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was required to withhold his reach until a ‘go cue’ appeared. Each 
maze and target configuration enforced a particular reach trajectory. 
We analyzed 27 such configurations, termed conditions. We defined 
the preparatory period as the interval from maze onset until 150 ms  
after the go cue, the moment at which neural activity begins to change 
rapidly just before reach onset. During the preparatory period,  
the monkey had complete information regarding the reach to be  
performed, but had not yet begun to move.

Responses of neural populations were recorded from primary 
motor cortex (M1) and the adjacent region of dorsal premotor  
cortex (PMd). Neurons typically displayed different levels of prepara-
tory activity depending on the upcoming movement25,26 (Fig. 1b). 
Approximately 150 ms before movement onset, the relatively stable 
plateau of preparatory activity transitioned to a complex pattern  
of movement-related activity. Muscle activity, recorded from the  
principal muscles of the upper arm, changed little during the  
preparatory period, but exhibited temporally complex patterns  
just before and during the movement.

We previously proposed that a purpose of preparatory neural  
activity is to initialize a dynamical system whose subsequent  
evolution during movement generates descending muscle-like  
commands10,23 (Fig. 1b). If so, what is the nature of those dynamics? 
We examined solutions naturally found by recurrent neural networks. 
The resulting trained networks yielded a set of simple, but empirically  
constrained, hypotheses whose predictions could be compared against 
the experimentally observed patterns of neural activity. We stress that 
these are models of emergent dynamics, not of cortical architecture 
or implementation.

A simplified modeling framework for reach generation
Under natural circumstances, a stream of inputs guides reaching. 
These inputs include those that motivate and initiate the reach (for 
example, the sight of a desirable object and the decision to obtain 
it) and subsequent sensory feedback. We adopted a simplified set of 
just two inputs (Fig. 1c). We assumed that, during the preparatory  

period, cortex receives inputs specific to the reach being prepared.  
To avoid making assumptions about the reference frame of those 
inputs, we derived the static levels of the reach-specific inputs 
from the empirically recorded preparatory neural activity (Online 
Methods). We assumed that movement unfolds when a condition-
independent ‘hold’ signal is released. The goal of the network was to 
utilize these temporally simple inputs (Fig. 1c) to produce, at the right 
moment, the temporally complex patterns of activity recorded across  
multiple muscles (Fig. 1d).

Ideally, we would have included a third input stage: the sensory 
feedback that arrives after the reach begins. We decided to not 
include this stage for two practical reasons. First, the structure of 
the feedback is difficult to estimate. Second, many of the features of 
the neural population response are apparent even before movement 
begins: the establishment of preparatory activity and its relation-
ship to early movement-period activity unfold before feedback can 
have had an effect. Empirically, movement-period neural responses 
lead the motion of the hand by ~150 ms. Sensory feedback takes at 
least 25 ms to influence cortical responses and >50 ms to reflect the  
current goal27. Thus, during this ~200-ms interval, the neural dynamics  
are not yet affected by sensory feedback and should presumably be 
explained via internal dynamics. This is true even of optimal feed-
back control architectures, which employ a dynamically varying 
control policy and internal ‘efference-copy’ recurrence to generate 
time-varying output patterns before the arrival of feedback28,29. Given 
the practical choice to use a model without sensory feedback, we 
verified with additional simulations that the solutions found by the 
model were robust to the addition of reasonable forms of feedback 
(Supplementary Fig. 1a,b).

We used RNNs as a modeling tool for three reasons. First, an 
RNN can approximate any dynamical system30. Second, an RNN is 
an abstract model that is nevertheless inspired by biological neural  
circuits; the units are individually simple and must work together in 
a parallel and distributed fashion. Third, internal recurrent feedback, 
a defining aspect of RNNs, is essential for many forms of pattern  
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Figure 1 Monkey task and network task definition. (a) Monkeys performed a delayed reach maze task. After fixating and touching a central point, the 
target and maze turned on. Some conditions included distractor targets. During the preparatory period, the monkeys had to determine which target was 
reachable and prepare a reach that avoided any intervening barriers. A go cue prompted the monkey to execute the reach. We employed 27 conditions, 
each consisting of a particular configuration of target and barriers. The resulting reaches included a variety of straight and curved paths. (b) Example 
PSTH for a single neuron. Each trace plots the mean across-trial firing rate for one condition (27 total). Traces are colored green to red based on 
the level of preparatory activity. The first gray line shows the timing of target onset, that is the beginning of the preparatory period. The second gray 
line shows the end of the preparatory period. Vertical and horizontal scale bars indicate 20 spikes per s and 200 ms. (c) Networks were optimized to 
generate EMG. Network inputs consisted of a condition-independent hold cue (purple) and a six-dimensional condition-specific input (black), which 
specified the condition for which the network should generate EMG. This example shows the levels of those six inputs for condition 1. From these  
inputs the RNN generated the multi-dimensional EMG: green traces plot the recorded EMG from seven muscles for condition 1. To ensure the model  
fit signal and not noise, we filtered EMG signals and removed the (very minimal) noise during the baseline (Online Methods). (d) Three example 
conditions showing the multiple muscle target EMG (green, one trace per muscle) and the corresponding trained outputs of the regularized model  
for monkey J (red). Normalized error between the empirical EMG and the model output was 7%. Horizontal scale bars indicate 200 ms.


