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Shimon Ullman used computational modeling, at both functional and network levels, to study
information processing in the cortical visual stream. His studies combine computational,
psychophysics, and collaborations in biological experimentations. His earlier work focused
on the topics of motion perception and object recognition. In the motion area, he established
conditions under which a three-dimensional structure can be recovered from dynamic scenes,
and he developed the first method for recovery of structure from motion. In object recognition,
his early models were the first to combine bottom-up with top-down segmentation, and to
localize objects and their parts and subparts in a single bottom-up, top-down cycle. Moving
from objects to complete scenes, Ullman developed a model that performs human-like scene
interpretation, using iterative bottom-up and top-down processing in a “counter-streams”
structure motivated by cortical circuitry. Using data from visual learning by infants, Ullman
developed models that can learn complex concepts from dynamic visual scenes, without
superuvision or annotated data. This modeling shows how innate domain-specific
“proto concepts” can guide the visual system to acquire meaningful concepts and reveals
how a rich conceptual system can gradually arise from the combination of innate
mechanisms and visual experience.



Shimon Ullman

Stormy Beginning

I was born in the midst of a raging war, in a makeshift facility in down-
town Jerusalem. Only three hours later, I was carried with my mother in an
armored vehicle to the well-equipped Hadassah Mount Scopus Hospital, just
outside the city, to spend the night and the following day. The hospital had
to close down its operation a couple of months later, following the Hadassah
medical convoy massacre, when a convoy carrying supplies to the hospital
was ambushed. Only a few of the medical staff in the convoy survived the
attack, among them my father, Theodor David Ullman (“Theo” for us), who
was a physician in Hadassah. He found shelter in a ditch not far from the
road and hid there until night time. He then made his way to our apartment
in Jerusalem, avoiding the Arab villages along the way, and arriving home
by dawn. My mother heard about the fate of the Hadassah convoy from the
radio news, and I can only imagine, since she never described to me, how she
felt when Theo appeared at the doorstep in the early morning hours.

The apartment we lived in was in a place called the “Mandelbaum gate,”
which ended up in a no-man’s-land between Israel and Jordan. During the
1948 war, it was very close to the frontline and became a place of increas-
ing hostilities. It was hit by snipers’ bullets several times, and at one point,
a larger projectile landed inside our apartment. When this happened, my
parents carried the children, my sister Edna and me, and left the apart-
ment, leaving all the belongings behind, never to come back.

I recalled these events many years later, when I was standing with
my wife Chana in a demonstration in the Palestinian neighborhood of
Sheikh Jarrah in East Jerusalem. The demonstration was in support for
Palestinian residents who were being evacuated from apartments they had
moved into during the 1948 war. The place where the demonstration took
place was about midway between the apartment we had to leave during the
war and the place where the Hadassah convoy was ambushed, a short walk-
ing distance from both. The past memories and the demonstration formed
an eerie mix, underscoring for me in a personal way the need to resolve the
ongoing Israeli-Palestinian conflict.

Family and Early Life

My father was a German Jew, born in Wiirzburg to a large orthodox family.
He studied medicine in Wiirzburg and Berlin, and came to Israel in 1934.
He was a physician in Hadassah hospital and a professor at the Hebrew
University in Jerusalem, specializing in nephrology. After spending a year at



Shimon Ullman 439

the Mount Sinai Hospital in New York, he was the first to introduce kidney
dialysis to Israel. I remember him telling me about the ethics committee
established in the hospital, which had to make painful decisions regarding
who would be eligible for dialysis treatment, because it was impossible to
treat all the patients needing treatment. He was a brilliant thinker, was
quiet and hard-working, and had immense general knowledge.

My mother, Lisa Findler, was born and raised in Vienna, until the age
of 16. She left after the Anschluss of 1938 and went on her own via Italy to
Palestine. Her parents were supposed to join a few weeks later, but never
made it out. After finishing British matriculation exams by correspondence,
she enrolled into a nursing school and became a nurse in Hadassah Hospital,
where she met my father. She kept working as a nurse and later as a labo-
ratory assistant, until I left home years later, and then started academic
studies at the Hebrew University, in the classics department. She eventu-
ally became a staff member in the university, teaching Greek and Latin,
and became a scholar and a translator. At the age of 77, she undertook the
daunting task of translating from the Greek Josephus’s first-century book
The War of the Jews. This is a major book, described by the historian Steve
Mason as “perhaps the most influential non-biblical text of Western history,”
and one of the first books printed by Gutenberg in the 15th century. The
translation took 10 years of hard work, and when it was published, it was an
immediate literary and commercial success. I remember that in one of his
visits to Israel, Eric Kandel was at our house and met my mother. He was
delighted to meet a fellow Viennese who, like him, was interested and highly
knowledgeable in literature, art, and music.

My sister, Edna, was only a year and a half older than me. We have been
very close, and her early death in 2010 was an immense, life-transforming
loss for me. She was a philosopher and was interested in issues of rationality
as well as decision-making problems, from simple to transformational, and
problems of social order. The issues she was interested in and worked on
had bearing not only on philosophy but also on political science, psychology,
sociology, cognitive science, economics, law, and public policy. Her personal
life echoed her philosophy; she was a highly rational person, and at the same
time, she was passionate about the values she studied and believed in. She
was the chair of the Association for Civil Rights in Israel and on the manage-
ment of the New Israel Fund and of B’Tselem (The Israeli Information
Center for Human Rights in the occupied territories). She was also a
gifted translator, in both science and literature. She translated to Hebrew
Wittgenstein’s Philosophical Investigations and On Certainty from the
original German, and her wonderful poetry translations from both German
and English appeared in Haaretz’s literary supplements. I think one can
get a wonderful glimpse of who Edna was from a New Yorker piece called
“The Unmothered,” written by her daughter Ruth Margalit (https:/www.
newyorker.com/books/page-turner/the-unmothered).
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During my school days, both elementary and high school, I was an avid
reader, taking books out of the school library several times a week and enjoy-
ing reading them. I now have grandchildren who do the same, and I enjoy
seeing their enthusiasm and watching how reading enriches their inner
worlds. In high school, I became highly interested in science, reading well
beyond the material covered in school. I was fortunate to have an inspiring
teacher of mathematics, a young woman in her twenties who had the gift of
conveying the beauty and rigor of mathematical thinking.

When high school ended, it was time to enlist to military service, which
is compulsory in Israel. It was clear to me by that time that my future would
be in academic research, but I decided to spend my service doing something
completely different and joined the air force for more than five years. This
was an eventful and challenging period, but I will not elaborate on it, as this
period was about as far from an academic path as one can imagine.

Starting Academic Life: The Hebrew University

After a long break from any form of academic studies, I was eager to start
my scientific education. At the Hebrew University, you could either focus
on a single field, such as physics, mathematics, or biology, or combine two
fields, taking half of your academic credits in each field. I knew I wanted to
take mathematics as a major field, but after some deliberations, I decided
to combine mathematics and physics. Math was my major field, and I joined
an accelerated track that had an expanded curriculum. The beginning was
demanding, as the academic year started before I was released from service,
and it took a while before I could devote my full time to the academic stud-
ies. This did not detract from my excitement, and I thoroughly enjoyed
delving deeply into math and physics. Math was particularly rewarding,
as I was taught by brilliant mathematicians and teachers, such as Hillel
Furstenberg, Azriel Levy, and Yakar Kannai, who were able to get across
not only mathematical knowledge but also their personal ways of thinking
about mathematics. Regarding physics, although I enjoyed it, I was not sure
whether this was in fact the field of science I wanted to get into. I there-
fore attended during the first year a couple of classes in neuroscience, to
learn a bit about the brain, which I thought was a fascinating topic and on
which I knew relatively little. At the end of the first year, I found myselfin a
Frostian dilemma in “the road not taken,” facing diverging roads, and being
“sorry I could not travel both, and be one traveler.” It felt like a major cross-
roads, choosing between exploring the external universe of physics, and the
internal universe of the brain, thought processes, and the subjective world
of awareness and consciousness. Like many big decisions, this was not a
utilitarian choice but rather an opportunity to imagine what would be for
me more exciting and rewarding. It took some time, but I chose the internal
universe, and although I find the big questions of physics fascinating, I did
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not regret the choice. The practical outcome of these deliberations was that
I added a full program in neurobiology, without giving up physics, to my
undergraduate program.

Toward the end of my undergraduate studies, I started to have a general
notion of the kind of basic scientific problems I would like to pursue. I
wanted to study how the brain works, by somehow combining aspects of
biology with some form of mathematical or theoretical work. I was more
attracted toward the theoretical side, but I wanted to stay close to the actual
anatomy and physiology of the brain. On the theoretical side, I was starting
to think about models that would be able to mimic some of the functions of
the human brain. I was wondering if somewhere there were research groups
or individuals working along such lines. Searching for relevant information
was not as straightforward as it is today, but at some point, I came across
descriptions of the artificial intelligence (AI) laboratory at Massachusetts
Institute of Technology (MIT), and I was highly intrigued. There were
reports, many in the form of internal Al memos, describing attempts to
develop computer models that were trying to replicate some forms of human
thinking. At the same time, MIT had a strong group of neuroscientists,
housed at the time at MIT’s psychology department, headed by Hans-Lukas
Teuber. This appeared to me to be a wonderful unique opportunity, to
study at MIT, combining neuroscience with the research laboratory with
the strange name of Al I applied, describing my interests, and when I was
accepted, the decision was immediate: I would go to MIT to follow these
research interests.

