compute  W(g) = h(U1
(g), U2

(g), …, Un
(g))

(2) Compute  

 
1

W = — ΣG

i =1 W(g),
 G

and then

SEsim (T) = 
 

1
 G

 Σ (W(g) – W)2 .
 G –1  g =1

Step 1 of this scheme would evaluate the estimator 
T on all the sets of “pseudo-data” U1

(g), U2
(g), …, Un

(g) 

for g = 1,…,G. Each set of simulated values U1
(g),U2

(g), 
…, Un

(g) may also be called a “sample of pseudo-data.” 
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The squared value SEsim(T)2 is simply the sample 
variance of the W(g) random variables, and for large 
G, it would become close to the variance V(T). Thus, 
for large G, we would get SEsim(T) as an approximate 
value of the desired SE.

The “plug-in” idea of the parametric 
bootstrap
The only problem with the algorithm for computing 
SE (approximately) given above is that, even when 
we assume the distribution of X has a particular 
distribution that depends on a parameter θ, we 
cannot yet simulate from this distribution until we 
pick a value of θ. However, it may be shown that 
if we use the value θ =  θ̂, where θ is the MLE, then 
the resulting SE is approximately correct, and thus 
the ~95% CI given above will have the correct 
probability ~0.95 of containing the unknown 
parameter value θ.

The nonparametric bootstrap
In some situations, we may have trouble writing down 
a probability distribution that we think will do a good 
job representing variability in the data. In addition, 
sometimes even when we do have such a probability 
distribution, it may be cumbersome to write code to 
simulate from this distribution. Often, it is possible 
to do something different, which is known as the 
nonparametric “bootstrap.” The key idea requires 
the notion of the “distribution function” of a random 
variable X, written FX(x), where the lowercase x 
is a possible value of the random variable X. The 
value FX(x) is the probability that X is less than or 
equal to the number x. Suppose we have a random 
sample X1, X2, …, Xn from a distribution having 
distribution function FX(x). We can resample these 
variables by picking one of them at random, with 
equal probability of drawing each, then repeating 
by picking another (again, from the original set X1, 
X2, …, Xn with equal probability of drawing each, so 
that it is possible to pick the same variable twice), 
and then picking another, etc., until we again have 
n values. Typically we will have a different set of 
n variables than the original set because some of 
them will be repeated and some will be missing. In 
general, this kind of sampling is called “sampling 
with replacement” (because we replace each value 
we pick at random before picking another one), 
and here, with resampling, it becomes “bootstrap 
sampling.” To each of the bootstrap samples we can 
apply the estimator T. It turns out that (for large n) 
the distribution of T applied to bootstrap samples 
will be nearly the same as the correct distribution of 
T from the distribution having distribution function 
FX(x). This means we can define a relatively simple 

and general algorithm for approximating SE. Again 
letting T = h(X1, …, Xn) to get the nonparametric 
bootstrap SE = SE(T), we proceed as follows:

(1) For g = 1 to G,

Generate a sample U1
(g), U2

(g), …, Un
(g), by resampling, 

with replacement, the observations x1, …, xn.

Compute T(g) = h(U1
(g), U2

(g), …, Un
(g))

(2) Compute 

 
1

T = — ΣG

i =1 T(g),
 G

 and then

SE(T) = 
 

1
 G

 Σ (T(g) – T)2.
 G –1  g =1

The bootstrap is useful in situations where we have 
to write computer code to get an estimator T, the 
code being represented above as a computation T = 
h(X1, …, Xn). To obtain SE, we apply the same code 
to our resampled data, as specified in the algorithm 
above.

One caveat is that arbitrary “shuffles” of the data do 
not necessarily correspond to bootstrap samples. The 
fundamental assumption is that the data values being 
resampled are observations from random variables 
(more generally, random vectors) that have the same 
distribution and are independent of each other. In 
many situations, it takes extra work to figure out 
how to sample in such a way that this fundamental 
assumption is reasonable. Additional remarks about 
bootstrap methods may be found in Kass et al., 2014, 
Chapter 9.

Conclusion
Beginnning with a summary of the statistical 
paradigm in the form of two basic tenets, I have 
tried to emphasize the notion of a statistical model, 
which involves a theoretical abstraction based 
on probability distributions for random variables 
that aim to describe variation in data. Advanced 
statistical training not only provides students with 
knowledge of the inner workings of many statistical 
tools and procedures, it also indoctrinates them with 
the idea that there are principled approaches to 
data analysis and that the principles always invoke 
statistical models. I focused on CIs and bootstrap CIs 
partly because they are important, but also because 
they are derived from principles (although I was able 
to mention these principles only briefly). I hope a 
much deeper understanding will come from studying 
carefully the material in Analysis of Neural Data.
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Preface to Chapters by 
Jonathan Pillow, PhD

In the following two Short Course chapters, we will discuss more advanced statistical techniques for 
modeling neural spike trains. The Poisson generalized linear model (GLM) is a nonlinear regression 
model for identifying the relationship between external and internal covariates of the response and 
instantaneous probability of spiking in a single neuron. In the chapter entitled “Likelihood-Based 
Approaches to Modeling the Neural Code,” we will discuss the basic formulation of GLMs and 
techniques for estimating their parameters from data.

In the chapter that follows, “Spatiotemporal Correlations and Visual Signaling in a Complete 
Neuronal Population,” we will discuss extensions that allow the GLM to incorporate dependencies on 
spike history, as well as the spike histories of other neurons in a multineuron recording. Incorporating 
spike history gives the model the ability to capture a rich spectrum of non-Poisson spiking behaviors, 
including refractoriness, bursting, adaptation, regular and irregular firing, bistability, and type I  
and type II firing-rate curves. Incorporating dependencies on the spike history of other neurons 
in the population gives the model the ability to identify functional connectivity and capture rich 
spatiotemporal noise correlations among neurons. Lastly, we will discuss techniques for regularization, 
allowing model parameters and connectivity to be accurately estimated from limited data.
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Figure 1. Illustration of the neural coding problem. The goal is to find a model mapping x to y that provides an accurate repre-
sentation of the conditional distribution p(y | x). Right, Simulated distribution of neural responses to two distinct stimuli, x1 and x2 
illustrating (1) stochastic variability in responses to a single stimulus and (2) that the response distribution changes as a function 
of x. A complete solution involves predicting p(y | x) for any x.
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Likelihood-Based Approaches to Modeling the Neural Code

Introduction
One of the central problems in systems neuroscience 
is that of characterizing the functional relationship 
between sensory stimuli and neural spike responses. 
Investigators call this the “neural coding problem” 
because the spike trains of neurons can be considered 
a code by which the brain represents information 
about the state of the external world. One approach 
to understanding this code is to build mathematical 
models of the mapping between stimuli and spike 
responses; the code can then be interpreted by 
using the model to predict the neural response to a 
stimulus, or to decode the stimulus that gave rise to a 
particular response. In this chapter, we will examine 
“likelihood-based” approaches, which use the 
explicit probability of response to a given stimulus 
for both fitting the model and assessing its validity. 
We will show how the likelihood can be derived for 
several types of neural models, and discuss theoretical 
considerations underlying the formulation and 
estimation of such models. Finally, we will discuss 
several ideas for evaluating model performance, 
including time-rescaling of spike trains and optimal 
decoding using Bayesian inversion of the likelihood 
function.

The Neural Coding Problem
Neurons exhibit stochastic variability. Even for 
repeated presentations of a fixed stimulus, a neuron’s 
spike response cannot be predicted with certainty. 
Rather, the relationship between stimuli and neural 

responses is probabilistic. Understanding the neural 
code can therefore be framed as the problem of 
determining p(y | x): the probability of response 
y conditional on a stimulus x. For a complete 
solution, we need to be able compute p(y | x) for 
any x, meaning a description of the full response 
distribution for any stimulus we might present to a 
neuron. Unfortunately, we cannot hope to get very 
far trying to measure this distribution directly, owing 
to the high dimensionality of stimulus space (e.g., the 
space of all natural images) and the finite duration of 
neurophysiology experiments. Figure 1 illustrates the 
general problem.

