
Neuroscience

2016

Data Science and Data Skills
for Neuroscientists
Organizers: Konrad P. Kording, PhD, and Alyson Fletcher, PhD

SHORT COURSE 2

Short Course 2
Data Science and Data Skills for Neuroscientists

Organized by Konrad P. Kording, PhD, and Alyson Fletcher, PhD

Please cite articles using the model:
[AUTHOR’S LAST NAME, AUTHOR’S FIRST & MIDDLE INITIALS] (2016)

[CHAPTER TITLE] In: Data Science and Data Skills for Neuroscientists.
(Kording K, Fletcher A, eds) pp. [xx-xx]. San Diego, CA: Society for Neuroscience.

All articles and their graphics are under the copyright of their respective authors.

Cover graphics and design © 2016 Society for Neuroscience.

TIME TALK TITLE SPEAKER

7:30–8 a.m. Check-in

8–8:10 a.m. Opening Remarks
Konrad P. Kording, PhD • Northwestern University

Alyson Fletcher, PhD • UCLA

8:10–9:10 a.m.

• Canonical data analysis cascade

• MATLAB for neuroscientists

• Peristimulus time histograms (PTSHs)

Pascal Wallisch, PhD • New York University

9:10–10:10 a.m.

• Fundamentals of statistics: densities, mean-squared error, and regression

• Bootstrapping and confidence intervals

• Time of maximal firing rates

Robert Kass, PhD • Carnegie Mellon University

10:10–10:30 a.m. Morning Break

10:30–11:10 a.m.
• Fitting tuning curves

• Error bars and model selection with bootstrap
Konrad P. Kording, PhD • Northwestern University

11:20 a.m.–12:10 p.m.

• Classification in neural systems

• Poisson point process models for spiking

• Model selection: cross-validation and overfitting

Alyson Fletcher, PhD • UCLA

12:10–1:10 p.m. Lunch

1:10–2:10 p.m.

• Generalized linear models (GLMs) with spike history

• GLMs with neuron–neuron interactions

• Regularization, ridge regression, and smoothing

Jonathan Pillow, PhD • Princeton University

2:20–2:40 p.m. Sparsity in neural decoding Alyson Fletcher, PhD • UCLA

2:50–3:20 p.m. Multilayer models and deep learning Konrad P. Kording, PhD • Northwestern University

3:20–3:40 p.m. Afternoon Break

3:40–4:40 p.m.

• Neural population models principal component analysis (PCA)

• Time series models and Gaussian process factor analysis (GPFA)

• State space dynamical systems

Maneesh Sahani, PhD • University College London

4:50–5:50 p.m.

• Local network structure of neural data

• Clustering and modularity in networks

• How networks change: the dynamics of graphs

Danielle Bassett, PhD • University of Pennsylvania

5:50–6:00 p.m. Closing Remarks
Konrad P. Kording, PhD • Northwestern University

Alyson Fletcher, PhD • UCLA

SHORT COURSE 2
Data Science and Data Skills for Neuroscientists
Organized by: Konrad P. Kording, PhD, and Alyson Fletcher, PhD
Friday, November 11, 2016
8 a.m.–6 p.m..
Location: San Diego Convention Center • Room: 6C • San Diego, CA

Neuroscience

2016

Table of Contents

Introduction
Konrad P. Kording, PhD, and Alyson Fletcher, PhD . 7

The Basics of Neural Coding
 Konrad P. Kording, PhD . 9

Characterizing and Correlating Spike Trains
 Pascal Wallisch, PhD, and Erik Lee Nylen, PhD . 23

The Statistical Paradigm
 Robert E. Kass, PhD . 49

Preface to Chapters by Jonathan Pillow, PhD . 59

Likelihood-Based Approaches to Modeling the Neural Code
 Jonathan W. Pillow, PhD . 61

Spatiotemporal Correlations and Visual Signaling in a Complete Neuronal Population
 Jonathan W. Pillow, PhD, Jonathon Shlens, PhD, Liam Paninski, PhD, Alexander Sher, PhD,

Alan M. Litke, PhD, E. J. Chichilnisky, PhD, and Eero P. Simoncelli, PhD 75

Introduction

Data skills and data science are moving away from being specialties that a small minority of
computational scientists get excited about to becoming central tools used by the bulk of neuroscientists.
The objectives for this short course are twofold. First, we will teach basic, useful data skills that should
be in the toolkit of virtually all neuroscientists. Second, we will survey the field of more advanced
data science methods to give participants an overview of which techniques to use under which
circumstances.

The course is structured around hands-on programming exercises. Lectures will go hand in hand with
tutorials. During the day, the focus will be on participants solving many frequently encountered data
analysis problems themselves, aided by lectures given by leading experts.

The course will cover a broad range of topics. It will start with basic topics, including data cleanup,
data visualization, and fundamental statistical ideas. It will then progress to everyday problems such as
fitting functions to tuning curves, adding error bars, and decoding. More advanced topics will include
generalized linear models, dimensionality reduction, time-series data, and networks. In this way, the
course should impart a solid understanding of the basic techniques used for neural data analysis.

© 2016 Kording

Rehabilitation Institute of Chicago
Northwestern University

Chicago, Illinois

The Basics of Neural Coding
Konrad P. Kording, PhD

11

NOTES

© 2016 Kording

The Basics of Neural Coding
How do neurons represent the
world?
At first glance, there seems to be a world of difference
between fundamental physiological features of
neurons, such as firing rates and tuning curves, and
the quantitative measurements of perception and
behavior. Yet we know that somehow, neuronal
processes must underlie all of perception and
behavior. The goal in this chapter is to indicate how
this gap can be bridged. We will start by summarizing
how neurons encode variables in the world.

Historically, we have treated the brain as a “black box”
that performs probabilistic inference. This suffices if
one is interested primarily in modeling behavior.
However, in systems neuroscience, elucidating the
link between biological and psychological states is
a central objective. In this chapter, we explore the
connection between behavior and neural activity
from the perspective of our normative framework.
Because we have seen that abundant evidence exists
for Bayesian optimality at the behavioral level, at least
in simple tasks, we will ask the following questions:

• How do neurons represent states of the world?

• How do neurons represent likelihood functions?

• How do neurons use these representations to
calculate posterior distributions?

The Bayesian normative framework offers a means
of addressing these questions that runs counter
to the bulk of neural modeling work. Modelers
often construct neural networks out of simulated,
more or less biophysically plausible elements, and
examine their emergent dynamics. In many cases,
this “bottom-up” approach has the disadvantage that
the link of these networks to behavior is tenuous or
only qualitative. In contrast, it is possible to take a
top-down approach to neural computation, in which
the construction of a neural model is guided by a
normative behavioral model. In this approach, the
search for a neural implementation of a perceptual
phenomenon is guided simultaneously by behavioral
and physiological constraints.