During my undergraduate studies at the Hebrew University, I met my
future wife, Chana. We were introduced by a classmate of my sister, who told
Chana “you must meet Edna’s little brother.” We met, and for me, it was
an immediate click. She was (still is) beautiful and highly intelligent, with
a unique personality, sensitive, empathic, original, and perceptive. When it
was time for me to leave for MIT to start the school year, she was in the last
stages of finishing her master of science degree in psychology at the Hebrew
University. We decided that I would go initially on my own, and she would
join me a few months later, as soon as she hands in her thesis. In late August
1973, I flew to Boston to start my MIT studies. We did not know then that
we would meet again sooner than expected, under strange circumstances.

A Student at MIT: Human and Computational Vision

I settled down in Cambridge, and started the school year, when life took
a sudden turn, without a warning. It was an early Saturday morning of
October 6, 1973, when breaking news started to broadcast stories about
intense fighting raging between Israel and its neighbors, Egypt on the south
and Syria on the north. There was initially considerable confusion, and it
was unclear whether these were border skirmishes or an all-out war. I was
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trying to get more information in a series of phone calls with friends in
Israel and in the Boston area, and with the Israeli embassy. The situation
began to look serious enough, and I decided to fly home immediately. Flights
had been suspended, but there was one last El Al flight leaving New York’s
Kennedy airport in the afternoon, and the embassy informed me that there
was a seat reserved from me on this flight. I took the car I just purchased
in Cambridge, and drove to JFK as fast as I could to catch the flight. With
me, I took a fellow student at MIT, Benjamin (Bibi) Netanyahu. I knew his
brother, Yoni (later killed while leading the rescue raid at Entebbe Airport
in Uganda), who told me to look up his brother who was already an archi-
tecture student at MIT.

When we arrived in Israel (the stewardess wished us “a pleasant stay in
Israel”), I took a cab to my base, where I was greeted by my squadron commander,
Udi. Good natured, and always calm, he told me “have a good night’s sleep; you
will have a busy day tomorrow.” The next day, Monday, was indeed a busy day,
during which Udi was unfortunately shot down. I was supposed to have my
first exam at MIT that day, but instead, I found myself over the Suez Canal in
the morning, and over the Golan Heights in the afternoon.

When the war was over I came back to MIT, and a few days later I met
David Marr, a meeting that had a profound impact on my academic life.
Within a short time, he became my academic mentor, and later also a close
and dear friend. David arrived at MIT only a few months before me, from
Trinity College in Cambridge, England. I was struck by his scientific think-
ing and intelligence, and by the close fit between what I was looking for,
and what he was already doing in his research. Initially, he could not be my
formal doctoral supervisor, because his position was of a researcher rather
than faculty member. Marvin Minsky, who was then director of the MIT Al
lab, graciously agreed to act as my formal supervisor, but let David do the
actual supervision. David already had a brilliant scientific record from his
Cambridge doctorate and subsequent work. During this work, he produced
a mathematical theory of three major parts of the brain: the archicortex,
cerebellum, and neocortex. This work, in particular the cerebellum theory,
had a large impact on the neuroscience community. David became dissatis-
fied with the general kind of modeling developed in his own work, however,
and started to form a new modeling direction he wanted to pursue.

This new direction took several years to develop and take form, but
the main ingredients were clear from the beginning. A basic aspect of the
new direction was the combination of brain and computation. This meant
combining empirical studies of the brain with computational models that
could carry out functions performed by the brain. In the domain of vision,
the computational challenge was to create computer models that could carry
out tasks that our visual system performs for us and to use the modeling
to analyze and interpret empirical findings as well as to guide new experi-
ments. Many of the functions carried out by our visual system are complex
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and difficult to imitate by computational models. Constructing successful
computational models is therefore likely to reveal useful information about
the nature of the task and about possible processes that the visual system
may be using to carry out the tasks in question. Marr realized from his own
work how difficult it is to go from empirical data obtained by neuroscientists
to an understanding of how the brain functions. Computational modeling
offered a complementary way to gather relevant information, and combin-
ing the two sources of information became the foundation of the emerging
field of computational neuroscience. This potential integration motivated
Marr to move to MIT’s Al lab, because this was a research laboratory where
researchers where trying to develop functioning brain-like computational
models. My own motivation in coming to MIT was similar, and I was fortu-
nate to meet Marr upon my arrival to the Al lab. It was true that MIT Al
researchers were trying to develop computational models with some capaci-
ties of the human brain, but not much attention has been paid to possible
relationships between the models and the human brain. Luckily, when I
arrived, the Al lab already had the most qualified person in the world to lead
this research direction.

Because my knowledge of human vision was limited, I spent significant
time reading and studying the anatomy, physiology, and psychophysics of
the primate visual system. MIT had wonderful people to learn anatomy and
physiology from, and I learned a lot from them, in particular Mike Sryker
(see volume 11) and Peter Schiller (see volume 7). Anatomy looked to me
initially somewhat dry and boring, but I gradually learned to appreciate
its importance and even elegance. At some point during this early period,
I went with Marr to visit Francis Crick at the Salk Institute, who became
highly interested in the brain in general and the visual system in particular.
He knew David from their Cambridge days and invited him often to learn
from him and discuss novel ideas and approaches. I was struck by Crick’s
emphasis on the anatomy of the visual system. He became an expert on the
detailed structure of the visual cortex, and he even constructed some three-
dimensional models of parts of the system. This was perhaps related in part
to his DNA work in which structure and function were of course intimately
related, and he similarly used cortical structures as a source of insight about
functional mechanisms.

Along with getting more familiar with the visual system, I started to
think about different visual functions, and what it would take to perform
them by computational models. I wanted the model to be able to approxi-
mate human performance, but also to consider possible implementations
in biologically plausible network models and possibly comparisons with
neurophysiological or psychophysical data. In trying to model visual tasks,
I soon learned to appreciate the complexity and sophistication of the visual
process. Even for seemingly simple visual tasks, obtaining a model that can
rival human performance can be surprisingly challenging. I will describe
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briefly an example of a visual problem I was concerned with early on in my
studies, which can illustrate some aspects of the state of the art at the time,
and early developments in dealing with computational vision.

The problem was to characterize the shape of subjective contours gener-
ated by the visual system and to provide a model for their generation. These
contours do not exist objectively in the image, but they are generated by our
visual system under some conditions that suggest the existence of an invis-
ible surface occluding the background. There has been considerable work on
the conditions that make the visual system infer, or suggest, the existence of
such invisible surface. However, there was no empirical or theoretical analy-
sis of the shape of the subjective contours generated by the visual system.
Because subjective contours are generated by the visual system, the analysis
of their shape may provide clues about the mechanisms that generate them.
The theoretical analysis suggested that the shape of a contour that fills in
the gap between two boundary edges is composed of the arcs of two circles,
tangent to the boundary edges, meeting smoothly, and minimizing the
total curvature along the contour. This shape was derived from a number
of general global assumption made about the contours, based on empiri-
cal observations (isotropy, smoothness, locality, and minimal curvature).
If these properties are assumed, the two-arc shape of the entire contour can
be derived analytically. This conclusion about the circular arcs as elements
of the full contour is also consistent with later work about the facilitation in
the primary visual cortex between cocircular contour segments [1]. As my
first attempt in network modeling, a simple network model was proposed for
generating the full subjective contours given the visible edge fragments. The
model is based on local interaction between neighboring line elements that
depend on their orientation difference, and eventually selecting the most
active line element at each point.

In related work some 10 year later, the model for subjective contours
was extended to a model that constructs a saliency map, which is a represen-
tation of the image emphasizing salient locations [2,3]. This work was done
together with my then-student Amnon Shashua, who later on, as a professor
at the Hebrew University, became the cofounder of Mobileye, a leader of the
autonomous cars industry. Amnon was a superb student, sharp and creative,
and it was clear early on that he has an unusual combination of scientific
talents together with a practical sense and leadership qualities. When he
finished his master of science work at the Weizmann Institute, he moved to
MIT to do his doctorate with Tommy Poggio (see volume 8).