A classical approach to the neural coding problem 
has been to restrict attention to a small, parametric 
family of stimuli (e.g., flashed dots, moving bars, or 
drifting gratings). The motivation underlying this 
approach is the idea that neurons are sensitive only 
to a restricted set of “stimulus features” and that we 
can predict the response to an arbitrary stimulus 
simply by knowing the response to these features. 
If x{ψ} denotes a parametric set of features to which 
a neuron modulates its response, then the classical 
approach posits that p(y | x) ≈ p(y | xψ), where xψ is 
the stimulus feature that most closely resembles x.

Although the “classical” approach to neural coding 
is not often explicitly framed in this way, it is not so 
different in principle from the “statistical modeling” 
approach that has gained popularity in recent years, 
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and which we pursue here. In this framework, we 
assume a probabilistic model of the neural response 
and attempt to fit the model parameters θ so that  
p(y | x, θ)—the response probability under the model, 
provides a good approximation to p(y | x). Although 
the statistical approach is often applied using stimuli 
drawn stochastically from a high-dimensional 
ensemble (e.g., Gaussian white noise) rather than a 
restricted parametric family (e.g., sine gratings), the 
goals are essentially similar: to find a simplified and 
computationally tractable description of p(y | x). The 
statistical framework differs primarily in its emphasis 
on detailed quantitative prediction of spike responses, 
and in offering a unifying mathematical framework 
(likelihood) for fitting and validating models.

Model Fitting with Maximum 
Likelihood
Let us now turn to the problem of using likelihood 
for fitting a model of an individual neuron’s 
response. Suppose we have a set of stimuli x = {xi} 
and a set of spike responses y = {yi} obtained during 
a neurophysiology experiment, and we would like 
to fit a model that captures the mapping from x to 
y. Given a particular model, parametrized by the 
vector θ, we can apply a tool from classical statistics 
known as “maximum likelihood” (ML) to obtain 
an asymptotically optimal estimate of θ. For this, 
we need an algorithm for computing p(y | x, θ), 
which, considered as a function of θ, is called the 
“likelihood” of the data. The ML estimate θ̂ is the 
set of parameters under which these data are most 
probable, or the maximizer of the likelihood function:

θ̂ = arg max p(y | x, θ). (1)
 

θ

Although this solution is easily stated, it is 
unfortunately the case that for many models of 
neural response (e.g., detailed biophysical models 
such as Hodgkin–Huxley) it is difficult or impossible 
to compute likelihood. Moreover, even when we 
can find simple algorithms for computing likelihood, 
maximizing it can be quite difficult; in most cases, θ 
lives in a high-dimensional space, containing tens to 
hundreds of parameters (e.g., describing a neuron’s 
receptive field and spike-generation properties). 
Such nonlinear optimization problems are often 
intractable.

In the following sections, we will introduce several 
probabilistic neural spike models, derive the 
likelihood function for each model, and discuss the 
factors affecting ML estimation of its parameters. We 

will also compare ML with standard (e.g., moment-
based) approaches to estimating model parameters.

The linear–nonlinear–Poisson model
One of the best-known models of neural response is 
the linear–nonlinear–Poisson (LNP) model, which 
is alternately referred to as the linear–nonlinear 
“cascade” model. The model, which is schematized 
in the left panel of Figure 2, consists of a linear filter 
(k), followed by a point nonlinearity (f), followed 
by Poisson spike generation. Although many 
interpretations are possible, a simple description of 
the model’s components holds that:

• k represents the neuron’s space–time receptive 
field, which describes how the stimulus is converted 
to intracellular voltage;

• f describes the conversion of voltage to an 
instantaneous spike rate, accounting for such 
nonlinearities as rectification and saturation;

• instantaneous rate is converted to a spike train via 
an inhomogeneous Poisson process. 

The parameters of this model can be written as 
θ = {k, φf }, where φf are the parameters governing 
f. Although the LNP model is not biophysically 
realistic (especially the assumption of Poisson 
spiking), it provides a compact and reasonably 
accurate description of average responses, e.g., 
peristimulus time histogram (PSTH), in many early 
sensory areas.

Another reason for the popularity of the LNP model 
is the existence of a simple and computationally 
efficient fitting algorithm, which consists of using 
spike-triggered average (STA) as an estimate for k and 
a simple histogram procedure to estimate φf (Bryant 
and Segundo, 1976; Chichilnisky, 2001). It is a well-
known result that the STA (or “reverse correlation”) 
gives an unbiased estimate of the direction of k (i.e., 
the STA converges to αk, for some unknown α) if the 
raw stimulus distribution p(x) is spherically symmetric, 
and f shifts the mean of the spike-triggered ensemble 
away from zero (i.e., the expected STA is not the zero 
vector) (Bussgang, 1952; Paninski, 2003). However, 
the STA does not generally provide an optimal 
estimate of k, except in a special case we will examine 
in more detail below (Paninski, 2004).

First, we derive the likelihood function of the 
LNP model. The right panel of Figure 2 shows the 
dependency structure (also known as a graphical 
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model) between stimulus and response, where arrows 
indicate conditional dependence. For this model, the 
bins of the response are conditionally independent of 
one another, given the stimulus—an essential feature 
of Poisson processes. This means that the probability 
of the entire spike train factorizes as

p(y | x, θ) = Πp(yi  | xi, θ), (2)
 i

where yi is the spike count in the ith time bin, and 
xi is the stimulus vector causally associated with this 
bin. Equation 2 asserts that the likelihood of the 
entire spike train is the product of the single-bin 
likelihoods. Under this model, single-bin likelihood is 
given by the Poisson distribution with rate parameter 
∆f (k · xi), where k · xi, is the dot product of k with xi, 
and ∆ is the width of the time bin. The probability of 
having yi spikes in the ith bin is therefore

 1 yi e−∆f (k·xi)  
p(yi | xi, θ) = — [∆f (k · xi)]  ,       (3)
 y i!  

and the likelihood of the entire spike train can be 
rewritten as:

  f (k · xi)yi

 p(y | x, θ) = ∆nΠ e−∆f (k·xi)

, (4)
 i 

yi!

where n is the total number of spikes.

We can find the ML estimate θ̂ = {k̂, φ̂} by maximizing 
the log of the likelihood function (which is 
monotonically related to likelihood), and given by

log p(y | x, θ) = 

Σyi log f (k · xi) − ∆ Σ f (k · xi) + c, (5)
 i i

where c is a constant that does not depend on k or f. 
Because there is an extra degree of freedom between 
the amplitude of k and input scaling of f, we can 
constrain k to be a unit vector, and consider only the 
angular error in estimating k. By differentiating the 
log-likelihood with respect to k and setting it to zero, 
we find that the ML estimate satisfies:

 f (k̂ · xi)
λk̂ = Σyi 

 xi − ∆Σ f (k̂ · xi)xi , (6)
 

f (k̂ · xi)
 i i

where λ is a Lagrange multiplier introduced 
to constrain k to be a unit vector. As noted in 
Paninski (2004), the second term on the right 
hand converges to a vector proportional to k if the 
stimulus distribution p(x) is spherically symmetric. 
(It is the expectation over p(x) of a function radially 
symmetric around k.) If we replace this term by its 
expectation, we are left with just the first term, which 
is a weighted STA, since yi is the spike count and xi 

is the stimulus preceding the ith bin. This term is 
proportional to the (ordinary) STA if f / f is constant, 
which occurs only when f (z) = eaz+b.