In this chapter, we will first computationally describe
neurons, formalizing them as a generative model
that produces outputs in response to either direct
inputs or to a stimulus given to the brain. We will
introduce the concepts of a neural population and
neural variability. Using these concepts, we can
understand how neurons can encode a probability

distribution and therefore can carry implicit
knowledge of uncertainty. As an introduction to
neural modeling and population coding, the present
chapter is limited in scope. Our main goal here is to
provide the necessary background information for an
understanding of the representation of probability at
the neural level.

A focus on generative models
of neurons
When we define the generative model with respect
to world states and sensory observations, we
conveniently represent the sensory observation as
a measurement that lives in the same space as the
stimulus. For instance, we conceive a sound stimulus
at a particular location as producing an observation
drawn from a Gaussian distribution centered at that
location. At the neurobiological level, however,
the sensory observation is not such a measurement,
but rather neuronal activity evoked by the sensory
stimulus: neurons encode the physical stimulus as
a pattern of spiking activity, and the brain must
somehow decode this activity in order to infer the
world state. Here we take a first look at the neuronal
level, and we consider the mapping from sensory
stimuli to the spiking activity produced in sensory
neurons. Once we fully specify how sensory stimuli
give rise, in a probabilistic way, to neural activities,
we will be in a position to formulate how neurons
may encode uncertain stimuli and how the brain can
infer the state of the world from neuronal activity.

The brain does not have direct access to the sensory
input, I. Rather, the sensory input activates receptor
cells such as auditory hair cells or photoreceptors,
which in turn activate nerve fibers (axons), causing
electrical impulses (action potentials or spikes) to
travel into the CNS. These impulses are the data upon
which the brain makes inferences about the world. The
activity of neurons in a relevant brain area in response
to a stimulus, denoted r, constitutes the internal
representation or observation of that stimulus. Neural
activity is variable: when the same sensory input I is
presented repeatedly, r will be different every time.
This is to the result of stochastic processes that inject
variability: photon noise, stochastic neurotransmitter
release, stochastic opening and closing of ion channels,
etc. Thus, a probability distribution p(r | I) is needed
to describe the neural activity.

Since activity r is variable even when the input I is
kept fixed, and I is variable even when the stimulus s
is kept fixed, it follows that r is variable when s is kept
fixed, even if the nuisance parameters are not variable.
This neural variability is captured in a probability

The Basics of Neural Coding

12

NOTES

© 2016 Kording

distribution p(r | s). The main goal of this chapter is
to define and motivate mathematical descriptions of
p(r | s). We would like you to think of r as the spiking
activity in early sensory cortex, such as primary visual
cortex area V1. The stimulus is a basic feature in the
outside world, such as position, orientation, etc.

Neurons as Mappings from an
Input to an Output
There are many ways of modeling neurons, ranging
from detailed biophysical models of the structure and
function of individual ion channels, to highly abstract
models of neurons as information processing units.
For our purposes, we treat neurons as simple input–
output systems (Fig. 1). A neuron receives inputs from
a group of other neurons. Over the relevant time scale,
it receives a number of spikes from each of the input
neurons and produces (or emits) a number of output
spikes. A neuron is thus characterized by its transfer
function, spikes = f(input spikes).

We will work toward asking the question, “How
could a given computation be implemented?” and

not so much, “Which specific neural circuits actually
implement that computation?” That being said,
for making testable physiological predictions, it is
clearly important to focus on a particular species
and brain area. However, even so, the localization
of the computation is of secondary interest to the
mechanisms of the computation. Our goal is to
understand potentially ubiquitous neural processing
mechanisms rather than to model a specific circuit.

Tuning Curves
The concept of “tuning curves” became popular
with the pioneering experiments of Hubel and
Wiesel in the late 1950s (Hubel and Wiesel, 1959).
They recorded from the V1 region in cat while
stimulating with illuminated oriented bars (Fig. 2a).
They found that the response of a cortical neuron
was systematically related to the orientation of the
stimulus. There exists one orientation of the stimulus
where the neuron fires most rapidly: the neuron’s
preferred orientation. For other orientations, the
activity decreases with increasing angle relative to
the preferred orientation. A plot of the mean firing

Figure 1. Biology of a neuron: neurons as input–output devices. Neurons transmit electrical impulses (action potentials, aka
spikes) away from their cell bodies, along output structures (axons). In a majority of cases in the mammalian nervous system (the
so-called chemical synapse), when the spike reaches the end of an axon (axon terminal), it induces the release of neurotransmit-
ter molecules that diffuse across a narrow synaptic cleft and bind to receptors on the input structure (dendrites) of the post-
synaptic neuron. The effect of the transmitter released by a given input neuron may be inhibitory (reducing the probability that
the postsynaptic neuron will fire spikes of its own) or excitatory (increasing the probability that the postsynaptic neuron will fire),
depending on the transmitter released and on the receptor that binds it.

Each neuron receives input from a (typically large) number of other neurons. For simplicity, this figure shows a single postsynaptic
neuron receiving just four inputs. Each of the input neurons fires a number of spikes over a relevant time interval. These result in
neurotransmitter release onto our neuron of interest. The postsynaptic neuron integrates these inputs and produces an output
spike train of its own. For our purposes, we will simplify the modeling of the neuron to modeling the number of output spikes,
either in response to a stimulus or in response to the numbers of input spikes it receives from other neurons.

13

NOTES

The Basics of Neural Coding

© 2016 Kording

rate (e.g., spikes per s) as a function of angle describes
the neuron’s tuning curve. In the case of many visual
neurons, this is a unimodal function (Fig. 2b).

Tuning curves can have a wide variety of shapes,
depending on the species, the brain area, and the
stimulus features. For example, in motor cortex, we
find that neural responses influence the direction
of movement of the hand of a monkey. Instead of
narrow unimodal functions, we usually find broad
tuning curves. In auditory cortex, the frequency
of the sounds stimulus affects the firing rate of the
neuron in a complex tuning curve. And in the
hippocampus, a region of the mammalian brain
involved in memory acquisition and navigation, there
is a two-dimensional representation of positions. In
experiments with rats, firing rates of hippocampal
neurons depend on both x and y positions. The

important thing in all these cases is that reasonably
simple tuning curves characterize the mapping from
sensory stimuli to the activity of neurons.

Bell-shaped tuning curves
When modeling tuning curves, scientists usually use
simple functions. When we model tuning curves
like those found for neurons in V1, we typically use
bell-shaped tuning curves. Because rotating a bar by
180 degrees leads to the same response, we usually
use circular Gaussian functions (Von Mises function,
Fig. 3a). By contrast, when scientists deal with
auditory stimuli of varying amplitude, tuning curves
typically show increasing activities. Piecewise linear
functions can be used for such scenarios (Fig. 3b).
We will now consider some tuning curve functions
in more detail.

a

c

b

Figure 2. Tuning curves. a, Tuning curves for orientation in macaque primary visual cortex (V1). The dashed line represents the
spontaneous firing rate. Reproduced from Shapley et al. (2003), their Fig. 10. Copyright 2003, Cell Press. b, Normalized tuning
curves for the direction of air current in four interneurons in the cercal system of the cricket. Reproduced from Theunissen and
Miller (1991). Copyright 1991, the American Physiological Society. c, Tuning curves for the width of the groove in a tactile grating
in macaque second somatosensory cortex (S2). Different curves are for different magnitudes of the contact force (expressed as
mass). Reproduced from Pruett et al. (2000), their Figs. 3A and 4A. Copyright 2000, the American Physiological Society.