The Interpretation of Visual Motion

The main part of my doctoral research was concerned with visual motion—
that is, how the visual system measures the velocity of objects in the image,
and how objects’ motion is used to recover their three-dimensional shape.
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I was fascinated by the ability of the human visual system to recover the
three-dimensional shape of moving objects based on motion information
alone, even when each static image contained no information about the
objects’ shape. Consider, for example, a cloud of points moving together
rigidly in space. A single projection of this configuration onto an image
produces just a random-looking arrangement of image points, which does
not reveal the three-dimensional structure of the actual object. However, as
soon as the object starts to move, the dynamic pattern of the moving object
gives rise to a vivid perception of the true three-dimensional object. This has
been a long-known phenomenon in the study of visual perception, called the
“kinetic depth effect,” first described by the great experimental psychologist
Hans Wallach and coworkers in the 1950s. In the perception literature, it
was sometimes explained in terms of a “tendency” of the perceptual system
to perceive rigid objects. But behind this “tendency” lies a striking capacity
of the visual system to solve a complex problem: given a collection of points
moving on a plane, the visual system is able to determine whether they can
come from the projection of an object (or perhaps more than a single one)
moving rigidly in space and then recover the three-dimensional configura-
tion of the points in space.

I referred to this recovery as the “structure from motion” computation
and was interested in both the computational and empirical aspects of this
visual capacity. The computational challenge was to understand the condi-
tions under which the problem can be solved and to develop a model that could
perform the task: given a dynamic image, it will be able to identify whether it
could originate from the projection of a three-dimensional object, or perhaps
several objects, moving in space, and recover their three-dimensional shape.
It was unclear at the time whether the recovered structure was unique or
whether there were always multiple possible three-dimensional shapes and
motions, which were all compatible with the observed changing image. On
the empirical side, the goal was to study psychophysically the properties of
humans’ perception of structure from motion. Another long-term goal was
to eventually identify and understand the brain mechanisms involved in
this visual capacity.

I examined the computational problem in detail, under somewhat
different conditions (such as objects close to the observer, or more distant
objects, where perspective effects are weak). For the case of distant objects,
it turned out that three views of four non-coplanar points are sufficient to
guarantee a unique three-dimensional structure. The uniqueness is in fact
up to a depth-reversal (reflection about the frontal plane). This ambiguity
is inherent, because the parallel projection of a rotating object is identical
to the projection of the reversed object rotating in the opposite direction.
My initial analysis and method for recovering the object used five points,
and an extension by D. Fremlin (in a personal communication) reduced the
configuration to four points. Following this analysis, uniqueness results and
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shape-extraction methods have been extended to a variety of conditions.
An important development was the formulation by Longuet-Higgins of an
algorithm for recovering the structure of objects based on two perspective
projections using the notion of a “fundamental matrix,” which became a
standard in the field [4]. The recovery of structure from motion developed to
become a rich field, going in a variety of directions, and producing over the
years advanced and sophisticated methods for shape recovery.

What is the relation between these computational results and human
perception of structure from motion? It turns out that the shape recovery
method based on the computational analysis was qualitatively consistent
on a range of properties with perceptual phenomena discovered in empiri-
cal studies. There was, however, one difference that I found intriguing,
where human perception performed better than the computational scheme.
Human perception can also recover the structure of moving objects that
are not entirely rigid but that distort and change while they are moving.
Dealing with such distorting objects suggested a novel scheme for the recov-
ery of structure from motion, which had another advantage: it appeared
to be more appealing from the point of view of biological plausibility. The
modified scheme did not recover the object’s shape by solving some set of
mathematical equations. Instead, it proposed an initial approximation to
the shape and continuously improved the solution as more data became
available when the object continued to move [5].

The recovery of structure from motion is an impressive achievement
of the visual system and its use of motion information, and it was the first
problem in the area of visual motion I was attracted to. But the first prob-
lem faced by a vision system that analyzes visual motion is the surprisingly
complex problem of measuring visual motion. The motion of elements and
regions in the image is not given directly, but must be computed from more
elementary measurements. The initial registration of light by the eyes is
in terms of light intensity and its changes over time. From this, the visual
system extracts measurements of the direction and velocity of motion across
the visual field. Extracting such motion information with sufficient detail
and accuracy that will allow, for example, the recovery of structure from
motion, turned out to be a challenging task, and even today the problem
is not yet entirely solved. Based on past work, I suggested that the visual
system uses two complementary methods for extracting visual motion,
one is intensity based, and the second uses localized feature matching to
estimate the motion [6].

In the doctoral work, I focused on the feature-matching method, because
it is more directly relevant to the extraction of structure from motion. The
study of visual motion, including the measurement of visual motion and the
recovery of structure from motion became the subject matter of my doctoral
work, completed in 1977, and published in book titled The Interpretation of
Visual Motion [7].
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During my doctoral period, Marr and I gradually became close friends.
He was amazing, both in terms of scientific guidance and as a human being.
Working with David was always challenging, exciting, and rewarding. It was
hard work, but it was a lot of fun. I had the pleasure of interacting with, and
learning from, a number of other faculty members, in particular Whitman
Richards in the psychology department and Patrick Winston in the Al lab.
Whitman was a rich source of knowledge about human vision and was
always willing to entertain new and unconventional views. Patrick was my
main source of learning about AI, combining broad knowledge with insight-
ful intuitions. Both Whitman and Patrick realized and appreciated from the
very start David’s vision and the value of the program he started at MIT.

Another colleague who was central from the beginning in the work
with Marr, and quickly became a close personal friend, was Tommy Poggio.
Tommy visited the Al lab in 1973 and quickly became a scientific collaborator
and close personal friend of David. Marr was highly impressed by Tommy’s
work and by his outstanding scientific qualities. I remember David tell-
ing me about the exciting work of Poggio on the fly’s visual system, which
he conducted at the Max-Planck Institute in Tubingen. Eventually, Marr
convinced Tommy to join MIT on a permanent basis, and Tommy and his
wife Barbara and their two children relocated to Boston. I remember this
period very warmly; it was a wonderful time both scientifically and in terms
of personal friendships. The three of us became close friends, spending time
together in scientific discussions, outside work, at dinners, and on vacations
with our families. At some later time, as the work progressed, we enter-
tained the idea of starting together some sort of an entity, a consulting group
or a company, exploring potential applications of computer vision. We gave
it the name Cambridge Intelligent System and had stationary with this title
printed over it, but we never got much beyond this point. Unfortunately,
this period did not last very long, and our lives came to a sharp turn when
David became seriously ill. David’s illness came as a shock. He did not feel
well one evening in December 1977 and was admitted to MIT’s infirmary to
undergo some tests. He called me from the MIT infirmary the next day and
asked me to close my office door. He then said briefly and without any intro-
duction that he was just diagnosed with acute leukemia.

The period that followed was very painful. What made it bearable, and
for a meaningful time even a happy period, was David’s meeting with Lucia
Vaina and their falling in love. They met a few months after David’s initial
diagnosis and became very close within a short time, despite the ominous
uncertainty. Lucia’s love and support helped David through the most difficult
times. For extended periods, he maintained an almost normal routine, doing
intensive scientific work, some of it in collaboration with Lucia. Twice during
his illness, we thought that there was some hope. The first was during his
first remission. Everyone hoped that perhaps, by some miracle, the disease
would not come back. We took a vacation together in Vermont, and he



448 Shimon Ullman

resumed his work with his usual intensity. After a period, he felt weaker
and went to the hospital for tests. He came to my office to call the hospital
about the tests results and found out that it was indeed a relapse. We sat
in my office for a long time devastated by the news. The second hope came
when a physician in Cambridge, England, had some initial success with a
vaccine against leukemia. David was hospitalized in Addenbrooke’s hospital
in Cambridge. He was very weak and worked on his book. When I came to
visit, I met the physician, who was very supportive and promised to help
as much as he could. When David came back to the United States, Tommy
Poggio managed to bring some of the Cambridge vaccine with him, but the
vaccine did not work for David (and it did not prove effective in later clinical
trials).

The final period, when David already suspected that the battle was
lost, was in fact a quietly happy one. He was happily married to Lucia and
was working intensively on his book and a number of other projects. In his
premature death, the scientific world lost an intellectual giant who, in the
short time, made a huge impact on his field. I lost a warm, brilliant, exciting,
and unusual friend.

During the doctoral time, on the last day of 1974, Chana and I got
married. The wedding took place in the MIT chapel. This is a charming and
nondenominational place on campus, which can be quickly transformed to
fit any type of service. The wedding was a small and very pleasant event,
with close family members, old friends, and some new friends we met in
Cambridge, and who remained friends to this day. Shortly after our marriage,
Chana enrolled in the doctoral program in psychology at Boston University,
and after graduation she started her career as a clinical psychologist.

Researcher at the AI Lab

Following my doctorate, I had a research position at the AI lab for three
years, first as a research associate and then as a principal research scientist.
My MIT mentors, David and Whitman Richards, thought that this would be
a good way to continue research at MIT before applying for an MIT faculty
position.