Therefore, the STA corresponds to the ML estimate 
for k whenever f is exponential; conversely, if f differs 
significantly from exponential, Equation 6 specifies a 
different weighting of the spike-triggered stimuli, and 

Figure 2. Schematic and dependency structure of the linear–nonlinear–Poisson (LNP) model. Left, LNP model consists of a linear 
filter k, followed by a point nonlinearity f, followed by Poisson spike generation. Right: Depiction of a discretized white noise 
Gaussian stimulus (above) and spike response (below). Arrows indicate the causal dependency entailed by the model between 
portions of the stimulus and portions of the response. The highlighted gray box and gray oval show this dependence for a 
single time bin of the response, while gray boxes and arrows indicate the (time-shifted) dependency for neighboring bins of the 
response. As indicated by the diagram, all time bins of the response are conditionally independent, given the stimulus (Eq. 2).

k f
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the traditional STA is suboptimal. Figure 3 illustrates 
this point with a comparison between the STA and 
the ML estimate for k on spike trains simulated using 
three different nonlinearities. In the simulations, we 
found the ML estimate by directly maximizing log-
likelihood (Eq. 5) for both k and φf, beginning with 
the STA as an initial estimate for k. As expected, the 
ML estimate outperforms the STA except when f is 
exponential (rightmost column).

Figure 4 shows a similar analysis comparing ML with 
an estimator derived from spike-triggered covariance 
(STC) analysis, which uses the principal eigenvector 
of the STC matrix to estimate k. Recent work has 
devoted much attention to fitting LNP models with 
STC analysis, which is relevant particularly in cases 
where the f is approximately symmetric (de Ruyter 
van Steveninck and Bialek, 1988; Schwartz et al., 
2002; Touryan et al., 2002; Aguera y Arcas and 
Fairhall, 2003; Simoncelli et al., 2004; Bialek and de 
Ruyter van Steveninck, 2005; Schwartz et al., 2006). 
The left column of Figure 4 shows a simulation 
where f is a quadratic, shifted slightly from the origin 
so that both the STA and the first eigenvector of the 
STC provide consistent (asymptotically convergent) 
estimates of k. Both, however, are significantly 

outperformed by the ML estimator. Although it is 
beyond the scope of this chapter, a derivation similar 
to the one above shows that there is an f for which 
the ML estimator and the STC estimate are identical. 
The relevant f is a quadratic in the argument of an 
exponential, which can also be represented as a ratio 
of two Gaussians (Pillow and Simoncelli, 2006). The 
right column of Figure 4 shows results obtained with 
such a nonlinearity. If we used a similar nonlinearity 
in which the first term of the quadratic is negative, 
e.g., f(x) = exp(−x2), then f produces a reduction 
in variance along k, and the STC eigenvector with 
the smallest eigenvalue is comparable with the ML 
estimate (Pillow and Simoncelli, 2006).

Before closing this section, it is useful to review 
several other general characteristics of ML estimation 
in LNP models. First, note that the LNP model can 
be generalized to include multiple linear filters and a 
multidimensional nonlinearity, all of which can be 
fit using ML. In this case, the likelihood function is 
the same as in Equation 4, only the instantaneous 
spike rate is now given by:

rate(xi) = f (k1 · xi, k2 · xi , …, km · xi), (7)

Figure 3. Comparison of STA and ML estimates of the linear filter k in an LNP model. Top row, three different types of nonlinearity 
f: a linear function (left), a half-wave rectified linear function (middle), and an exponential function. For each model, the true k 
was a 20-tap temporal filter with biphasic shape similar to that found in retinal ganglion cells. The stimulus was temporal Gauss-
ian white noise with a frame rate of 100 Hz, and k was normalized so that filter output had unit SD. Bottom row, Plots show the 
convergence behavior for each model as a function of the amount of data collected. Error is computed as the angle between the 
estimate and the true k, averaged more than 100 repeats at each stimulus length. deg: degrees; sp/s: spikes per second.
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where {k1, k2, …, km} is a collection of filters, and  
f is an m-dimensional point nonlinearity. Second, 
ML estimation of the LNP model enjoys the same 
statistical advantages as several information-
theoretic estimators that have been derived for 
finding “maximally informative dimensions” or 
features of the stimulus space (Paninski, 2003; 
Sharpee et al., 2004). Specifically, the ML estimator 
is unbiased even when the raw stimulus distribution 
lacks spherical symmetry (e.g., “naturalistic 
stimuli”), and it is sensitive to higher-order 
statistics of the spike-triggered ensemble, making 
it somewhat more powerful and more general than 
STA or STC analysis. Unfortunately, ML also shares 
the disadvantages of these information-theoretic 
estimators: it is computationally intensive, difficult 
to use for recovering multiple (e.g., > 2) filters (in 
part due to the difficulty of choosing an appropriate 
parametrization for f), and cannot be guaranteed to 
converge to the true maximum using gradient ascent, 
owing to the existence of multiple local maxima in 
the likelihood function.

We address this last shortcoming in the next two 
sections, which discuss models constructed to have 
likelihood functions that are free from suboptimal 
local maxima. These models also introduce 
dependence of the response on spike-train history, 

eliminating a second major shortcoming of the LNP 
model: the assumption of Poisson spike generation.

The generalized linear model
The generalized linear model (GLM), schematized in 
Figure 5, generalizes the LNP model to incorporate 
feedback from the spiking process, allowing the 
model to account for history-dependent properties 
of neural spike trains such as the refractory period, 
adaptation, and bursting (Paninski, 2004; Truccolo 
et al., 2004). As shown in the dependency diagram 
(right panel, Fig. 5), the responses in distinct time 
bins are no longer conditionally independent, given 
the stimulus; rather, each bin of the response depends 
on some time window of the recent spiking activity. 
Luckily, this does not prevent us from factorizing the 
likelihood, which can now be written as 

p(y | x, θ) = Πp(yi | xi, y[i – k : i –1]θ), (8)
 i

where y[i−k : i−1] is the vector of recent spiking activity 
from time bin i − k to i − 1. This factorization holds 
because, by Bayes’ rule, we have

p(yi , y[i−k : i−1] | x, θ) = 

 p(yi | y[i−k : i−1] , x, θ)p(y[i−k : i−1] | x, θ), (9)

ax2 + bx + c exp(ax2+ bx + c)

Figure 4. Comparison of STA, STC, and ML estimates of k in an LNP model. Top row, Two types of nonlinearity functions used 
to generate responses; a quadratic function (left), and a quadratic raised to an exponential (right). Stimulus and true k as in  
Fig. 3. Bottom row, Convergence behavior of the STA, first (maximum-variance) eigenvector of the STC, and ML estimate. The 
STA is omitted from the right plot, as it fails to converge under a symmetric nonlinearity. deg: degrees; sp/s: spikes per second.
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and we can apply this formula recursively to obtain 
Equation 8. (Note, however, that no such factorization 
is possible if we allow loopy, e.g., bidirectional, causal 
dependence between time bins of the response.)

Except for the addition of a linear filter, h, operating 
on the neuron’s spike-train history, the GLM is 
identical to the LNP model. We could therefore call 
it the “recurrent LNP” model, although its output is 
no longer a Poisson process, owing to the history-
dependence induced by h. The GLM likelihood 
function is similar to that of the LNP model. If we let

ri =  f (k · xi + h · y[i−k : i−1]) (10)

denote the instantaneous spike rate (or “conditional 
intensity” of the process), then the likelihood and 
log-likelihood (following Eq. 4 and 5), respectively, 
are given by:
 ri

yi

p(y x, θ) = ∆n Π  e
−∆ri

 (11) yi!
 i

log p(y | x, θ) = Σyi log ri − ∆Σ ri + c. (12)
 i i

Unfortunately, we cannot use moment-based 
estimators (STA and STC) to estimate k and h 
for this model, because the consistency of those 
estimators relies on spherical symmetry of the input 
(or “Gaussianity,” for STC), which the spike-history 
input term y[i−k : i−1] fails to satisfy (Paninski, 2003).