14

NOTES

© 2016 Kording

It should be noted that, even though the tuning
curve might look bell-shaped or even be described by
a Gaussian function, it is certainly not a probability
distribution. That is, it is not normalized and generally
has no direct relation to probability distributions.

In V1, neurons are tuned to the orientation of a
visual stimulus, such as a bar. The tuning curve
is typically unimodal and symmetric around the
preferred orientation. Furthermore, the mean spike
rate is the same at any angle and at that angle plus
or minus 180 degrees (as the bar stimulus is identical
when rotated by 180 degrees). A common way to
describe such a curve is to use a Von Mises function
(also called a circular Gaussian) (Fig. 3a):

fi(s) = gek(cos (s – si) – 1) + b. (1)

Here, κ is called the concentration parameter. The
higher κ, the more narrowly the neuron is tuned.
This function has been used to fit tuning curves over
orientation, such as those in Fig. 2a.

Monotonic tuning curves
The tuning curve describes a neuron’s mean activity
as a function of the presented stimulus. Tuning
curves are usually bell-shaped or monotonic. Various
mathematical functions have been used to model
them. A non–bell-shaped tuning curve occurs in
some neurons. An example is a monotonic tuning
curve such as those shown in Fig. 2b. Several
possibilities can be considered. The simplest form is
a rectified linear function:

 fi(s) = [gs + b]+ , (2)

where g is positive for monotonically increasing, and
negative for monotonically decreasing tuning curves.

Note that these neurons do not truly have a preferred
stimulus (for the monotonically decreasing tuning
curves, you could say it is 0, but that does not help
much). A clear problem of a rectified linear function
is that it is unbounded: as s increases, f(s) does not
stay below any maximum value. This is unrealistic,
since neurons have a limited dynamic range and
cannot fire more than a certain number of spikes per
second, no matter how large s becomes.

It may come as a surprise that the exact shape of the
tuning curve is not critical to most of the theory we
will discuss here. The theory will be general and work
for tuning curves of any shape. However, the shape
is of great practical relevance, since it is the starting
point of any implementation of neural population
activity. Moreover, we will occasionally use a specific
functional form to allow for analytical calculations.

More detailed models for the tuning
curve
It is possible to describe the mapping from stimulus s to
the output of a V1 neuron in much more detail. Instead
of describing the world state as a scalar orientation,
we can describe the entire two-dimensional image
as a vector I = (I1, I2,…Im), where m is the number
of pixels. Figure 3 shows examples of images of an
oriented bar similar to the ones used by Hubel and
Wiesel (1959). As the orientation of the bar changes,
the entire image changes, so we can consider I to be a
function of s and write it as I(s).

Each neuron has a spatial filter, which means that it
will respond positively to light in certain locations in
the image and negatively to light in other locations.
In other words, the neuron associates a weight,
positive or negative, with every pixel in the image.
We call this filter or weight vector w, and it can itself
be visualized as an image. A typical V1 filter is shown
in Figure 3; this is built so that if the image contains
an orientation at the location of the filter, then the
neuron will respond strongly. The neuron’s average
spike count in response to the image is then a sum of
the pixel intensities multiplied by the corresponding
weights:

f (s) = w1I1 (s) + w2I2 (s) + … + wmIm (s) = w • I (s). (3)

Because orientation is varied, this produces a tuning
curve similar to the one in Figure 3. Spike counts
would still be generated from a Poisson variability
with mean f(s), just like in the main text. The model
of tuning curves in Equation 3 is called a “linear
model,” because f(s) is a linear combination of image
intensities; it is not a linear function of orientation s.

Stimulus Stimulus

- 0 2

Von Mises Piecewise linear a b

Figure 3. Model tuning curves. Two types of functions are
commonly used to model tuning curves: bell-shaped (a) or
monotonic (b). The stimulus ranges are merely illustrative.

15

NOTES

The Basics of Neural Coding

© 2016 Kording

There are many ways to extend this model. For
instance, one can postulate that f(s) is a nonlinear
(but monotonically increasing) function of w × I(s).
The resulting family of models is called LNP models,
where L stands for linear (Eq. 3), N for nonlinear, and
P for Poisson.

Variability
So far, we have discussed a neuron’s selectivity: which
stimuli it spikes to or “likes,” as described by its tuning
curve. However, if we view neuronal activity as
resulting from a statistical generative model, we need
to specify both neurons’ stimulus-dependent activity
as well as their (also potentially stimulus-dependent)
variability. For an identical, repeated stimulus, how
much variation exists in the response from trial to
trial? This variability will be critical for performing
inference at the neural level. Here we will focus on
Poisson variability.

Poisson variability
Poisson variability (Fig. 4a) is defined for a spike
count, e.g., the number of spikes elicited by a flash
of light that is presented for 10 ms. Spike count is a
nonnegative integer; it can be 0. Suppose a stimulus
s is presented, and the mean spike count of a neuron
in response to this stimulus is λ = f(s), which does not
need to be an integer. λi is also called the “rate” of

the Poisson process. Then the actual spike count will
vary from trial to trial, around λ. For every possible
count r, we seek its probability. A “Poisson process”
(or in our context, a Poisson spike train) is defined
as follows. Imagine a fixed time interval, and divide
it into small bins (e.g., 1 ms each). We assume that
each bin can contain 0 spikes or 1 spike, and that
the occurrence of a spike is independent of whether
and when spikes occurred earlier (it is sometimes said
that a Poisson process “has no memory”). It can be
proved in such a case (see Sample Problems) that
for a Poisson process with mean λ, the probability of
observing a total of ri spikes on a single trial is given
by the Poisson distribution:

 1
p(ri | λi) = — e–λiλi

ri . (4)
 ri!

Here, r! (read “r factorial”) is defined as 1 × 2 × 3 × … × r.

The Poisson distribution is shown for λ = 3.2 and
λ = 9.5 in Figure 4b. Keep in mind that, while r is an
integer, λ can be any positive number. For low λ, the
distribution is less symmetrical than for high means.
In fact, at high mean firing rates, the distribution
looks roughly Gaussian. However, note that the
Poisson distribution is discrete, so drawing it as a
continuous curve would be a mistake.

Figure 4. Poisson variability. a, Hypothetical spike trains evoked in the same neuron by the same stimulus, repeated four times
(trials). Not only do the spike times differ between trials, but the spike counts also differ. b, Histograms of the spike count of a
single Poisson neuron, with different mean rates. c, In a Poisson process, the variance is equal to the mean. This is illustrated by
simulating 100 spike counts for each value of the mean and calculating the variance. Variance is plotted against the mean. The
diagonal is the unity line.