During my doctoral research, I found a range of open problems related
to visual motion I wanted to look into, and I continued to study aspects
of visual motion well beyond the doctoral period. A study of visual motion
from 1981 was one of the only two papers Marr and I published together, a
paper titled “Directional Selectivity and Its Use in Early Visual Processing”
[8]. The other paper was in a collaboration with Tommy Poggio, on a topic
suggested by Tommy. He was intrigued by the power of sparse edges in
the image to capture the image content, and we looked together on the
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mathematical power of zero-crossings, used by Marr as precursors of image
edges and contours, to capture image information [9]. David and I worked
together on the directional selectivity paper extensively for a period of a few
months. It was for me the first, and one of the only times, that I wrote a
paper with someone in this mode, actually sitting together for long hours at
a time, composing sentence after sentence, and discussing each paragraph
we wrote. The experience was very intense and enjoyable. I think we both
enjoyed it and were both exhausted by the time the paper was finished.
With a British restraint, a footnote on the first page of the published paper
read: “During the course of the publication of this paper it was learnt with
regret of the death of Dr. David Courtenay Marr at the early age of 35.”

As I studied different aspects of visual motion, I was continuously
impressed by the complexity of the problem from a computational stand-
point, and by the various mechanisms devised by biological systems to deal
with the measurement and the use of motion information. Sophisticated
mechanisms for extracting and utilizing visual motion are found even in
simple animals, such as the frog and the housefly. As already mentioned,
it appears that the visual system uses two complementary methods for
extracting visual motion. One based directly on the local changes in light
intensity (intensity-based methods). The other measures motion by the
matching of features (such as edges, corners, blobs) across space and time
(feature-matching schemes). My initial studies focused on feature-matching
schemes, and their contribution to the perception of structure from motion.
I later became more focused on intensity-based schemes, studying compu-
tationally how to measure visual motion based on image intensity changes
and considering possible biological mechanisms for the task.

Computationally, intensity-based motion measurement is difficult,
because the motion measurements are locally ambiguous, because of what I
termed the “aperture problem” [10]. A spatial integration stage is required
to resolve the measurement ambiguities. The integration is a difficult prob-
lem, which is still not entirely resolved. Because of integration problems,
computational schemes for motion measurement tend to produce blurry
and inaccurate velocity measurements at motion boundaries (e.g., between
a moving object and its background). Ellen Hildreth, my first doctoral
student, worked on the motion measurement problem for her excellent
dissertation, published in a book form under the title The Measurement of
Visual Motion as an Association for Computing Machinery Distinguished
Dissertation [11].

Other studies of intensity-based motion measurement, focusing on
models of biological mechanisms, were conducted in collaboration with my
close friend Jacob (Kobi) Richter. Kobi has been a friend since my air force
days. He was somewhat senior to me and already a well-known ace pilot when
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we met. We spent time together training to become flight instructors and
kept close connections since. Independently, Kobi’s wife Judith and my wife
Chana were friends even before I met Chana. Kobi was (and still is) a multi-
talented person, excelling in everything he puts his mind to. He remained in
active air force service, but in parallel to his service, he completed a doctor-
ate in physiology at Tel-Aviv University. In 1979, he took a three-year leave
of absence from service, obtained a fellowship and research position at MIT,
and came to Boston with Judith and their three children. At MIT he worked
with me on computational modeling and with Peter Schiller on monkey V1
recordings. Kobi quickly became an accomplished programmer and modeler.
In a number of publications we had together, modeling temporal aspects of
retinal ganglion cells and V1 simple cells, Kobi provided the empirical data
and participated on equal footing in the modeling work [12-14].

In addition to visual motion and some other modeling work, a topic
that occupied me conceptually was the role of computational modeling in
understanding brain and cognition. Related to this were attempts to explain
to colleagues and fellow scientists what we were trying to do and in what
ways computational theories and models could complement empirical stud-
ies. This was not always easy. A well-known professor from Yale invited me
once to give a seminar in his department. He asked me, however, to “please
leave out the computational and theoretical parts,” because he did not think
his colleagues would have any interest in these directions. As a part of this
general direction I wrote a paper, which gave rise to a lively discussion,
about Gibson’s theory of direct perception [15].

James Gibson was a distinguished psychologist who made important
contributions to the study of visual perception, including studies of the opti-
cal flow during locomotion, the role of texture gradients in the perception
of surfaces, and introducing the interesting notion of “affordances.” On the
theoretical side, Gibson opposed any use of the terms “computation” and
“representation” in the study of perception. In his view, information about
the environment is “picked up directly” by the observer, without any need
for further elaboration. Because this position is diametrically opposite to
computational theories, it was of interest to analyze what “direct percep-
tion” means, what is exactly the argument, and what is it based on. The
critique I wrote about direct perception was not about Gibson’s contribu-
tions, but rather about his theoretical stance, which I find untenable as a
scientific explanation.

In other work along the same goal of making connections between neuro-
science and computer science, I wrote several general overviews, aimed at
either computer scientists discussing relevant neuroscience aspects [10] or
aimed at neuroscientists, discussing relevant computational aspects [6,16].
Over the years, there has been a continuous shift in the degree of under-
standing and collaboration between the biological, behavioral, and computa-
tional studies of vision. Many of the neuroscience graduate students I have
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met in recent years at the Weizmann Institute, MIT, and other places are
highly sophisticated in their computational background and skills, and they
use these skills in their neuroscience work.

On the Applied Side: Orbotech

Toward the end of my term as a research scientist and before starting
my faculty appointment, I spent six months as a visitor at the Weizmann
Institute of Science in Israel. Chana and I felt that after spending seven
years in Boston, we wanted to spend a significant time period with family
and friends back in Israel. I thought initially of spending this time at my
Alma mater, the Hebrew University in Jerusalem, by I got a phone call
from an ex-teacher of mine in mathematics at the Hebrew University, who
had moved in the meantime to the Weizmann Institute, urging me to come
instead to the Weizmann, to the mathematics and computer science depart-
ment. The Institute welcomed us warmly, arranging lovely accommodations
and a nice office space.

During this stay, I gave in the department a class on computer vision.
This was the first class on computer vision at the Weizmann, and in Israel
in general, and it was well attended by both students and faculty members.
Among the listeners in the class was a computer engineer, Zvi Lapidot,
who found this new field highly exciting. We discussed topics in computer
vision frequently after class and soon became good friends. Zvi was a part
of a group in the computer science department that actually designed and
built computers, building the hardware and writing the software to run it.
This activity had begun already in the 1950s, with construction of the first
computer in Israel, and one of the first large-scale computers in the world,
called the Weizac. Building such computers during the 1950s was still a
pioneering effort, and the Weizmann recruited for the task several scien-
tists and engineers from the United States. The project had an advisory
committee, which included John von Neumann, Albert Einstein, and Robert
Oppenheimer as its members. Following the Weizac, two additional genera-
tions of computers were designed and built at the Weizmann, the Golem and
its successor, the Golem B, which was a large-scale mainframe computer. Zvi
was a software engineer in the Golem project, and because the Golem team
was small and closely knit, he acquired deep knowledge of computer systems
in general. As an engineer with a bright and curious mind, he was intrigued
by the field of computer vision and the possible applications it could offer.

By the time my short term at the Weizmann was over, Zvi was excited
by the possibility of moving into this new field. He took a leave from the
Institute and found a job in a computer vision startup in the Boston area.
He wanted to learn about the applied aspects of computer vision and to
consider potential applications in the field. He eventually reached a conclu-
sion that the manufacturing of printed circuit boards was at a critical stage
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in terms of moving into automatic visual inspection. Many in the industry
were skeptical about the possibility of automating the inspection process.
Zvi raised the problem with me, and after a while, we reached the conclusion
that new methods from computer vision could be of use for automating the
inspection process. We added to the discussion two close friends: a computer
engineer from the Weizmann named Ami Caspi who worked for years with
Zvi, and my friend Kobi. Ami was a superb hardware engineer, and Kobi was
superb at anything he became interested in. This was quite a unique group,
and within a short time, we had the initial blueprints for a vision system for
printed boards inspection. The plans moved quickly forward. When Zvi went
back to Israel, a company was formally formed (under the name Orbot),
funds where raised, and a small group of engineers was hired. Within two
years, several systems were already operating in several printed circuit
manufacturing facilities. After a merger with another Israeli company in
the same area, the company name was changes to Orbotech. It was listed on
Nasdaq in 1984 and expanded in a number of additional directions, includ-
ing the visual inspection of flat-panel displays. In 2019, the company was
acquired by KLLA, a leader in process control for the semiconductor industry.

For me, working with the initial group of talented friends from different
disciplines was highly stimulating and rewarding. Professionally, some of
the problems involved in the high-speed analysis of complex patterns were
interesting and challenging, in part as problems in vision and in part from
more mathematical or algorithmic perspectives. As the company matured,
my own involvement became small, but I stayed connected with the company
until its final acquisition.