As mentioned above, a significant shortcoming 
of the ML approach to neural characterization is 
that it may be quite difficult in practice to find the 
ML function. Gradient ascent fails if the likelihood 

function is rife with local maxima, and more robust 
optimization techniques (e.g., simulated annealing) 
are computationally exorbitant and require delicate 
oversight to ensure convergence.

One solution to this problem is to constrain the model 
so that we guarantee that the likelihood function is 
that of free-from (nonglobal) local maxima. If we can 
show that the likelihood function is “log-concave,” 
meaning that the negative log-likelihood function 
is convex, then we can be assured that the only 
maxima are global maxima. Moreover, the problem of 
computing the ML estimate θ̂ is reduced to a convex 
optimization problem, for which there are tractable 
algorithms even in very high-dimensional spaces.

As shown by Paninski (2004), the GLM has a 
concave log-likelihood function if the nonlinearity 
f is itself convex and log-concave. These conditions 
are satisfied if the second derivative of f is 
nonnegative and the second derivative of log f is non-
positive. Although this may seem like a restrictive 
set of conditions (e.g., it rules out symmetric 
nonlinearities), a number of suitable functions seem 
like reasonable choices for describing the conversion 
of intracellular voltage to instantaneous spike rate, 
for example:

• f (z) = max(z + b, 0)

• f (z) = ez+b

• f (z) = log(1 + ez+b),

where b is a single parameter that we also estimate 
with ML.

Figure 5. Diagram and dependency structure of a GLM. Left, Model schematic, showing the introduction of history-dependence 
in the model via a feedback waveform from the spiking process. In order to ensure convexity of the negative log-likelihood, we 
now assume that the nonlinearity f is exponential. Right, Graphical model of the conditional dependencies in the GLM. The 
instantaneous spike rate depends on both the recent stimulus and recent history of spiking.
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Thus, for appropriate choice of f , ML estimation of a 
GLM becomes computationally tractable. Moreover, 
the GLM framework is quite general and can easily 
be expanded to include additional linear filters that 
capture dependence on spiking activity in nearby 
neurons, behavior of the organism, or additional 
external covariates of spiking activity. ML estimation 
of a GLM has been successfully applied to the analysis 
of neural spike trains in a variety of sensory, motor, 
and memory-related brain areas (Chornoboy et al., 
1988; Truccolo et al., 2004; Okatan et al., 2005; 
Pillow et al., 2005a).

Generalized integrate-and-fire model
We now turn our attention to a dynamical systems 
model of the neural response, for which the 
likelihood of a spike train is not so easily formulated 
in terms of a conditional intensity function (i.e., the 
instantaneous probability of spiking, conditional on 
stimulus and spike-train history). Recent work has 
shown that the leaky integrate-and-fire (IF) model, 
a canonical but simplified description of intracellular 
spiking dynamics, can reproduce the spiking statistics 
of real neurons (Reich et al., 1998; Keat et al., 2001). 
It can also mimic important dynamical behaviors 
of more complicated models like Hodgkin–Huxley 
(Gerstner and Kistler, 2002; Jolivet et al., 2003). It 
is therefore natural to ask whether likelihood-based 
methods can be applied to models of this type. Figure 6  
shows a schematic diagram of the generalized IF 
model (Paninski, 2004; Pillow et al., 2005b), which 
is a close relative of the well-known spike response 
model (Jolivet et al., 2003). The model generalizes 
the classical IF model so that injected current is 
a linear function of the stimulus and spike-train 
history, plus a Gaussian noise current that introduces 
a probability distribution over voltage trajectories. 
The model dynamics (written here in discrete time, 
for consistency) are given by

vi+1 − vi         1
 =   (vi − vL) + (k · xi) + 

 
∆ τ

 1       
(h · y[i−k : i−1]) + σNi ∆−2 ,                      (13)

where vi is the voltage at the ith time bin, which 
obeys the boundary condition that whenever vi ≥ 1, 
a spike occurs and vi is reset instantaneously to zero. 
∆ is the width of the time bin of the simulation, and 
Ni is a standard Gaussian random variable, drawn 
independently on each i. The model parameters 
k and h are the same as in the GLM: linear filters 
operating on the stimulus and spike-train history 
(respectively), and the remaining parameters are: τ, 
the time constant of the membrane leak; vL, the leak 
current reversal potential; and σ, the amplitude of 
the noise.

The lower left panel of Figure 6 depicts the 
dependency structure of the model as it pertains to 
computing the likelihood of a spike train. In this 
case, we can regard the probability of an entire 
interspike interval (ISI) as depending on a relevant 
portion of the stimulus and spike-train history. The 
lower right panel illustrates how we might compute 
this likelihood for a single ISI under the generalized 
IF model using Monte Carlo sampling. Computing 
the likelihood in this case is also known as the “first-
passage time” problem. Given a setting of the model 
parameters, we can sample voltage trajectories from 
the model, drawing independent noise samples for 
each trajectory and following each trajectory until it 
hits threshold. The gray traces show five such sample 
paths, while the blue trace shows the voltage path 
obtained in the absence of noise. The probability of 
a spike occurring at the ith bin is simply the fraction 
of voltage paths crossing threshold at this bin. The 
black trace above shows the probability distribution 
obtained by collecting the first passage times of a 
large number of paths. Evaluated at the actual spike, 
this density gives the likelihood of the relevant ISI. 
Because of voltage reset following a spike, all ISIs are 
conditionally independent, and we can again write 
the likelihood function as a product of conditionally 
independent terms:

p(y | x, θ) = Πp(y[tj-1 + 1 : tj ] | x, y[0 : tj ], θ), (14)
 tj

where {tj} is the set of spike times emitted by the 
neuron, y[tj − 1 + 1 : tj] is the response in the set of time 
bins in the jth ISI, and y[0 : tj] is the response during 
time bins previous to that interval.

The Monte Carlo approach to computing likelihood 
of a spike train can in principle be performed for 
any probabilistic dynamical-systems–style model. 
In practice, however, such an approach would be 
unbearably slow and would likely prove intractable, 
particularly because the likelihood function must be 
computed many times in order find the ML estimate 
for θ. However, for the generalized IF model, there 
exists a much more computationally efficient method 
for computing the likelihood function using the 
Fokker–Planck equation. Although beyond the 
scope of this chapter, the method works by “density 
propagation” of a numerical representation of the 
probability density over subthreshold voltage, 
which can be quickly computed using sparse matrix 
methods. More important, results have shown that 
the log-likelihood function for the generalized IF 
model (like that of the GLM) is concave. This means 
that the likelihood function contains a unique global 
maximum, and that gradient ascent can be used 
to find the ML estimate of the model parameters 
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(Paninski et al., 2004). Other work has applied the 
generalized IF model to the responses of macaque 
retinal ganglion cells using ML, showing that the 
model can be used to capture stimulus dependence, 
spike-history dependence, and noise statistics of 
neural responses recorded in vitro (Pillow et al., 
2005b).

Model Validation
Once we have a used ML to fit a particular model 
to a set of neural data, there remains the important 
task of validating the quality of the model fit. In this 
section, we discuss three simple methods for assessing 
the goodness-of-fit of a probabilistic model using 
the same statistical framework that motivated our 
approach to fitting.

Likelihood-based cross-validation
Recall that the basic goal of our approach is to find 
a probabilistic model such that we can approximate 

the true probabilistic relationship between stimulus 
and response, p(y | x), by the model-dependent  
p(y | x, θ). Once we have fit θ using a set of training 
data, how can we tell if the model provides a good 
description of p(y | x)? To begin with, let us suppose 
that we have two competing models, pA and pB, 
parametrized by θA and θB, respectively, and we wish 
to decide which model provides a better description 
of the data. Unfortunately, we cannot simply compare 
the likelihood of the data under the two models, pA 
(y | x, θA) versus pB (y | x, θB), owing to the problem 
of “overfitting.” Even though one model assigns the 
fitted data a higher likelihood than the other, it may 
not generalize as well to new data.