16

NOTES

© 2016 Kording

An important property of the Poisson distribution is
that the variance of a Poisson-distributed variable is
equal to its mean: if the mean firing rate of a Poisson
neuron is λ, then the variance of this neuron’s spike
count is also λ (Problem 2 and Fig. 4c). The ratio
of the variance to mean of a neuron’s spike count is
called the “Fano factor”; for a Poisson process, the
Fano factor is 1.

For our generative model of neural firing, we need to
specify the probability of a firing rate, r, as a function
of the stimulus, s. To do this, we note that λ is a
function of the stimulus: it is the height of the tuning
curve (the neuron’s average firing rate) at stimulus
level s. Therefore, in terms of the stimulus, Equation 4
can be written as

 1
p(ri | s) = — e–fi(s) fi (s)ri . (5)
 ri!

This is the form we will use frequently. Note that
the neuron’s tuning curve, fi(s), plays a role in the
neuron’s variability, but that it was not necessary
to commit to any specific tuning curve shape to
derive the form of the variability. In other words,
Poisson variability can go together with any type of
tuning curve, whether bell-shaped or monotonic. It
is a common mistake to confuse the tuning curve
with variability. This is understandable when one
compares plots like those in Figures 3a and 4b, but
the meaning of the axes in these plots is completely
different. The relationship between the tuning curve
and the variability in firing is illustrated in Figure 5.

It may at first appear that stimuli that evoke higher
firing rates will be less informative, because higher
firing rates are associated with more variability (e.g.,

spike rate variance = mean spike rate for a Poisson
process). However, higher firing rates in fact convey
more information. To see this, consider the mean as
the signal and the standard deviation (SD) of the
variability as the noise. Then the noise (square root of
the variance) equals the square root of the mean. The
signal-to-noise ratio therefore increases as the square
root of the mean. We will later make this statement
more precisely for the case of a population of neurons.

Numerical example
The rate of a Poisson neuron is λI = 3.2. What is the
probability that this neuron is silent? That it fires
1 spike? That it fires 10 spikes?

Solution: From Equation 4, the probability that the
neuron fires 0 spikes is 1/0! × exp(–3.2) × 3.20 =
exp(–3.2) = 0.04, or 4%. The probability that the
neuron fires 1 spike is 1/1! × exp(–3.2) × 3.21 =
exp(–3.2) × 3.2 = 0.04 = 0.13, or 13%. The
probability that the neuron fires 10 spikes is 1/10! ×
exp(–3.2) × 3.210 = 0.001, or 0.1%.

More realistic models
Poisson variability is reasonably physiologically
realistic, but with a number of caveats. Real Fano
factors of cortical neurons are often close to 1, but can
take values as low as 0.3 and as high as 1.8. Another
unrealistic aspect of Poisson variability is that it assumes
that spikes are independent of previous spikes. This is
clearly not true: after a neuron fires a spike, it cannot
fire again for a short duration, called the “refractory
period” (typically several milliseconds). Thus, during
that period, the probability of firing a spike is 0,
contradicting the way we defined the Poisson process.
There exists a literature that extends the models we

discuss here to more realistic
models, but it is beyond the
scope of this chapter.

The origin of variability
The origin of neural variability
is unknown and likely a
combination of factors. Part
of it has an external origin:
when the same value of a visual
stimulus variable is presented,
this might not mean that the
retinal image is identical. In
many experiments, stimulus
reliability is controlled by
manipulating the amount
of external noise. In those
cases, the retinal image will
be different even though

Figure 5. Poisson firing rate variability. The tuning curve (blue) shows mean spikes per
second evoked by the stimulus. The shaded gray region illustrates the variability in firing
rate upon the administration of repeated, identical trials.

17

NOTES

The Basics of Neural Coding

© 2016 Kording

the stimulus variable of interest is the same. Ideally,
variability is measured under repeated presentations
of the exact same physical image. This has been done
in area MT (middle temporal) in the macaque, and
response variability was still found. This variability
can be attributed to internal factors. Internal sources
of variability include neurotransmitter release and
synaptic failure, both of which are stochastic processes.

Key points
A neuron’s response to a particular stimulus varies
from trial to trial. Such variability or “noise” can
be described by a probability distribution: Poisson
or Gaussian are common choices. In real neurons,
variance is approximately proportional to the mean.
The origin of variability is not yet understood.

Population Codes
Neurons are often part of populations that respond
to the same state-of-the-world variable. Population
activity is described through the tuning curves of
individual neurons as well as their joint variability.
“Neural populations” are groups of neurons that are
all selective for a particular stimulus feature. The
neurons in a population are often but not necessarily
located close to each other in the brain, and they often
have similarly shaped tuning curves but with different
preferred stimulus values; a population consisting of
neurons with the identical tuning curve would not be
particularly useful, since all neurons would “cover” the
same restricted region of stimulus space.

A “population code” refers to the stimulus-evoked
firing rates of a population of neurons with different
tuning curves. Population codes are believed to be
widespread in the nervous system. For instance, in
areas V1 and V4 of the macaque, population codes
exist for orientation, color, and spatial frequency. In
the hippocampus in rats, a population code exists
for the animal’s body location. The cercal system of
the cricket has a population code for wind direction.
Secondary somatosensory area (S2) in the macaque
has population codes for surface roughness, speed,
and force. The post-subiculum in rat contains a
population code for head direction. Primary motor
cortex (M1) in macaque uses populations coding for
direction of reach. Even abstract concepts such as
number appear to be encoded by population codes in
the prefrontal cortex.

The firing rates of the set of neurons depicted in
Figure 2a form a population code; in fact, the cricket
cercal system population consists of exactly the four
neurons shown there. An idealized example with
Gaussian tuning curves is drawn in Figure 6a. In this

example, we show 10 neurons with preferred stimuli
equally spaced on an interval. Such equal spacing is an
idealization just as an exact Gaussian shape is. Yet, this
is usually how a population code is simulated. We call
the preferred stimuli s1, …, sN, where N is the number
of neurons in the population. The tuning curves differ
only in their preferred stimuli, so Equation 1 is valid;
fi(s) is the tuning curve of the neuron with preferred
stimulus si. The set of tuning curves of all neurons in
the population, {f1(s), …, fN(s)}, is denoted as a vector-
valued function f(s).

Just as we modeled the variability of a single neuron’s
spike count, we can model the variability of the entire
population. We denote by r the vector of spike counts
of the neurons in the population: r = (r1, …, rN).
This is also called a “population pattern of activity.”
The probability of observing a pattern of activity r in
response to a stimulus s is denoted as p(r | s). The
mean population pattern of activity over many trials
is a smooth curve that resembles the tuning curve
(Fig. 6b). Whereas the tuning curve shows the mean
activity of one neuron in response to different stimuli,
the population pattern shows the mean activity of
every neuron in response to a single stimulus.

The vector notation for population activity is simply
for convenience; it does not have a deeper meaning.
One could just as well write r1, …, rN wherever r
appears (and similarly for f), but this would make
equations unnecessarily cluttered. Within the vector
r (or f), the ordering of the neurons has no meaning
at all. We will typically order them by their preferred
stimulus, only to make visualizations of population
patterns like the one in Figure 6c look sensible.