Faculty, between MIT and Weizmann

Following three years in a research position, I started my faculty appoint-
ment at MIT in 1981, at the rank of associate professor. The following year,
1982, was quite transformative for me and my family in three directions.
First, Chana and I had our two sons Tomer and Yonatan. Second, my MIT
position became tenured. Third, I also accepted a position in the computer
science department at the Weizmann Institute of Science, in parallel with the
MIT position. It was agreed that I will spend about half of my time at each
institution, alternating every one or two years. The most dramatic trans-
formation for us was of course becoming a family and starting to raise our
children. I don’t think that I fully anticipated how profound and gratifying
this transformation would turn out to be. Many years have passed since then,
and Tomer and Yonatan are now going through a similar experience, raising
their own families. Yonatan chose to be an artist—a painter and sculptor.
Tomer chose to be a scientist and is now a faculty member at Harvard’s
Psychology department. I think that both chose to pursue what they were
always passionate about, which I hope will bring them lifelong satisfaction.
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During this period my scientific research focus started to shift to increas-
ingly higher levels of visual perception. My intellectual interests were in fact
biased from the beginning of my studies of vision toward the higher levels
of vision and the integration of vision and cognition, problems that include,
for instance, object recognition, scene understanding, and aspects of visual
awareness. Research in computer vision in its early days had very little to
do with such topics, focusing instead on lower-level aspects of vision, such as
edge detection, feature detection, texture separation, motion measurement
and depth estimation. In my own work on motion, I was surprised by the
complexity of the problems involved in motion perception and the sophistica-
tion of the computations performed by the brain in measuring visual motion
and recovering three-dimensional structure from motion, as discussed
earlier. One can certainly devote a rich lifelong scientific career to the study
of vision at different levels; the move toward higher, more cognitive levels
was not because I thought that lower levels of visual processing were already
well understood, but I just following my personal scientific interests.

Visual Routines

One general topic I became curious about is the general nature of percep-
tion when performing complex visual tasks, such as scene understanding.
Rather than a single application of a bottom-up process, behavioral evidence
and computational considerations suggested the use of a sequential process,
guided by top-down processes, to accomplish goals of interest. I addressed this
general topic initially in the context of what I called “visual routines,” first
in computational studies [17], combined later with psychophysical studies.
To take a concrete example, consider the relation of inside versus
outside, which is performed by the human perceptual system with intrigu-
ing efficiency. For instance, suppose that the visual input consists of a single
closed curve and a small X figure. The visual task is to determine whether
the X lies inside or outside the closed curve. If the shape is not highly convo-
luted, the “insideness” relation pops out immediately. But what is the visual
process that allows us to reach this conclusion? A popular method that has
been proposed for “insideness” in practical applications uses the so-called
ray-intersection method. Starting from the x location, draw a ray in any
direction to the edge of the image, and count the number of intersections
along the ray. If the number is odd, the x lies inside, and otherwise it is
outside the closed contour. This ray-intersection method works correctly
only under limited conditions—for instance, it must be assumed that the
curve is closed, and it must also be isolated, because the presence of addi-
tional contours can create extraneous intersections. It turns out that seeking
a robust solution of the “insideness” problem is a challenging problem. For
human vision, we also seek a biologically plausible computation. Biological
plausibility is not a simple and well-defined criterion, but the ray-intersection
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computation, for instance, appears to be an unlikely candidate. A method
that is more computationally effective and fits better with human percep-
tion is based on spreading activation. Starting from a given point, the area
around it in the internal representation is somehow activated. This acti-
vation spreads outward until a boundary is reached, but it is not allowed
to cross the boundary. Depending on the starting point, either the inside
or the outside of the curve, will be eventually covered by the spreading
activation. This can provide a basis for separating inside from outside.
Additional stages are still required to complete the procedure, and the addi-
tional stages will depend on the specific problem at hand. I will not consider
here further “insideness” or visual routines in general, because the topic is
too specialized for an overall review. Note, however, that the basic themes
that played a central role in studying the perception of spatial relations by
visual routines came up repeatedly in other studies of higher-level aspects
of vision. Performing complex visual tasks, such as scene understanding,
often employs an evolving sequential process, guided by top-down processes,
to accomplish some goal of interest. In the study of visual routines, one of
my goals was to combine the computational studies with empirical psycho-
physical and physiological data. Together with a wonderful psychophysics
colleague, Pierre Jolicoeur, we have conducted a number of studies, focus-
ing primarily on the task of boundary or curve tracing [18,19]. Some of this
work was also followed subsequently by creative studies at the physiological
level by Pieter Roelfsema and others [20,21].

Object Recognition

When I started to work on the broad and difficult problem of object recogni-
tion, I was asked by one of my colleagues whether I decided to stop working
on vision. People worked at the time on aspects of pattern recognition, but
studying natural object recognition was at its infancy, and at least some
researchers considered object recognition as belonging more to higher level
cognition than to vision research. Views regarding the relations between
vision and cognition shifted over time to an almost opposite view. Object
recognition became a central part of vision research, and current methods
for object recognition perform very successfully, without employing more
cognitive aspects, such as world knowledge, logical inference, or symbolic
representations. The same methods that proved useful for object recogni-
tion, based on deep convolutional networks, are also being applied to a more
cognitive and abstract level of using vision, such as scene understanding or
visual question-answering. My own view is that application of these meth-
ods, with only minor alteration, to the higher and more abstract levels, is
going to run into difficulties. I have worked on object recognition for a long
time, and I think that my personal history during this period reflects much
of the general evolution of the field during this period. I will not get into
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technical details, but I will describe briefly some of the main attempts and
conceptual shifts in object recognition and higher-level vision.

When I started this journey, the dominant approach to object recogni-
tion was based on three-dimensional representations and internal manipula-
tions of these representations. Using three-dimensional representations to
support recognition makes sense: I can recognize the object “car” from a large
range of viewing directions, despite the large change in the car’s image as the
viewing direction changes from a frontal, to side, or back views. Influential
models using this approach were Marr’s generalized cylinders representa-
tion [22] and Biederman’s theory of recognition by components [23].

In both theories, objects were represented using a collection of three-
dimensional primitive shapes. My own initial work on object recognition
was also based on three-dimensional representation but from a different
perspective. I describe next some of the work and how it developed over
time. The main objective is not to discuss details of object recognition, but
to recount my experience in exploring a complex and little understood
research area, until reaching a conclusion that a basic shift is needed. A
related theme is how the research was guided by a combination of modeling
results with empirical neuroscience evidence.

The basic motivation for using three-dimensional models for visual
recognition was to achieve view invariance. In the components-based
approach, invariance was achieved using the fact that the object components
and their arrangement remained invariant to changes in viewing directions.
I thought that these representations were too qualitative for recognition,
and instead of relying on a vocabulary of shape primitives, I proposed that
view-invariant recognition could be obtained by alignment [24].

The initial work along this line was conducted with my student Dan
Huttenlocher, now the dean of the MIT College of Computing. Dan was a bril-
liant and lively student who soon became also a colleague. During his doctoral
work, he spend some time with me at the Weizmann in Israel. I asked him
many years later if he remembered any of the Hebrew he acquired during
this period in Israel. The expression he remembered best was “nine percent”
(in Hebrew). It turned out that he found a particular cheese that was avail-
able in grocery stores across Israel, which was just called “9 percept cheese”;
he loved this cheese, and the useful term was imprinted in his memory.

The work with Dan was published in the proceedings of what can be
seen in retrospect as somewhat of a historic event—the first meeting of the
International Conference on Computer Vision (ICCV), which later became
a major meeting in computer vision with many thousands of participants,
a broad range of workshops, and a commercial exhibition. The central idea
was that to recognize an object, an internal object model was first aligned
with the image using a small number of model and image features. We used
for this alignment results from the structure-from-motion work. For exam-
ple, by identifying three corresponding feature points in the model and the
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image, it becomes possible to compensate changes in position, scale, and
spatial orientation between the model and the image, and then to compare
the image directly with the aligned object projection.

The method was efficient and highly accurate, but it had drawbacks as a
candidate model for natural object recognition. For example, it could recognize
well a specific object, such as a specific car model, but had difficulties dealing
with differences between individual objects that belonged to the same class,
such as the general “car” class. We explored over a number of years some
modifications and extensions. For example, aligning not only object contours
but also more abstract shape descriptions, or using multiple local alignments
rather than a single global one [25], I was gradually led to the conclusion
that, in general, human recognition of natural objects does not rely on the
use of three-dimensional object models. This conclusion was based primarily
on computational considerations, namely the difficulty that such models have
dealing with general classification and with highly flexible objects.

About 10 years after our initial work on alignment, evidence from neuro-
science also started to supply evidence against the involvement of internal
three-dimensional manipulation in object recognition. Psychophysical work
by Shepard [26] showed that humans can perform some form of internal
manipulation to bring three-dimensional alignment, a capacity known as
“mental rotation.” Such studies may seem to support the possibility of three-
dimensional alignment in recognition. There are, however, good reasons to
doubt the connection between mental rotation and object recognition. First,
mental rotation is a slow process, unlikely to support fast object recogni-
tion. Second, brain imaging studies, starting in 1996 [27], showed that brain
activation during mental rotation is mainly in areas not directly involved in
natural object recognition.