As a toy example of the phenomenon of overfitting, 
consider a dataset consisting of five points drawn 
from a Gaussian distribution. Let model A be a single 
Gaussian distribution, fit with the mean and SD of the 
sample points (i.e., the ML estimate for this model). 

Figure 6. Generalized IF model. Top: Schematic diagram of model components, including a stimulus filter k and a postspike cur-
rent h that is injected into a leaky integrator following every spike, and independent Gaussian noise to account for response vari-
ability. Bottom left: Graphical model of dependency structure, showing that the likelihood of each ISI is conditionally dependent 
on a portion of the stimulus and spike-train history prior to the ISI. Bottom right, Schematic illustrating how likelihood could be 
computed with Monte Carlo sampling. Blue trace shows the voltage (and spike time) from simulating the model without noise, 
while gray traces show sample voltage paths (to the first spike time) with noise. The likelihood of the ISI is shown above, as a 
function of the spike time (black trace). Likelihood of an ISI is equal to the fraction of voltage paths crossing threshold at the true 
spike time.
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For model B, suppose that the data come from a mixture 
of five very narrow Gaussian distributions, and fit this 
model by centering one of these narrow Gaussian 
distributions at each of the five sample points. Clearly, 
the second model assigns higher likelihood to the data 
(because it concentrates all probability mass near the 
sample points), but it fails to generalize; as a result, 
it will assign very low probability to new data points 
drawn from the true distribution that do not happen 
to lie very near the five original samples.

This suggests a general solution to the problem of 
comparing models, which goes by the name “cross-
validation.” Under this procedure, we generate a new 
set of “test” stimuli, x*, and present them to the neuron 
to obtain a new set of spike responses, y*. (Alternatively, 
we could set aside a small portion of the data at the 
beginning.) By comparing the likelihood of these 
new data sets under the two models, pA (y*|x*, θA)  
versus pB (y*| x*, θB), we get a fair test of the models’ 
generalization performance. Note that, under this 
comparison, we do not actually care about the number 
of parameters in the two models: increasing the number 
of parameters in a model does not actually improve its 
ability to generalize. (In the toy example above, model B 
has more parameters but generalizes much more poorly. 
We can view techniques like regularization as methods 
for reducing the effective number of parameters in a 
model so that overfitting does not occur.) Although we 
may prefer a model with fewer parameters for aesthetic 
or computational reasons, from a statistical standpoint, 
we should care only about which model provides a 
better account of the novel data.

Time-rescaling
Another powerful idea for testing the validity of a 
probabilistic model is to use the model to convert 
spike times into a series of independent and identically 
distributed random variables. This conversion will 
be successful only if we have accurately modeled the 
probability distribution of each spike time. This idea, 
which goes under the name “time-rescaling” (Brown 
et al., 2002), is a specific application of the general 
result that we can convert any random variable into a 
uniform random variable using its cumulative density 
function (CDF).

First, let us derive the CDF of a spike time under 
the LNP and GLM models. If ri is the conditional 
intensity function of the ith time bin (i.e., f (k · xi) 
under the LNP model), then the probability that the 
“next” spike tj + 1 occurs on or before bin k, given that 
the previous spike occurred at tj, is simply 1 minus 
the probability that no spikes occur during the time 
bins tj + 1 to k. This gives

p(tj + 1 ≤ k | tj) = 1 − (  Π e
−∆ri ), (15)

 i∈[tj  + 1, k]

 which we can rewrite:
 k 

p(tj + 1 ≤ k | tj) = 1 − exp ( −∆) Σri ). (16)
  tj  + 1

Note that the argument of the exponential is simply 
the negative integral of the intensity function since 
the time of the previous spike.

For the generalized IF model, computing the likelihood 
function involves computing the probability density 
function (PDF) over each interspike interval (as 
depicted in Fig. 6), which we can simply integrate to 
obtain the CDF (Paninski et al., 2004).

Given the CDF for a random variable, a general 
result from probability theory holds that it provides 
a remapping of that variable to the one randomly 
distributed unit interval [0, 1]. Even though the 
CDF for each spike time is different, if we remap 
the entire spike train using tj − → C DFj (tj), where 
C DFj is the cumulative density of the jth spike time, 
then, if the model is correct, we should obtain a 
series of independent, uniform random variables. 
This suggests we test the validity of the model by 
testing the remapped spike times for independence; 
any correlation (or some other form of dependence) 
between successive pairs of remapped spike times, for 
example, indicates a failure of the model. We can also 
examine the marginal distribution of the remapped 
times (e.g., using a Kolmogorov–Smirnov  test) to 
detect deviations from uniformity. The structure of any 
deviations may be useful for understanding the model’s 
failure modes: an excess of small-valued samples, for 
example, indicates that the model predicts too few 
short interspike intervals. If we wish to compare 
multiple models, we can use time-rescaling to examine 
which model produces the most nearly independent 
and most nearly uniform remapped spike times.

Model-based decoding
A third tool for assessing the validity of a probabilistic 
model is to perform stimulus decoding using the 
model-based likelihood function. Given the fitted 
model parameters, we can derive the posterior 
probability distribution over the stimulus given a 
spike train by inverting the likelihood function using 
the Bayes’ rule:

 p(y | x, θ)p(x)
p(x | y, θ) = 
 p(y | θ) , (17)
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where p(x) is the prior probability of the stimulus 
(which we assume to be independent of θ), and the 
denominator is the probability of response y, given 
θ. We can obtain the most likely stimulus to have 
generated the response y by maximizing the posterior 
for x, which gives the maximum a posteriori (MAP) 
estimate of the stimulus, which we can denote

x̂MAP = arg max p(y | x, θ)p(x)  (18)
 x

since the denominator term p(y | θ) does not vary 
with x.

For the GLM and generalized IF models, the concavity 
of the log-likelihood function with respect to the 
model parameters also extends to the posterior with 
respect to the stimulus, since the stimulus interacts 
linearly with model parameters k. Concavity of the 
log-posterior holds so long as the prior p(x) is itself 
log-concave (e.g., Gaussian, or any distribution of 
the form αe−(x/σ)γ, with γ ≥ 1). This means that, for 
both of these two models, we can perform MAP 
decoding of the stimulus using simple gradient ascent 
of the posterior.

If we wish to perform decoding with a specified 
loss function (e.g., mean-squared error), optimal 
decoding can be achieved with Bayesian estimation, 
which is given by the estimator with minimum 
expected loss. In the case of mean-squared error, this 
estimator is given by

x̂Bayes = E[x | y, θ],  (19)

which is the conditional expectation of x, or the mean 
of the posterior distribution over stimuli. Computing 
this estimate, however, requires sampling from the 
posterior distribution, which is difficult to perform 
without advanced statistical sampling techniques 
and is a topic of ongoing research.

Considered more generally, decoding provides an 
important test of model validity, and it allows us to 
ask different questions about the nature of the neural 
code. Even though it may not be a task carried out 
explicitly in the brain, decoding allows us to measure 
how well a particular model preserves the stimulus-
related information in the neural response. This is 
a subtle point, but one worth considering: we can 
imagine a model that performs worse under cross-
validation or time-rescaling analyses but performs 
better at decoding, and therefore gives a better 
account of the stimulus-related information that is 
conveyed to the brain. For example, consider a model 
that fails to account for the refractory period (e.g., an 
LNP model) but gives a slightly better description 

of the stimulus-related probability of spiking. This 
model assigns non-zero probability to spike trains 
that violate the refractory period, thereby “wasting” 
probability mass on spike trains whose probability 
is actually zero, and performs poorly under cross-
validation. The model also performs poorly under 
time-rescaling owing to the fact that it overpredicts 
spike rate during the refractory period. However, 
when decoding a real spike train, we do not encounter 
violations of the refractory period, and the “wasted” 
probability mass affects only the normalizing term 
p(y | θ). Here, the model’s improved accuracy for 
predicting the stimulus-related spiking activity leads 
to a posterior that is more reliably centered around 
the true stimulus. Thus, even though the model 
fails to reproduce certain statistical features of the 
response, it provides a valuable tool for assessing what 
information the spike train carries about the stimulus 
and gives a perhaps more valuable description of 
the neural code. Decoding may therefore serve as 
an important tool for validating likelihood-based 
models, and a variety of exact or approximate 
likelihood-based techniques for neural decoding 
have been explored (Warland et al., 1997; Brown et 
al., 1998; Barbieri et al., 2004; Pillow et al., 2005b).