In analogy to the single-neuron case, we now discuss
Poisson and Gaussian variability in the population.

Independent Poisson variability in a
population
The simplest assumption we can make about the
population is that for a given stimulus, the responses
of the neurons are drawn independently from each
other, and that each response follows a Poisson
distribution (but with its own mean). If random
variables are independent from each other (in this
case, for a given stimulus), their joint probability
distribution is the product of the individual
distributions (again for a given stimulus). This means
that we can write the population variability as

 N

p(r | s) = p(r1 | s)…p(rN | s) = Πp(ri | s). (6)
 i=1

18

NOTES

© 2016 Kording

The last equality is just a notation for the product.
Now we substitute Equation 5 for p(ri | s):

N 1

p(r | s) = Π — e–fi(s) fi (s)ri (7)
 ri! . i=1

This is the probability distribution of independent
Poisson variability. Figure 6c shows patterns of
activity drawn from this distribution, if tuning curves
are Gaussian. In Problem 3, you will simulate such
patterns yourself. Spike count is plotted as a function
of the preferred stimulus of the neuron. Each dot
corresponds to the activity of one neuron. We could
have plotted them in any order, but visually, it is most
insightful to order the neurons by their preferred
stimulus. Each pattern in Figure 6c is the population

analog of one spike count in the histograms of Figure 4b.
For the population, it is impossible to draw the
histogram, since r is now an N-dimensional vector,
and we cannot draw histograms in N dimensions.
Nevertheless, we can still calculate the probability of
each pattern of activity like those in Figure 6c.

Numerical example
We assume a population of 9 independent Poisson
neurons with Gaussian tuning curves and preferred
orientations from –40 to 40 in steps of 10. The
tuning curve parameters have values g = 10, b = 0,
and σtc = 20. A stimulus s = 0 is presented to this
population. What is the probability of observing a
pattern of activity r = (3, 1, 7, 5, 8, 8, 7, 0, 2)?

0 60 120 180
0

1

2

3

4

5

0 60 120 180
Stimulus Preferred stimulus

R
es

po
ns

e

R
es

po
ns

e

a b

0

1

2

3

4

5

c

0 60 120 180
0

10

20
0

10

20

0 60 120 180 0 60 120 180

Sp
ik

e
co

un
t

Sp
ik

e
co

un
t

Preferred stimulus Preferred stimulusPreferred stimulus

Trial 1

Trial 4

Trial 3Trial 2

Trial 5 Trial 6

Figure 6. Neural population. a, Idealized bell-shaped tuning curves of a population of 18 neurons responding to an arbitrary
periodic stimulus. Preferred stimuli are equally spaced. b, Mean activity of all neurons in the population in (a), ordered by their
preferred stimulus, in response to a stimulus value of 90. c, Six single-trial patterns of activity drawn from an independent Poisson
population with Gaussian tuning curves and gain g = 10.

19

NOTES

The Basics of Neural Coding

© 2016 Kording

Solution: Under our assumptions about the tuning
curves, the mean activity of the ith neuron is
fi(s = 0) = 10 × exp(–si

2/800). Across the population,
this gives mean activities (1.3, 3.2, 6.1, 8.8, 10, 8.8,
6.1, 3.2, 1.3). Then from Equation 7:

p(r | s = 0) = e–1.3 × 1.33/3! × e–3.2 × 3.21/1! × … × e–1.3
× 1.32/2! = 2.4 × 10–9.

This number is striking because it is so small. How
can it be that a pattern of activity that is not so
different from the mean activities is so improbable?
The reason is that this is one out of a huge number
of possible patterns of activity. To get an idea of this
number, let’s do a rough estimation. Let’s suppose
that it is nearly impossible that any individual
neuron will be firing 20 or more spikes, given the
mean rates. Then, each neuron’s activity can take 20
values (including 0). There are 9 neurons, and they
are independent of each other, so the total number of
patterns is 920 = 1.2 × 1019. If each of these patterns
had been equally likely, each would have had a
probability of 1/(1.2 × 1019) = 8.3 × 10–20. Compared
with this, the probability of the pattern we calculated
above is actually very large! We conclude that it is
expected that in an independent Poisson population,
each pattern has a low probability, and the more
neurons, the lower this probability. If the neurons
were Poisson but not independent, fewer patterns
would be possible, and the probability of a given
pattern would tend to be higher.

The patterns in Figure 4 make clear that an individual
pattern of activity is roughly shaped like the Gaussian
tuning curve, but with a different x-axis: preferred
stimulus as opposed to stimulus. In fact, if one were
to average over many patterns of activity elicited by
the same stimulus s, one would get a mean activity
described by the set of numbers fi(s) for i = 1,…, N.
Looking back at Equation 1, we see that we can plot
fi(s) as a function of the preferred stimulus si, with s
being fixed. This is a Gaussian shape, just like fi(s)
was a Gaussian shape as a function of s, with si being
fixed. In other words, the mean population response
to one repeated stimulus has the same shape as the
mean response of a single neuron as a function of
the stimulus. This is true for any tuning curve in
which si and s can be swapped without affecting the
functional form, such as Von Mises curves (Eq. 1).

Sample Problems
Problem 1
Why are monotonic tuning curves always over
magnitude-type variables such as width, and not over
circular variables such as orientation?

Problem 2
Are the following statements true or false? Explain.

a) The closer a stimulus is to the preferred stimulus
of a Poisson neuron, the lower is the response
variance of this neuron when the stimulus is
presented repeatedly.

b) When neurons have similar and equally spaced
tuning curves, then the mean population pattern
of activity in response to a stimulus has the same
width as the tuning curve.

c) When neurons have similar and equally spaced
tuning curves, then the neural posterior has the
same width as the tuning curve.

d) The variance of a single neuron responding to a
stimulus can be determined from the value of its
tuning curve at that stimulus value.

e) In any population, the variability of population
activity is known if one knows the variability of
each single neuron.

Problem 3
We assume a population of 9 independent Poisson
neurons with Gaussian tuning curves and preferred
orientations from –40 to 40 in steps of 10. The tuning
curve parameters have values g = 10, b = 0, and σtc = 20.
A stimulus s = 0 is presented to this population. What
is the probability that all neurons stay silent?

Problem 4: Properties of the Poisson
distribution
a) Prove that Equation 4 implies that the mean
value of ri is indeed fi(s). Recall that the mean of ri

is defined as
 ∞
⟨ri⟩ = Σ ri p(ri | λi).
 ri=0

You will also need to use a variant of Equation 4.

b) Prove that Equation 4 implies that the variance of
a Poisson process is equal to its mean. Recall that
the variance of ri can be written as

 ∞
Var (ri) = ⟨ri

2⟩ – ⟨ri⟩2 = Σ ri
2 p(ri | λi) – ⟨ri⟩2

 ri=0

Problem 5
In a population of independent Poisson neurons
with Gaussian tuning curves, examine the claim that
Σi fi(s) is more or less independent of s.