The brain has an ability to perform some form of objects rotation and
alignment, but this capacity appears to be associated more with tasks related
to motor planning, such as inserting one object into another. The internal
object manipulation can still be useful for recognizing objects from unfamil-
iar views. Humans can recognize objects from completely novel views, and
their ability in this task surpasses the ability of the leading computer vision
models available today [28]. This ability may be attributed at least in part to
an internal alignment process, but I became convinced that general object
recognition by humans relies on other methods, still to be explored.

I find that the history of using three-dimensional object models and
alignment methods provides a nice example of useful interactions between
computational modeling and direct neuroscientific evidence. The compu-
tational investigations by themselves provided evidence regarding the
limitations of alignment methods for general object recognition. The neuro-
scientific data supplied more direct evidence against alignment methods,
and more generally influenced me and others in our thinking about possible
mechanisms and models of object recognition.
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The work on high-level vision up to these early recognition models
included some interesting topics not described here, in particular image
saliency, done with my long-time friend Christof Koch [29], and an early
model of combining bottom-up with top-down processing in the visual cortex
[30]. These topics are summarized in the book High-Level Vision: Object
Recognition and Visual Cognition [31].

Recognition by Image Patches

The shift from three-dimensional modeling to a different approach to recog-
nition was a pretty extreme one. Instead of focusing on differences caused
by changes in viewing directions, it appeared to me to be more important
to focus on dealing with the difference in appearance caused by differences
between objects belonging to different classes. Humans are better at recog-
nizing objects at the class level (e.g., a car or motorcycle) than recognizing
individual cars and can also easily tolerate complex nonrigid transforma-
tions. They also do not need the entire object; a partial view, sometimes even
a small part of an object, may be sufficient. These and related considerations
led me to the direction of basing the recognition of a class of objects based on
selected image patches that are specific to a class of objects, taken directly
from example views of objects in the same class. That is, the shape fragments
used to represent faces, for instance, would be different from the shape frag-
ments used to represent cars or letters in the alphabet. These fragments
can be used as a set of common building blocks to represent, by different
combinations of the fragments, different objects belonging to the class. The
patch-based representation appealed to me for the purpose of object classifi-
cation based on general observations, but it was also supported by empirical
tests, showing that objects from the same class shared many similar local
patches and that local patches by themselves are highly informative for the
class identity. The problem of recognition across different viewing direc-
tions became secondary. It can be approached by the class-based fragments
approach by using for each class a number of related models, from different
viewing directions [32,33].

We introduced the patch, or fragment-based approach in the late 1990s,
along with a general method for selecting the most informative patches of
a class for the purpose of recognition. The selection of representative class
fragments was based on a natural notion from information theory called
mutual information. Without getting to the technical details, the notion is
quite intuitive. Suppose you know that an object was placed in one of eight
boxes, but you do not know which box. Suppose also that you get a hint—
that the box containing the object is red, and four of the eight boxes are red.
The hint about the color reduces the uncertainty of the choice from eight to
four possibilities. Measured in bits, the uncertainty was reduced from three
bits (the number 8) to two (the number 4). The saving of one bit was the
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mutual information supplied by the color hint. In a similar manner, one can
measure how the presence of a particular patch in an object’s image reduces
the uncertainty about the object class and then can select, in an automatic
procedure, class patches that are the most informative for classification. An
interesting finding with some biological and computational implication was
that the most informative fragments for classification were class fragments
of intermediate complexity, compared with smaller local features or complex
patches that covered most of the object [34].

The processes of selecting informative object features can proceed in
a hierarchical manner, using small informative patches to detect larger
patches. One gets from this object representations in terms of a hierarchy
of informative patches, which often correspond to semantically meaning-
ful parts and subparts. An exciting possibility offered by such hierarchi-
cal object representations was that recognition may take place at all levels
simultaneously, recognizing not only the object, say a face, but also its parts
and small subparts, such as eyes as well as the eyelids, lashes, and pupil. In
a model that brought together much of our work on fragment-based recog-
nition, we obtained this kind of full recognition. An interesting finding was
that such a full object interpretation, identifying and localizing parts at all
levels, required a combination of bottom-up with top-down processing. The
interpretation used a single cycle of this kind, a bottom-up pass that identi-
fied the object class, followed by a top-down pass, which used the recognition
of one level to identify parts at a lower level. The top-down pass used the
context at a higher level to disambiguate parts at a lower level, which could
not be recognized using the bottom-up recognition [35].

Current deep network models for object classification also create a hier-
archy of increasingly complex features, which lead to excellent classification
results. In their current state, however, these models do not combine object
classification with the recognition of parts and subparts at multiple levels.
It would be interesting if future work could combine deep net models for
object classification with a parts recognition stage, perhaps using a similar
approach to the bottom-up, top-down cycle discussed earlier.

As in other areas, I tried to combine the computational modeling with
empirical behavioral and physiological data to examine the applicability of
the models to human vision. In one study, [36], we collaborated with Shlomo
Bentin, a highly creative neuroscientist from the Hebrew University, to test
the role of informative features in human vision using electroencephalo-
gram (EEG) and behavioral tests. We showed subjects images of different
fragments, for which we calculated the mutual information they provided
for classification, and measured the subjects’ classification accuracy and
EEG responses. We found that categorization performance correlated with
the measured mutual information level as well as with the amplitude of
a posterior temporal potential, peaking around 270 milliseconds. Another
study, in collaboration with Rafi Malach [37], obtained similar results using
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functional magnetic resonance imaging (fMRI): it was possible to use the
objective measure of mutual information between an image patch and a
class to predict the level of fMRI activation in human object areas. For me,
there was some scientific satisfaction in the ability to take an image patch
and make a prediction about classification accuracy and the brain response
it would induce when shown to a human observer.

The ability to recognize objects based on local patches and other forms
of reduced information had a revival some 10 years later, when we exam-
ined what we called “atoms of recognition” in human vision [38]. This was
another attempt to identify the visual features and representations used by
the brain to recognize objects. The studies of informative class fragments
described earlier identified object fragments for classification. An object in
the image would typically be covered by multiple fragments, which together,
by summing up their individual contributions, would lead to the object’s
classification. In studying “atoms of recognition,” we used a large-scale
psychophysical study to systematically search for the minimal images that
are sufficient for reliable recognition. For each class of image we tested, such
as a horse, bird, bicycles, and flies, we found multiple “minimal images” that
were sufficient on their own for a reliable recognition of the object in the
image. An interesting finding was that at the level of minimal recognizable
images, a minute change in the image can have a drastic effect on recogni-
tion, thus identifying features that are critical for the classification task.
Simulations then showed that existing recognition models could not explain
this sensitivity to minor changes, and, more generally, they did not learn to
recognize minimal images at a human level. The role of the critical features
for recognition is revealed uniquely at the minimal level, where the contri-
bution of each feature is essential.

In a study led by Marlene Behrmann from Carnegie Mellon University
[39], we used the set of minimal images we identified to probe the responses
of class-specific cortical regions in humans using fMRI. In particular, we
compared the minimal images with subminimal images—these were slightly
reduced versions of the minimal images, which were only slightly different
but essentially unrecognizable. As expected, because of their similarity, in
early visual cortex, the minimal and subminimal produced similar responses.
Higher-level, class-specific regions, however, exhibited greater activation for
minimal images compared with their subminimal counterparts. Moreover,
minimal images from each category elicited enhanced activation in corre-
sponding category-selective regions—for example, the parahippocampal
place area showed selectivity in its response already at the minimal image
level.

Object classification is often considered today to be a solved problem,
because deep network models excel in this task. This is a remarkable
achievement both in practice as well as in our understanding of biological
mechanisms of classification. Human classification performance, however, is
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still qualitatively better than models in various aspects (e.g., unsupervised
learning, out-of-distribution examples, adversarial examples, unfamiliar
viewing directions, or minimal images), and additional studies and compari-
sons with human vision are still required to fully understand the object
classification task.

Digital Baby

Learning to recognize objects is an interesting and challenging problem in
understanding vision, but it is only a part of a much larger problem, of using
vision to learn about the world. This learning process starts in infancy, when
much of the knowledge about the world emerges from the combination of
innate mechanisms and visual experience. I have been, and still am, fasci-
nated by this larger problem, and for a number of years, I have been engaged
in a research project I called the “digital baby,” exploring basic issues within
this large domain. The ultimate goal of such a project is to develop a digital
baby model that, through perception and interaction with the world, will
develop on its own representations of complex concepts, which will allow it
to understand the world around it, in terms of objects, categories, events,
agents, actions, goals, social interactions, and the like.