Summary
We have shown how to compute likelihood and 
perform ML fitting of several types of probabilistic 
neural models. In simulations, we have shown 
that ML outperforms traditional moment-based 
estimators (STA and STC) when the nonlinear 
function of filter output does not have a particular 
exponential form. We have also discussed models 
whose log-likelihood functions are provably 
concave, making ML estimation possible even in 
high-dimensional parameter spaces and with non-
Gaussian stimuli. These models can also be extended 
to incorporate dependence on spike-train history 
and external covariates of the neural response, such 
as spiking activity in nearby neurons. We have 
examined several statistical approaches to validating 
the performance of a neural model, which allow us 
to decide which models to use and to assess how well 
they describe the neural code.

In addition to the insight they provide into the 
neural code, the models we have described may be 
useful for simulating realistic input to downstream 
brain regions, and in practical applications such as 
neural prosthetics. The theoretical and statistical 
tools that we have described here, as well as the vast 
computational resources that make them possible, 
are still a quite recent development in the history 
of theoretical neuroscience. Understandably, their 
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achievements are still quite modest: we are far away 
from a “complete” model that predicts responses 
to any stimulus (e.g., incorporating the effects of 
spatial and multiscale temporal adaptation, network 
interactions, and feedback). There remains much 
work to be done both in building more powerful and 
accurate models of neural responses, and in extending 
these models (perhaps in cascades) to the responses 
of neurons in brain areas more deeply removed from 
the periphery.
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Introduction
Statistical dependencies in the responses of sensory 
neurons govern both the amount of stimulus 
information conveyed and the means by which 
downstream neurons can extract it. Although a 
variety of measurements indicate the existence of 
such dependencies (Mastronarde, 1989; Meister et al., 
1995; Shadlen and Newsome, 1998), their origin and 
importance for neural coding are poorly understood. 
Here we analyze the functional significance of 
correlated firing in a complete population of macaque 
parasol retinal ganglion cells (RGCs) using a model 
of multineuron spike responses (Paninski, 2004; 
Truccolo et al., 2004). The model, with parameters 
fit directly to physiological data, simultaneously 
captures both the stimulus dependence and detailed 
spatiotemporal correlations in population responses, 
and provides two insights into the structure of 
the neural code. First, neural encoding at the 
population level is less noisy than one would expect 
from the variability of individual neurons: spike 
times are more precise, and can be predicted more 
accurately when the spiking of neighboring neurons 
is taken into account. Second, correlations provide 
additional sensory information: optimal, model-
based decoding that exploits the response correlation 
structure extracts 20% more information about the 
visual scene than decoding under the assumption 
of independence, and preserves 40% more visual 
information than optimal linear decoding (Warland 
et al., 1997). This model-based approach reveals the 
role of correlated activity in the retinal coding of 
visual stimuli and provides a general framework for 
understanding the importance of correlated activity 
in populations of neurons.

Neuronal Spiking Activity and the 
Sensory Environment
How does the spiking activity of a neural population 
represent the sensory environment? The answer 
depends critically on the structure of neuronal 
correlations, or the tendency of groups of neurons to fire 
temporally coordinated spike patterns. The statistics 
of such patterns have been studied in a variety of brain 
areas, and their significance in the processing and 
representation of sensory information has been debated 
extensively (Meister et al., 1995; Dan et al., 1998;  
Shadlen and Newsome, 1998; Nirenberg et al.,  
2001; Panzeri et al., 2001; Nirenberg and Latham, 2003;  
Schneidman et al., 2003; Averbeck and Lee,  
2004; Latham and Nirenberg, 2005).

Previous studies have examined visual coding by 
pairs of neurons (Nirenberg and Latham, 2003) 
and the statistics of simultaneous firing patterns in 

larger neural populations (Schneidman et al., 2006; 
Shlens et al., 2006). However, no previous approach 
has addressed how correlated spiking activity in 
complete neural populations depends on the pattern 
of visual stimulation, or has answered the question of 
how such dependencies affect the encoding of visual 
stimuli.

Here we introduce a model-based methodology for 
studying this problem. We describe the encoding 
of stimuli in the spike trains of a neural population 
using a generalized linear model (GLM) (Fig. 1a), a 
generalization of the well-known linear–nonlinear–
Poisson (LNP) cascade model (Plesser and Gerstner, 
2000; Paninski, 2004; Simoncelli et al., 2004; 
Truccolo et al., 2004). In this model, each cell’s input 
is described by a set of linear filters: a stimulus filter, 
or spatiotemporal receptive field; a postspike filter, 
which captures dependencies on spike-train history 
(e.g., refractoriness, burstiness, and adaptation); and 
a set of coupling filters, which captures dependencies 
on the recent spiking of other cells. For each neuron, 
the summed filter responses are exponentiated 
to obtain an instantaneous spike rate. This is 
equivalent to exponentiating the filter outputs and 
then multiplying; the exponentiated postspike and 
coupling filters (as plotted in Fig. 1) may therefore be 
interpreted as spike-induced gain adjustments of the 
neuron’s firing rate.

Although this model is strictly phenomenological, its 
components can be loosely compared to biophysical 
mechanisms: the stimulus filter approximates the 
spatiotemporal integration of light in the outer 
retina and passive dendritic filtering; the postspike 
filter mimics voltage-activated currents following a 
spike; coupling filters resemble synaptic or electrical 
interactions between cells (and can mimic the 
effects of shared input noise); and the exponential 
nonlinearity implements a “soft threshold,” 
converting membrane potential to instantaneous 
spike probability. Note that the postspike and 
coupling filters, which allow stochastic spiking in 
one cell to affect subsequent population activity, give 
rise to shared, non-Poisson variability in the model 
response.

A Model-Based Analysis of  
RGC Encoding
We fit the model to data recorded in vitro from a 
population of 27 ON and OFF parasol RGCs in a 
small patch of isolated macaque monkey retina, 
stimulated with 120 Hz spatiotemporal binary white 
noise. The receptive fields of each of the two cell 
types formed a complete mosaic covering a small 
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region of visual space (Fig. 1b), indicating that every 
parasol cell in this region was recorded (Frechette 
et al., 2005; Shlens et al., 2006). Such complete 
recordings, which have not been achieved elsewhere 
in the mammalian nervous system, are essential for 
understanding visual coding in neural populations.

The model contains many parameters that specify 
the shapes of all filters, but fitting by maximizing 
likelihood remains highly tractable (Paninski, 
2004). A penalty on coupling filters was used to 
obtain a minimally sufficient set of coupling filters, 
which yields an estimate of the network’s functional 
connectivity (Okatan et al., 2005; Rigat et al., 2006).