20

NOTES

© 2016 Kording

Problem 6
Prove that independent Poisson variability, Equation 7,
is a special case of Poisson-like variability:

a) Rewrite Equation 7 in the form of Equation 4

b) Verify that Equation 4 holds for h(s) found in
part (a).

Advanced Problem 7
In a sequence of R independent events with two
possible outcomes, the probability of having one of
both outcomes appear r times is described by the
binomial distribution,

 R λ λ
p(r) = () (—)r (1 – —)R–r

.
 r R R

Here, (Rr) is the binomial coefficient,
R!

r! (R – r)! . Prove
that the Poisson distribution is a good approximation
of the binomial distribution if the sequence is long
(R large) and the probability of the outcome of
interest (λ/R) is small.

Advanced Problem 8
Prove that for large means, a Poisson distribution
resembles a Gaussian distribution with variance
equal to the mean.

Advanced Problem 9
Show that in the limit of large κ, the Von Mises
function (Eq. 1) becomes the Gaussian function.
Hint: in this limit, the Von Mises function becomes
very strongly peaked around si, and we can use the
Taylor series expansion cos(x) ≈ 1 − x2/2.

Problem 10
Consider a population of neurons with known tuning
curves, subject to independent noise.

a) If the noise is drawn from a normal distribution
with fixed variance, prove that the maximum-
likelihood decoder is equivalent to the template-
matching decoder.

b) If the noise follows a Poisson distribution, tuning
curves are Gaussian with zero baseline, and
Σ fi (s)
 i

is independent of s, to which decoder is
the maximum-likelihood decoder equivalent?
Prove your answer.

Problem 11
Show that when neural variability is independent,
and Poisson tuning curves are Von Mises function
with zero baseline, and Σ fi (s)

 i
 is independent of s,

the maximum-likelihood decoder is equivalent to
the population vector.

Problem 12
A Bayesian observer decodes a stimulus s from a
neural population under a cost function, C (ŝ,s).

a) Prove that if the cost function is the squared error,
the Bayesian estimate is the mean of the posterior
distribution.

b) Derive the Bayesian estimate if the cost function
is the absolute error, C (ŝ,s) = |ŝ – s|.

c) What is the cost function corresponding to the
maximum–a posteriori decoder?

Problem 13
In a discrimination task, an observer decides on
each trial whether a stimulus has value s1 or s2. The
stimulus elicits activity r in a neural population with
tuning curves fi(s). Assume that r is drawn from an
independent Poisson distribution and that Σ fi (s)

 i
is

independent of s.

a) Calculate the log likelihood ratio and prove that
the maximum-likelihood decision is based on the
sign (positive or negative) of the inner product of
r with a vector w. Find an expression for the ith
component wi in terms of the numbers fi(s1) and
fi(s2).

b) What does the absolute value of w × r mean to
the observer? Explain.

c) Compute the mean and variance of w × r from
part (a) when r is generated by s1, and when r is
generated by s2. “Sensitivity” or discriminability
is defined as the difference between both means
divided by the square root of the mean of both
variances. Find an expression for discriminability
in terms of the sets of numbers fi(s1) and fi(s2) (for
all i).

21

NOTES

The Basics of Neural Coding

© 2016 Kording

Lab Problems
Problem 14: Simulating a Poisson process
a) Define 1000 time points. At each time point,

determine whether a spike is fired by generating
a random number that leads to a “yes” probability
of 0.0032 (this corresponds to a mean of 3.2
spikes over all 1000 time points). Count the total
number of spikes generated. Repeat for 10,000
trials. Plot a histogram of spike count and compare
with Figure 4a. Compute the Fano factor.

b) Repeat for a mean of 9.5 spikes. Compare the
resulting histograms with Figure 4b.

c) If your simulation software has a built-in command
to randomly generate numbers according to a
Poisson distribution (e.g., poissrnd in MATLAB),
repeat steps (a) and (b) using this command.

d) A property of a Poisson process is that the time
between two subsequent spikes (interspike
interval, denoted here Δt) follows an exponential
distribution: p(Δt) = exp(–Δt/λ)/λ, where λ is
the mean of the Poisson process. Verify this by
plotting the histogram of interspike intervals
across all Poisson spike trains you generated
in (a) and comparing it with the exponential
distribution.

Problem 15
DatasetReal (downloadable at http://klab.smpp.
northwestern.edu/wiki/images/1/17/DatasetReal.
mat) contains recordings from 35 neurons in the
primary motor cortex and ~200 trials, roughly half of
which were recorded while the monkey was moving
left, while the others were recorded while the monkey
was moving right (courtesy of the Miller Lab). Let’s
assume a Gaussian distribution of spike counts, given
the direction of movement.

a) Calculate for each neuron the average firing rates
for left and right movement and the associated
SDs.

b) Do all neurons have similar average firing rates for
left and right movements? Which of the neurons
exhibit a significant difference between left and
right movement?

c) What would be a good measure for strength
of tuning of a neuron? Which neuron has the
strongest tuning to direction?

d) If you decoded movement direction based on just
this neuron, how well would you do on average?

e) If you combined data from all neurons using a
naive Bayesian approach, how good could you be
at solving the problem?

f) Is this a difficult problem? Could it have real-world
relevance? Can you think of an application of
naive Bayesian decoding that is more exciting?

 1 1
p(right | spikes)∞— p(right)Π e (spikesi =μright,i)2/(2σ2

right,i)

 Z σright,i

This same approach of assuming that all cues are
independent, even when they are not, is used in
many domains of machine learning. A naive Bayesian
approach is often used to solve real classification
problems and is, for certain problems, a competitive
machine learning technique. It is particularly strong
when there are very little available data.

Acknowledgments
We refer readers interested in detailed neuron
models to the text Spiking Neuron Models by Wulfram
Gerstner and Werner Kistler. Historical video
recordings of Hubel and Wiesel presenting stimuli
to cat LGN and V1 neurons can be found online.
This chapter was excerpted with permission from
Konrad Kording, Bayesian Modeling of Perception
and Action, Chapter 9, Oxford University Press.

References
Averbeck BB, Latham PE, Pouget A (2006) Neural

correlations, population coding, and computation.
Nat Rev Neurosci 7:358–366.

Deneve S, Latham P, Pouget A (1999) Reading
population codes: a neural implementation of ideal
observers. Nat Neurosci 2:740–745.

Foldiak P (1993) The ‘ideal homunculus’: statistical
inference from neural population responses. In:
Computation and neural systems (Eeckman F,
Bower J, eds), pp 55–60. Norwell, MA: Kluwer
Academic Publishers.

Georgopoulos A, Kalaska J, Caminiti R, Massey JT
(1982) On the relations between the direction
of two-dimensional arm movements and cell
discharge in primate motor cortex. J Neurosci
2:1527–1537.

22

NOTES Gerstner W, Kistler WM (2002) Spiking neuron
models: single neurons, populations, plasticity.
Cambridge, UK: Cambridge University Press.