This emergence of understanding is a major challenge in the study of
vision, cognition, and the brain. Current computational theories dealing with
the acquisition of knowledge about the world through visual perception still
cannot cope with this major challenge. They have made an impressive and
substantial progress over the past decade, but as far as I can judge, current
methods are unable to acquire spontaneously and deal effectively with natu-
ral cognitive concepts, which depend not only on statistical regularities in
the sensory input but also on their significance and meaning to the observer.

A major part of the problem in my view is that current computational
approaches to visual learning are too empiricist in nature. As has been
shown by a rich body of developmental studies, the human cognitive system
is equipped through evolution with basic innate structures that facilitate
the acquisition of meaningful concepts and categories. These are used
to obtain a true understanding of the world, which goes beyond correla-
tions and statistical regularities. In 2010, the Cognitive Science Society
published a brochure titled “Outstanding Questions in Cognitive Science.”
In it, I suggested that a basic open question in cognitive science is a theory
of “computational nativism”—a computational theory of cognitively and
biologically plausible innate structures and how they guide the cognitive
system along specific paths through its acquisition of knowledge to continu-
ously acquire meaningful concepts and useful representations.

I will describe briefly a couple of examples from the digital baby studies
that illustrate the power of plausible innate structures to guide the spon-
taneous acquisition of meaningful concepts. The goal in describing these
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examples is not to present our work in detail, but rather to discuss major
issues in perception and cognition that I have been interested in for a long
time and to describe briefly my general views on some of these issues.

In the first example, we developed a model that tackled two notable prob-
lems in which the gap between computational difficulty and infant learning
is particularly striking: learning to recognize hands and learning to recog-
nize gaze direction [40]. Hands are known in computer vision to be objects
that are particularly difficult to recognize; because they are highly articu-
lated, they can appear in a large variety of different shapes. In addition,
in many cases, their size in the image may be small, and their recognition
is obtained not based on their own appearance, but mainly by the context
of other body parts. And yet, hands are one of the first objects to be recog-
nized reliably by infants, starting already around the age of three months.
Direction of gaze, and the target of someone’s gaze, are similarly difficult,
but again, gaze direction is learned early in infants’ development. Unlike
computational models, this learning is obtained in an unsupervised manner,
that is, without any help or guidance by a teacher or by annotated images.
Infants just look at the world around them and spontaneously develop the
ability to recognize hands and direction of gaze.

The model we proposed shows similar capabilities: it is shown a stream
of natural videos, and it learns without any supervision to detect human
hands by appearance and by context, as well as by direction of gaze, in
complex natural scenes. How can such complex learning take place sponta-
neously by “mere looking”? We propose that the learning process is guided
by an innate mechanism—that is, the detection of what we called “mover”
events in dynamic images. Such an event is defined by a moving image
region causing a stationary region to move or change after contact. The
proposal is based on two types of evidence. The first is evidence regarding
infants’ sensitivity to special types of motion, similar to mover events. From
an early age, infants are sensitive to visual motion, and they use motion
to separate moving regions from a stationary background and to track a
moving region. They are also sensitive to specific types of motion, similar
to our proposed “movers,” including so-called launching events, as well as
to active motion (causing other objects to move) or to self-propelled motion.
The second part of the evidence comes from our computational studies,
which demonstrate that having the capacity to detect specific motion events
in dynamic images can naturally lead to the automatic acquisition of increas-
ingly complex concepts and capabilities, which do not emerge without domain-
specific biases. The detection of mover events on their own are not sufficient
for hand recognition: they do not identify the hand as an object, they are not
sufficiently reliable, and they detect hands and some hand configurations but
not others. However, reliable and general hand detection can evolve from a
combination of the teaching signal provided to the mover events, with existing
methods for supervised learning of object recognition, using mover events
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as providing the supervision. After exposure to video sequences containing
people performing everyday actions, and without external supervision, the
model develops the capacity to locate hands in complex configurations by
their appearance and by surrounding context.

This combination of internal structures with learning appears to me to
be a powerful and general combination. Infants learn to recognize hands
in a spontaneous manner early in their development, despite the fact that
hand recognition is difficult and does not emerge in learning models by just
looking at the world. This is obtained in the model not by using innate hand
detectors, but by using simpler “proto concepts” for hands, which guide the
learning process along a trajectory that leads to hand recognition. Note that
during the learning trajectory leading to hand recognition, hands become
naturally associated with some of their meaningful properties, such as
hands being the mover of objects, and they are used for object manipulation
and actions. Developmental studies show that young infants indeed expect
a human hand, and not an inanimate object, to be the primary cause of an
inanimate object’s motion [41].

The model for learning to recognize hands was also extended using simi-
lar principles to the learning of extracting direction of gaze. I will not get
into any details of gaze detection, except to mention what was the teaching
signal used in this case to guide the learning. Based on empirical observa-
tions, we made the assumption that when people make a contact with an
object, to grasp and manipulate it, they almost invariably look directly at the
object. They can subsequently move the object around without looking at it,
but at the point of making the initial contact, the contact location is a reli-
able cue to the direction of gaze. Again, the target concept, gaze direction in
this case, is difficult to learn by just looking. It appears early and spontane-
ously not based on an innate structure in our visual system that serves for
gaze detection, but rather by the use of a proto concept in a learning process
that leads to the reliable acquisition of the final target capacity. This learn-
ing process also naturally links the gaze direction and the gaze target with
the goal and attention of the looker. As in the hands example, internal struc-
tures guide the system to acquire meaningful concepts, which are significant
to the observer but statistically inconspicuous in the sensory input.

We recently had an opportunity, in a study led by Ehud Zohary, to test
the implications of the gaze-recovery model with a special population of
patients in Ethiopia who had early bilateral congenital cataract, diagnosed
and treated at late childhood [42]. This sight restoration provided a unique
opportunity to directly address basic issues on the roles of “nature” and
“nurture” in development, as it caused a selective perturbation to the natural
process, eliminating some gaze-direction cues while leaving others still avail-
able. Of particular interest was the ability of the group of patients who did
not have sufficient visual acuity before surgery to recover fine details (e.g.,
the position of the irises) needed to recover the direction of gaze. Following
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surgery, the patients’ visual acuity typically improved substantially, allowing
for fine discrimination of eye position. Yet, the recovered patients failed to
show eye-gaze following behavior, and they also fixated less on the eyes of a
viewed face, two reflexive behaviors seen in controls, even years after vision
was restored. This is a natural expectation of the model, assuming that the
specialized internal guiding signals that normally enable the learning of
eye-based gaze direction are no longer available at a later stage, when the
correcting surgery was performed. As expected, their gaze-following behav-
ior based on head rather than eye direction was typically normal, which was
consistent with the available visual acuity before surgery.

Another digital baby example of innate structures guiding learning is
the surprising acquisition of concepts related to containment and contain-
ers [43]. Containment is one of the earliest spatial relations to be learned,
starting around three months of age, and preceding other common relations
(e.g., support, in between). Computationally, containment often depends on
subtle cues in the image, and it is unclear how this relation is acquired so
early in development and without supervision. The model we proposed can
explain infants’ capacity of learning containment and related concepts by
“just looking,” along with their empirical development trajectory. Learning
occurs in the model fast and without guidance, relying only on perceptual
processes that are present in the first months of life. As in the learning of
hands and gaze direction, instead of labeled training examples, the model
provides its own internal supervision to guide the learning process. We
showed how the detection of so-called paradoxical occlusion provides natural
internal supervision, which guides the system to gradually acquire a range
of useful containment-related concepts. During early development, even
earlier than acquiring containment, infants develop sensitivity to occlusion
relations. The digital baby model includes a similar capacity—that is, to use
visual motion to learn occlusion relations along with dynamic and static
object segregation [44]. We showed how the notion of containment can natu-
rally arise from a simple combination of occlusion relations, which I will not
describe here in more detail. The model works well, and it acquires different
aspects of containment in an order that is similar to the temporal learning
order by infants [45].

Overall, these examples of the digital baby model illustrate how natu-
ral complex concepts can be acquired visually without requiring elaborate
external supervision. The results show how combining perceptual learning
of the kind obtained by deep learning with brain-like innate structures may
guide models toward human-like learning [46].

In my view, future models of human vision, as well as intelligent Al
vision systems, will be closer to the general structure suggested by the digital
baby model than current models, which utilize primarily unguided bottom-
up processing. Unlike networks that start from a tabula rasa state and that
learn using extensive supervision and huge amounts of annotated data,
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human-like models will incorporate rich innate structures that guide the
learning along useful learning trajectories with limited supervision. Guided
by innate structures, the learning process will construct a rich conceptual
system for understanding the world around us.