Figure 1 shows the estimated filters describing input 
to example ON and OFF cells. The stimulus filters 
exhibit center-surround receptive field organization 
consistent with previous characterizations of parasol 
cells. Postspike filters show the time course of recovery 
from refractoriness after a spike, and coupling filters 
show the effects of spikes from nearby cells: for 
the ON cell (top), spikes in neighboring ON cells 
elicit a large, transient excitation (increasing the 
instantaneous spike rate by a factor of three), whereas 

spikes in nearby OFF cells elicit suppression. These 
effects are reversed in the OFF cell, which is excited 
or suppressed by spikes in neighboring OFF/ON 
cells. Both populations exhibit approximate nearest-
neighbor connectivity, with coupling strength falling 
as a function of distance between receptive field 
centers (Shlens et al., 2006). We found that fitted 
stimulus filters have smaller surrounds than the spike-
triggered average, indicating that a portion of the 
classical surround can be explained by interactions 
between cells (DeVries, 1999).

To assess accuracy in capturing the statistical 
dependencies in population responses, we compared 
the pairwise cross-correlation function (CCF) of 
RGCs and simulated model spike trains (Fig. 2). 
For nearby ON–ON and OFF–OFF pairs, the CCF 
exhibits a sharp peak at zero, indicating the prevalence 
of synchronous spikes; however, for ON–OFF pairs, 
a trough at zero indicates an absence of synchrony. 
For all 351 possible pairings, the model accurately 
reproduces the CCF (Figs. 2a–c, e, f).

To examine whether interneuronal coupling was 
necessary to capture the response correlation 

μ

Figure 1. Multineuron encoding model and fitted parameters. a, Model schematic for two coupled neurons: each neuron has a 
stimulus filter, a postspike filter, and coupling filters that capture dependencies on spiking in other neurons. Summed filter output 
passes through an exponential nonlinearity to produce the instantaneous spike rate. b, Mosaics of 11 ON and 16 OFF RGC recep-
tive fields, tiling a small region of visual space. Ellipses represent 1 SD of a Gaussian fit to each receptive field center; the square 
grid indicates stimulus pixels. Scale bar, 120 μm. c–e, Parameters for an example ON cell. c, Temporal and spatial components of 
center (red) and surround (blue) filter components, the difference of which is the full stimulus filter. d, Exponentiated postspike 
filter, which may be interpreted as multiplying the spike rate after a spike at time zero. It produces a brief refractory period and 
gradual recovery (with a slight overshoot). e, Connectivity and coupling filters from other cells in the population. The black-filled 
ellipse is this cell’s RF center, and blue and red lines show connections from neighboring OFF and ON cells, respectively (line thick-
ness indicates coupling strength). Below, exponentiated coupling filters show the multiplicative effect on this cell’s spike rate after 
a spike in a neighboring cell. f–h, Analogous plots for an example OFF cell.
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structure, we refitted the model without coupling 
filters (that is, so that each cell’s response depends 
only on the stimulus and its own spike-train history). 
This “uncoupled model” assumes that cells encode 
the stimulus independently, although correlations 
may still arise from the overlap of stimulus filters. 
However, the uncoupled model fails to reproduce the 
sharp CCF peaks observed in the data. These peaks 
are also absent from CCFs computed on trial-shuffled 
data, indicating that fast-timescale correlations 
are not stimulus-induced and therefore cannot be 
captured by any independent encoding model.

Higher-order statistical dependencies were 
considered by inspecting correlations in three-
neuron groups: triplet CCFs show the spike rate of 
one cell as a function of the relative time to spikes in 
two other cells (Figs. 2e–g) (Shlens et al., 2006). For 
adjacent neurons of the same type, triplet CCFs have 
substantial peaks at zero (“triplet synchrony”), which 
are well matched by the full model.

Although the full and uncoupled models differ 
substantially in their statistical dependencies, 
the two models predict average light responses in 

Spatiotemporal Correlations and Visual Signaling in a Complete Neuronal Population

Figure 2. Analysis of response correlations. a–c, Example CCFs of retinal responses, and simulated responses of the full and 
uncoupled models, for two ON cells (a), two OFF cells (b) and an ON–OFF pair (c). The baseline is subtracted so that units are 
in spikes per s above (or below) the cell’s mean rate. d, Receptive field mosaic overlaid with arbitrary labels. Dark gray indicates 
cells shown in Fig. 1; light gray indicates cells used for triple correlations (h, i). e, CCFs between all ON pairs, where the i,jth plot 
shows the CCF between cell i and cell j. The gray box indicates the CCF plotted in a, f, g, CCFs between all OFF–OFF pairs (f ), and 
all ON–OFF pairs (g; abscissa height = 30 Hz). h, Third-order (triplet) CCF between three adjacent ON cells, showing the instanta-
neous spike rate of cell 5 as a function of the relative spike time in cells 4 and 8 (left, RGCs; middle, full model; right, uncoupled 
model). i, Analogous triplet CCF for OFF cells 15, 16, and 22. j, Comparison of the triplet CCF peak in RGC and model responses 
(full model, black; uncoupled, gray) for randomly selected triplets of adjacent ON (open) and OFF (filled) cells.
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individual cells with nearly identical accuracy, 
capturing 80–95% of the variance in the peristimulus 
time histogram (PSTH) in 26 out of 27 cells (Figs. 
3a–c). Both models therefore accurately describe 
average single-cell responses to new stimuli. 
However, the full model achieves higher accuracy, 
predicting multineuronal spike responses on a single 
trial (8% ± 3% more bits per spike; Fig. 3d). This 
discrepancy can be explained by the fact that noise 
is shared across neurons. Shared variability means 
that population activity carries information about 
a single cell’s response (owing to coupling between 
cells) beyond that provided by the stimulus alone. 
Individual neurons therefore appear less noisy when 

conditioned on spiking activity in the rest of the 
population than they appear in raster plots.

We measured the effect of correlations on single-
trial, single-cell spike-train prediction by using the 
model to draw samples of a single cell’s response, 
given both the stimulus and the spiking activity in 
the rest of the population on a single trial (Figs. 3e, f). 
Averaging the resulting raster plot gives a prediction 
of the cell’s single-trial spike rate, or “population-
conditioned” PSTH for a single trial. We compared 
these predictions with the cell’s true spike times 
(binned at 2 ms) across all trials and found that 
on nearly every trial, the model-based prediction is 

R
G
C

PSTHs
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Figure 3. Spike-train prediction comparison. a, Raster of responses of an ON RGC to 25 repeats of a novel 1 s stimulus (top), and 
responses of uncoupled (middle) and full (bottom) models to the same stimulus. b, PSTH of the RGC (black), uncoupled (blue) and 
coupled (red) model; both models account for ~84% of the variance of the true PSTH. c, PSTH prediction by full and uncoupled 
models, showing that coupling confers no advantage in predicting average responses. d, Log-likelihood of novel RGC spike re-
sponses under full and uncoupled models; the full model provides 8% more information about novel spike trains. e, Magnified 
150 ms portion of RGC raster and PSTH (gray box in a). Red dots highlight RGC spike times on selected individual trials (replotted 
in f ). f, Single-trial spike-train prediction using the coupled model. The top half of each plot shows the population activity on a 
single trial: true spike times of the cell (red dots), coupled ON cells (light gray dots), and coupled OFF cells (dark gray dots; each 
line in the raster shows the spike times of a different cell). The bottom half of each plot shows a raster of 50 predicted responses 
of the cell in question, using both the stimulus and coupled responses (shown above) to predict spike trains. The red trace shows 
the single-trial rate prediction (population-conditioned PSTH), compared with true PSTH of the cell (black trace, identical in all 
plots). g, Correlation coefficient of true spike trains with the PSTH (x-axis) and with population-conditioned predictions (y-axis); 
the full model predicts single-trial responses with higher accuracy than the true PSTH.
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more highly correlated with the observed spikes than 
the neuron’s full PSTH (Fig. 3g). Note that the full 
PSTH achieves the highest correlation possible for 
any trial-independent prediction. Thus, by exploiting 
the correlation structure, the coupled model predicts 
single-neuron spike times more accurately than any 
independent encoding model.