Gur M, Snodderly DM (2005) High response
reliability of neurons in primary visual cortex (V1)
of alert, trained monkeys. Cereb Cortex 16:888–
895.

Hoyer PO, Hyvärinen A (2003) Interpreting neural
response variability as Monte Carlo sampling
of the posterior. In: Proceedings of the 15th
International Conference on Neural Information
Processing Systems, pp 293–300. Cambridge, MA:
MIT Press.

Hubel DH, Wiesel TN (1959) Receptive fields of
single neurones in the cat’s striate cortex. J Physiol
(Lond) 148:574–591.

Ma WJ, Beck JM, Latham PE, Pouget A (2006)
Bayesian inference with probabilistic population
codes. Nat Neurosci 9:1432–1438.

Pouget A, Dayan P, Zemel RS (2003) Inference and
computation with population codes. Ann Rev
Neurosci 26:381–410.

Pruett JR Jr, Sinclair RJ, Burton H (2000) Response
patterns in second somatosensory cortex (SII)
of awake monkeys to passively applied tactile
gratings. J Neurophysiol 84:780–797.

Sanger T (1996) Probability density estimation for
the interpretation of neural population codes.
J Neurophysiol 76:2790–2793.

Shapley R, Hawken M, Ringach DL (2003) Dynamics
of orientation selectivity in the primary visual
cortex and the importance of cortical inhibition.
Neuron 38:689–699.

Theunissen FE, Miller JP (1991) Representation of
sensory information in the cricket cercal sensory
system. II. Information theoretic calculation of
system accuracy and optimal tuning-curve widths
of four primary interneurons. J Neurophysiol
66:1690–1703.

Tolhurst D, Movshon J, Dean A (1982) The statistical
reliability of signals in single neurons in cat and
monkey visual cortex. Vision Res 23:775–785.

Zhang K, Ginzburg I, McNaughton B, Sejnowski T
(1998) Interpreting neuronal population activity by
reconstruction: unified framework with application
to hippocampal place cells. J Neurophysiol 79:1017–
1044.

© 2016 Kording

© 2016

Center for Neural Science
New York University

New York, New York

Characterizing and Correlating Spike Trains
Pascal Wallisch, PhD, and Erik Lee Nylen, PhD

© 2016 Wallisch

25

NOTES

Characterizing and Correlating Spike Trains

Introduction
In this chapter, we introduce the standard spike-
wrangling techniques that any neuroscientist should
be familiar with. Specifically, we illustrate how to
build programs that can analyze and display the
information contained in spike trains (Rieke 1999).
We start by showing how to represent and graph the
spiking activity of a single neuron in a single train
and then build toward creating a raster plot that
depicts the spiking information of a single neuron
over multiple trials. From there, we develop another
useful representation of the information in a spike
train: the peristimulus time histogram (PSTH). We
also cover how to compute latency to first spike and
how to represent this joint information as a heat map.
Throughout, we use this simple but highly relevant
example from neuroscience to illustrate key concepts
in programming, such as the perils of hard coding or
the use of for loops.

We will show how to characterize spike trains in
several relevant languages, such as MATLAB and
Python (Peters 2004), and introduce the canonical
data analysis cascade, which is—to the best of our
knowledge—the most efficient way to organize the
processing of large-scale data analysis projects.

Neurons
Neurons are peculiarly social. Some neurons are
veritable chatterboxes, some are rather quiet, and
some are even trying to silence others. Some neurons
prefer to talk only to close neighbors, whereas others
send messages to comrades in far distant regions.
In this sense, all neuroscience is necessarily social
neuroscience. Of course, neurons don’t communicate
with each other via spoken words. Rather, they
use action potentials—also known as voltage
“spikes”—as their universal means of long-distance
communication. Every neuron sends spikes in its
own idiosyncratic fashion, and every neuron uses its
dendritic arbor to receive signals from other neurons
in turn. The interface points between neurons are
known as “synapses.” A neuron may have many
points (anywhere from 1 for neurons in the retina
to >100,000 for neurons in the cerebellum) of
communication—synapses—with other neurons.
Although spikes are not exchanged directly (the
signal crossing the synapse is chemical in nature in
almost all synapses), it is the voltage spikes that drive
the neural communication machinery. Specifically,
spikes traveling down the axon of the presynaptic
neuron trigger the chemical action in the synapse
that enacts further voltage changes, and perhaps
more spikes in the postsynaptic neuron.

Neurons use spikes as their preferred medium
of communication. It is fair to say that a major
challenge faced by contemporary neuroscientists is to
elucidate the meaning of these spikes. Put differently,
the neuroscience community is trying to “crack the
neural code.” Our starting point in this pursuit is the
signal itself—the spikes. Because of their nature as
all-or-none events, we will represent the occurrence
of spikes over time as numbers, specifically zeroes
for “no spike” or ones for “spike.” So consider the
following list of numbers:

[0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,1,0,0,0]

By itself, this list of numbers is meaningless. However,
let’s assume that we have a neuron in a dish, that the
neuron is alive, that it is capable of sending spikes,
that this neuron will generally not send any spikes in
the dark, and that this neuron will send some amount
of spikes if you shine a green light (at a wavelength
of 550 nm) on it. Let’s also assume that we have a
recording electrode near the point where this neuron
sends spikes, and that our electrode has the fancy
ability of telling our computer whether or not the
neuron is spiking over time, as captured in the vector
with 0s and 1s above. This scenario is schematized
in Figure 1.

© 2016 Wallisch

Figure 1. Extracellular electrode recording voltage spikes from
an individual neuron in a dish.

26

NOTES

© 2016 Wallisch

Without knowing yet why the spikes occurred, we
can make a couple remarks about this list of numbers
representing spikes. First, we know how many spikes
are in the list:

Pseudocode Sum up the numbers in the vector

Python >>> sum([0,0,0,0,0,0,0,0,0,1,0,
1,0,1,0,0,0,1,0,0,0])
 4

MATLAB >> sum([0,0,0,0,0,0,0,0,0,1,0,1
,0,1,0,0,0,1,0,0,0])
ans = 4

But you didn’t need Python or MATLAB to tell you
that there are four 1s in this list, because you can see
that immediately. It is, however, convenient for us to
measure how long the list is using the function len in
Python and length in MATLAB:

Pseudocode Count the number of elements in the
longest dimension of the vector

Python >>> len([0,0,0,0,0,0,0,0,0,1,0,
1,0,1,0,0,0,1,0,0,0])
21

MATLAB >> length([0,0,0,0,0,0,0,0,0,
1,0,1,0,1,0,0,0,1,0,0,0])
ans = 21

This means that the list of numbers has 21 entries
or elements. Recall that each number in the list
represents whether or not the neuron sent a spike
at that time, that the 0 on the far left of the list
represents time = 0, and that each successive number
on the list represents whether or not the neuron
sends a spike at that time. We could say:

Pseudocode Create a list of 21 successive integers representing time and align it with the 21 neuron states

Python range(21), [0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,1,0,0,0]
([0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20],
 [0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,1,0,0,0])

MATLAB >> [linspace(0,20,21); [0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,1,0,0,0]]
ans =
 0 1 2 3 4 5 6 7 8 9 10
 0 0 0 0 0 0 0 0 0 1 0

 11 12 13 14 15 16 17 18 19 20
 1 0 1 0 0 0 1 0 0 0

We interpret this to mean that at times 0, 1, 2, 3, 4,
5, 6, 7, and 8, the neuron is not spiking. At time 9
it spikes, at time 10 it is quiet, at time 11 it spikes,
at time 12 it is quiet, at time 13 it spikes, at times 14
through 16 is it quiet, and then at time 17 it spikes
one last time before being quiet again.