Top-Down Processing, Linking Perception and Cognition

Another major topic of interest to me for many years has been the role
of top-down processing in vision, and the integration of vision and cogni-
tion in scene perception. Anatomically, we know that the visual system
combines closely interacting bottom-up and top-down processing streams.
The bottom-up pathways go from early to higher level areas, including more
abstract and cognitive brain regions, and the top-down pathways proceed
in the opposite direction, from high to lower regions. The cortical circuitry
suggests that the top-down stream plays a major role in vision and in corti-
cal computations in general, because it is often at least as massive as the
bottom-up stream. The exact function of the top-down projections is still
unclear, and given its importance, this is obviously a major open question,
which may shed light on basic aspects of brain processing and on the inte-
gration of vision with higher-level cognitive functions. As noted, current
deep network models, which excel in visual object recognition, perform the
task relying almost exclusively on bottom-up processing. If the complex task
of visual recognition can be performed well without requiring a top-down
component, what can be the core contributions of the top-down pathway?
In my own work, starting around 2000, the initial direction I followed was
to explore the use of the top-down stream for the specific task of object segmen-
tation, also called figure-ground separation. When we recognize an object in
the image (e.g., a horse), we can also identify the exact image region that
contains the horse. Most approaches to segmentation at the time assumed that
separating an object from its background is performed based on image proper-
ties, such as uniformity of color and texture, or the smoothness and continuity
of the object’s bounding contours in the image. The problem is that natural
objects can be highly nonuniform, with multiple colors and textures and jagged
boundaries, and can still be well segmented and separated from their back-
ground. It is therefore plausible that once we become familiar with a given
type of object (e.g., what a horse looks like), we have some form of model of the
object in higher-level visual areas, which can be used for guiding the segmenta-
tion process at lower levels. In work with E. Bornstein, we proposed a model
that showed for the first time how an object model can be learned from a set
of images, and then be used to guide a top-down segmentation process [47,48].
The most flexible and accurate segmentation model was obtained by
combining bottom-up and top-down processes [49,50]. The object-model can
combine object parts that are highly variable in terms of image properties.
In contrast, low-level image properties, such as the exact location of edges,
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are highly informative for delineating precisely the object’s boundaries. It is
not surprising, therefore, that in current deep network models of vision, the
segmentation task is usually performed by a top-down network, combined
with the bottom-up one. Experimental evidence from the neuroscience and
psychophysics of perception has provided detailed evidence supporting the
general view that bottom-up analysis of the retinal image is combined with
top-down processing that include stored memories and guiding signals to
obtain accurate and useful perceptual interpretation [51]

In subsequent work, we proposed another task in which bottom-up and
top-down processing complement each other well, which is the task of recog-
nizing and segmenting object parts and subparts at multiple levels (e.g., a
person, arm, hand, finger) and even finer details (e.g., a fingernail), if the
resolution is sufficient. This work was mentioned earlier, in the context
of performing patch-based image interpretation, using a bottom-up, top-
down cycle. The use of a top-down component is again natural for the task,
because the identification of a given part supplies context that can be used
to disambiguate parts at a lower level, which could not be recognized using
the bottom-up recognition alone [35].

In both of these models, object segmentation and multilevel parts recog-
nition, the connections between the bottom-up and top-down streams go
in one direction only, from the bottom-up to the top-down stream. In more
recent work, we developed a more general framework, in which the connec-
tions are bidirectional, and the goal is more ambitious: to obtain scene
interpretation by an iterative bottom-up, top-down processing [52].

Scene Interpretation

Full scene perception is still a major open problem in understanding and
modeling human vision. This is a complex and challenging task, because
it requires the extraction and representation of scene components, such as
objects and their parts, people, and places, along with their individual prop-
erties, as well as relations and interactions between them. Computational
models of scene perception, also called “scene interpretation” models, have
focused on training network models to extract a structural representation
of the entire scene, with all its components, and the relationships between
the components. In contrast, humans’ scene perception focuses on selected
structures in the scene, starting with a limited interpretation (the scene
“gist”) and evolving sequentially, in a goal-directed manner. It seems to me
that extracting a full scene description is both infeasible and unnecessary,
and therefore the selective interpretation produced by human perception
offers an attractive alternative to current models. However, it also raises
new difficulties, of extracting selected scene structures of interest in a goal-
guided manner and applying a sequential process that depends on both the
image content and the current observer’s goal.
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In our work, we proposed to obtain human-like goal-directed scene inter-
pretation, using an iterative bottom-up, top-down processing, in a “counter-
streams” structure motivated by cortical circuitry. In this iterative process,
each cycle is composed of a bottom-up and a top-down part. The bottom-up
part is a standard visual stream, which delivers useful visual representa-
tions to the higher, more cognitive components of the perceptual system. At
this higher level, the extracted visual representation can be augmented with
relevant nonvisual information. The higher-level areas also provide input to
the top-down stream, which selects the relevant information to extract next.
The top-down stream then guides the visual stream to extract the selected
information in the next cycle. This guidance is obtained using the cross-
stream connections, from the top-down to the bottom-up streams: through
these connections, the next bottom-up pass takes place in the context of
the top-down representation, and consequently, the information extracted
by the bottom-up visual stream will depend on both the image and the top-
down instruction provided by the higher levels.

I will not discuss the scene perception process in more detail, but only
note that the interactions between the bottom-up and top-down streams
seem to me to be a key factor in the continuous integration of vision and
cognition in the perceptual process. As previously described, at each cycle
of the scene interpretation process, visual and nonvisual information are
combined in the extracted representations, and the combined representa-
tion then determines the top-down instruction for the next cycle. The results
are, first, that the visual process can be guided effectively toward scene
structures of interest to the viewer, and second, the perceptual outcome will
naturally combine visual with nonvisual, more cognitive sources of informa-
tion. This integration seems to be a key aspect for modeling human scene
perception. It may also be critical to advanced Al vision systems, which
currently excel at extracting visual information but seem to have difficulties
with combining vision and cognition in the perception of visual scenes. The
area of combining vision and cognition continues to be for me the main focus
of continuing research, because it gets to the heart of the problem of using
vision to understand the world.

Let me end with some comments on the role of my subarea of life-
long research within the huge and diverse field of the human brain and its
functions, and on the way this subarea is currently going. The approach
taken in this research area may be described as “functional computational
neuroscience,” in which functional means that the models under investi-
gation combine biological data, together with the capacity of the model to
successfully perform relevant brain functions. For example, a model dealing
with binocular vision in the brain, will consider the relevant anatomy and
physiology of the visual cortex, and at the same time, it will also be able to
perform the functional task of recovering three-dimensional scene structure
from a corresponding pair of retinal images.
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The power of functional models to help the modeling and understand-
ing of brain structures recently received compelling support from the use
of deep network learning, in particular in modeling visual processing in the
primate visual stream. For example, a systematic study [53] compared a
range of deep network models in terms of their performance in object recog-
nition tasks, along with their precision in predicting spiking patterns in
individual units along the visual pathway. The comparisons showed that,
within a broad range, optimizing the model in terms of its performance in
the visual task also tends to increase its ability to predict spiking responses
to complex naturalistic images, at both the single site and population levels
in different cortical areas. As a result of such relations between function
and structure, attempts to develop functional models of the brain based
at least in part on deep network learning became in recent years a highly
active area. A large-scale example is an integrative effort, supported by the
so-called brain-score project, which is a platform for evaluating models on
how well they predict neural and behavioral brain measurements in differ-
ent domains [54] (see also https://github.com/brain-score).

Although deep network models are making significant contributions to
computational neuroscience, an open and intriguing question is whether
this kind of modeling is sufficient to produce the perceptual and cognitive
capacities of the human brain. Deep learning models are based on end-to-end
learning using vast training datasets. The learning process is from scratch,
in the sense that the initial model, before learning, is often a uniform struc-
ture, with minimal or without built-in modularity, and without specialized
mechanisms that help both the development and the functioning of the
mature system. In contrast, biological brains incorporate structures that
have developed through evolution over a long period, which help both the
development and the final functioning of the brain.

It might be argued that if we consider both evolution and individual
learning together as a long trial-and-error learning, then an extended end-
to-end learning process, combining evolution and individual learning, must
be sufficient for acquiring all brain functions, including perception and
cognition. However, the feasibility of such an extended learning approach
with current deep learning technologies is still an intriguing open question.

Despite many impressive achievements in visual and cognitive tasks
by current network models and training methods, fundamental challenges
persist. One limitation, compared with human learning, is the extensive and
continuously growing use of huge, supervised datasets. Another limitation
is the limited capacity of current schemes to generalize well beyond the
distribution represented by the training examples, and there are others.
Such limitations may be related to the lack of innate mechanisms and
built-in principles, which are incorporated in the brain but not in network
models (as discussed in the digital baby examples). If these components are
indeed essential, how might we discover and integrate them into functional
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models? One possibility is that similar components might naturally emerge
using existing methods, with some improvements, but relying primarily
on an increase in model size and the available training data. Alternatively,
upscaling may not suffice, and the missing components might be discovered
either by novel computational methods (e.g., some form of efficient evolu-
tionary-like search) or by adopting methods that might be unraveled by
ongoing and future studies of the human brain and human cognition. These
are fundamental and important open questions, which will become clearer
with future advances in both human and machine intelligence, including, in
particular, functional computational neuroscience.
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