Bayesian Decoding of  
the Retinal Ganglion Cell 
Population Response
Although the full model accurately captures 
dependencies in the activity of RGCs, it is not obvious 
a priori whether these dependencies affect the amount 
of sensory information conveyed by RGC responses. 
In principle, the correlation structure could be 
necessary to predict the responses, but not to extract 
the stimulus information that the responses carry 
(Latham and Nirenberg, 2005). To examine this issue 
directly, we used the full and uncoupled models to 
perform Bayesian decoding of the population response 
(Fig. 4a), which optimally reconstructs stimuli, given 
an accurate description of the encoding process. For 
comparison, we also performed Bayesian decoding 
under a Poisson (i.e., LNP) model and optimal linear 
decoding (Warland et al., 1997).

Each decoding method was used to estimate short 
(150 ms) segments of the stimulus given all relevant 
spike times from the full population (Fig. 4b).  

Bayesian decoding under the coupled model 
recovers 20% more information than Bayesian 
decoding under the uncoupled model, indicating 
that knowledge of the correlation structure is critical 
for extracting all sensory information contained in 
the population response. This improvement was 
invariant to enhancements of the model’s stimulus 
filters and nonlinearities, indicating that the 
difference in performance arises specifically from the 
coupled model’s ability to incorporate the correlation 
structure. Our results also show that spike history is 
relevant for decoding (a Poisson model preserves 6% 
less information than the uncoupled model) (Pillow 
et al., 2005) and that restricting to a linear decoder 
further reduces the information that can be recovered 
from RGC responses.

Decoding analysis can also be used to examine the 
coding fidelity of specific stimulus features. As a simple 
illustration, we examined the temporal frequency 
spectrum of reconstructed stimuli and found that the 
response correlation structure is most important for 
decoding those stimulus frequencies (6–20 Hz) that 
are encoded with highest fidelity (Fig. 4c).

Results and the Limitations of the 
Generalized Linear Model
These results demonstrate that the responses of a 
population of RGCs are well described by a GLM, 
and that correlations in the response can be exploited 
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Figure 4. Decoding performance comparison. a, a Bayesian decoding schematic: to estimate an unknown stimulus segment from 
a set of observed spike times (highlighted in boxes), the stimulus prior distribution p(s) is multiplied by the model-defined likeli-
hood p(r | s) to obtain the posterior p(s | r). The posterior mean is the Bayes’ least-squares stimulus estimate. b, Log of the SNR for 
linear decoding, as well as for Bayesian decoding under the Poisson, uncoupled, and full models (Warland et al., 1997). The full 
model preserves 20% more information than the uncoupled model, which indicates that there is additional sensory information 
available from the population response when correlations are taken into account. Error bars show 95% confidence intervals based 
on 2000 bootstrap resamplings of 3000 decoded stimulus segments. c, Log SNR decomposed as a function of temporal frequency 
for various decoding methods (Poisson omitted for clarity).
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to recover 20% more visual information than if 
responses were regarded as independent, given the 
stimulus. In contrast, previous studies have reported 
this information gain to be <10% for pairs of neurons 
(Nirenberg et al., 2001; Averbeck and Lee, 2004). 
However, pairwise analyses provide little evidence 
about the importance of correlations across an entire 
population. Second-order correlations between pairs 
of neurons could give rise to either much larger 
(scaling with the number of neurons n) or much 
smaller (falling as 1/n) gains for a full population. 
To compare more directly with previous findings, we 
performed Bayesian decoding using isolated pairs of 
neurons from the same population; we found a ≤10% 
gain in sensory information when correlations were 
included. This is consistent with previous findings 
and shows that the information gain for a complete 
population is larger than that observed for pairs. We 
also compared the model with a pairwise maximum-
entropy model, which has recently been shown to 
capture the instantaneous spiking statistics of groups 
of RGCs (Schneidman et al., 2006; Shlens et al., 
2006). The coupled model exhibits similar accuracy 
in capturing these statistics, but has the advantage 
that it accounts for the temporal correlation structure 
and stimulus dependence of responses, which are 
essential for assessing the effect of correlations on 
sensory coding.

Although it provides an accurate functional 
description of correlated spike responses, the 
GLM does not reveal the biophysical mechanisms 
underlying the statistical dependencies between 
neurons: coupling does not necessarily imply 
anatomical connections between cells but could (for 
example) reflect dependencies due to shared input 
noise (Mastronarde, 1989). The model also lacks 
several mechanisms known to exist in RGCs (e.g., 
contrast gain-control) (Shapley and Victor, 1978), 
which may be required for characterizing responses 
to a wider variety of stimuli. One additional caveat is 
that Bayesian decoding provides a tool for measuring 
the sensory information available in the population 
response, but it does not reveal whether the brain 
makes use of this information. Physiological 
interpretations of the model and mechanisms for 
neural readout of sensory information in higher 
brain areas are thus important directions for future 
research.

Nevertheless, the GLM offers a concise, 
computationally tractable description of the 
population encoding process and provides the 
first generative description of the space–time 
dependencies in stimulus-induced population 
activity. It allows us to quantify the relative 

contributions of stimulus, spike history, and network 
interactions to the encoding and decoding of visual 
stimuli and clarifies the relationship between single-
cell and population variability. More generally, the 
model can be used to assess which features of the 
visual environment are encoded with highest and 
lowest fidelity and to determine how the structure 
of the neural code constrains perceptual capabilities. 
We expect this framework to extend to other brain 
areas and to have an important role in revealing the 
information processing capabilities of spiking neural 
populations (Harris et al., 2003; Paninski et al., 2004; 
Truccolo et al., 2004; Okatan et al., 2005).

Methods Summary
Data
Multielectrode extracellular recordings were 
obtained in vitro from a segment of isolated, 
peripheral macaque monkey (Macaca mulatta) retina, 
and analysis was restricted to two cell types (ON and 
OFF parasol) (Watanabe and Rodieck, 1989; Litke 
et al., 2004; Shlens et al., 2006). A standard spike-
sorting procedure, followed by a specialized statistical 
method for detecting simultaneous spikes, was used 
to sort spikes (Segev et al., 2004). The retina was 
stimulated with a photopic, achromatic, optically 
reduced spatiotemporal binary white-noise stimulus 
refreshing at 120 Hz, with a root-mean-square 
contrast of 96%.

Fitting
Model parameters were fitted to 7 min of spike 
responses to a nonrepeating stimulus. Each cell’s 
parameters consisted of a stimulus filter (parametrized 
as a rank 2 matrix), a spike-history filter, a set of 
incoming coupling filters, and a constant. Temporal 
filters were represented in a basis of cosine “bumps” 
(Pillow et al., 2005). Parameters for the uncoupled 
and Poisson (LNP) models were fitted independently. 
Parameters were fitted by penalized maximum 
likelihood (Paninski, 2004; Truccolo et al., 2004) 
using an L1 penalty on the vector length of coupling 
filters to eliminate unnecessary connections.

Encoding
Spike prediction was cross-validated using the log-
likelihood of 5 min of novel spiking data (scaled to 
units of bits/s). Repeat rasters were obtained using 200 
presentations of a novel 10 s stimulus. Population-
conditional rasters were obtained from the coupled 
model by sampling the model-defined probability 
distribution over the neuron’s response, given the 
stimulus and surrounding-population activity on a 
single trial (Pillow et al., 2008).
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Decoding
Population responses were decoded using the 
Bayes’ least-squares estimator (posterior mean) 
to reconstruct 18-sample single-pixel stimulus 
segments (cross-validation data). Linear decoding 
was performed using the optimal linear estimator 
(Warland et al., 1997). Decoding performance was 
quantified using the log signal-to-noise ratio (SNR) 
of each technique, which gives an estimate of mutual 
information. Breakdown by temporal frequency was 
obtained by computing the Fourier power spectra of 
the stimuli and residuals and then computing log 
SNR.
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