We said earlier that this neuron tends to spike if it
is illuminated with green light, but not in darkness.
What we are simulating here is a tool known as
“optogenetics,” in which neurons will actually
increase their activity in response to light (Boyden
et al., 2005; Tye and Deisseroth, 2012).

So let’s indicate the time points during which such
a green light was on in green italics, leaving the rest
of the time points black (representing times during
which the light was off):

[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,
18,19,20]

Let us assume now that each time point above is in
units of milliseconds. What this means is that we
started recording from the neuron at time 0 when
the light was off. After 4 ms of recording, on the
fifth millisecond, the green light was turned on.
The light then stays on for 9 ms—through the 13th
millisecond—before shutting off.

27

NOTES

Characterizing and Correlating Spike Trains

© 2016 Wallisch

With this knowledge of the stimulus conditions, we
can determine a characteristic feature of this neuron:
its “first spike latency to stimulus.” This parameter
is generally used by neuroscientists to establish how
“fast” or “ready to spike” any given neuron is.

We now know just enough about the stimulus and
the neuron to be good neuroscientists and form a
hypothesis. Let’s hypothesize that the neuron always
fires a spike 4 ms after a light is turned on.

Let’s put the string of 0s and 1s into a variable now:

Pseudocode Assign data to variable spikeTrain

Python >>> spikeTrain = [0,0,0,0,0,0,0,
0,0,1,0,1,0,1,0,0,0,1,0,0,0]

MATLAB >> spikeTrain = [0,0,0,0,0,0,0,
0,0,1,0,1,0,1,0,0,0,1,0,0,0];

With the spikes now stored in spikeTrain, we can pull
out spikes at different time points. That is, we can
ask, say, at time t = 5, when the light is first turned
on, is the neuron spiking?

Pseudocode Output the contents of variable spikeTrain at
the position corresponding to t = 5

Python >>> spikeTrain[5]
0

MATLAB >> spikeTrain(6)
ans = 0

The answer is a resounding no. But what about if we
want to know if the cell spikes at any time after t = 5?

Pseudocode Output all elements of spikeTrain after the
position corresponding to t = 5

Python >>> spikeTrain[5:]
 [0,0,0,0,1,0,1,0,1,0,0,0,
1,0,0,0]

MATLAB >> spikeTrain(6:end)
ans = 0 0 0 0 1 0 1 0 1
0 0 0 1 0 0 0

Note that here we see some subtle but critical
differences in Python versus MATLAB. First, in
MATLAB, the first element of a vector is element “1,”
whereas the corresponding first element in Python is
“0.” So to access the same element (here the one at
time 5), we have to add 1 to the MATLAB index.
Second, the colon operator : returns all elements from
a starting point until an endpoint. Python assumes
you want all elements until the end of the vector if
no endpoint is specified, whereas the corresponding
MATLAB command to specify “all elements until
the end of the vector” is “end.” Finally, note that the
MATLAB command uses parentheses, whereas the
Python command uses square brackets.

This output—in Python or MATLAB—represents the
neuron’s spiking activity after the green light turned
on. If the first output value in the list were a 1, then
the neuron’s latency to first spike would be 0 ms, i.e.,
the neuron’s response would be coincident with the
light turning on. But things rarely happen instantly in
biology, let alone neuroscience. Rather, whatever makes
our neuron spike in response to light takes some time to
flip some internal switches before the spike occurs. The

Figure 2. A spike train, as seen on an oscilloscope. Voltage spikes recorded from an individual neuron are plotted over time.

28

NOTES

© 2016 Wallisch

record of the successive spiking of a neuron over time is
called the “spike train” (Fig. 2), and various measures to
characterize the spike train have been proposed.

The time it takes for a neuron to be responsive
(that is, for a neuron to spike in response to a
stimulus—in our case, to the light) is known as the
“response latency.” Different ways exist to measure
response latency, but for a single light pulse and a
single recording from a neuron that spikes relatively
infrequently (or sparsely), the time it takes for the
first spike to occur is a good measure. So let’s calculate
the latency to first spike by typing:

Pseudocode Find the first value in the elements of
spikeTrain that matches 1

Python >>> spikeTrain[5:].index(1)
 4

MATLAB >> find(spikeTrain(6:end)==1);
ans(1)-1
ans = 4

Note that in the MATLAB version of this code, we
concatenate two commands in the same line by the
use of the semicolon operator. We have to bring the
result into the same time base as the Python code by
adding 1 to the start point and then subtracting it
again from the result. If we had started with calling
the first element time “1,” we would have had to
subtract 1 from Python to get the right index and
then add 1 to the answer.

Here we took our list of values in the variable
spikeTrain that occurred after a time of 5 ms and used
the Python function index (find in MATLAB) to locate
the first value in this variable that represents the spike
train that matches 1 (representing a spike). We can
make this more flexible by giving the light onset time
5 a variable name and the spike indicator value 1 a
variable name. Generally speaking, it is a bad idea to
hard-code values that are given to functions explicitly.
It is almost always better to use variables because code
that uses variables is much easier to maintain.

Pseudocode Assign values to variables, then pass those
to the function to avoid hard-coding

Python >>> lightOnsetTime = 5
>>> spikeValue = 1
>>> spikeTrain[lightOnset
Time:].index(spikeValue)
 4

MATLAB >> lightOnsetTime = 5;
>> spikeValue = 1;
>> mShift = 1;
>> find(spikeTrain(lightOnset
Time+mShift:end)==spikeValue);
ans(1)-mShift
ans = 4

This version, without the hard-coding, also makes
it clearer what is going on in the MATLAB case.
Because of MATLAB’s indexing conventions, we
know that MATLAB indices are always shifted by 1
relative to Python. So we allocate this to a constant
(“mShift”), add it to the lightOnsetTime, and then
subtract it again from the result. Note that the
output is the same, which is reassuring, as our results
should depend on the properties of the neuron we
study, not the software we use to analyze the data we
record from it.

Again, in order to find the latency to first spike, we take
the variable spikeTrain, which contains all of the 1s and
0s that represent the presence or absence of spiking at a
given time bin, and look only at the times after the light
onset. We then look for the first time that the vector
after light onset contains a 1. Technically speaking, this
command returns the number of bins between light
onset and the first spike, but because we know that the
bin width is 1 ms, we can interpret the result as a time:
the latency is 4 ms. In order to be able to reuse a result
that we just calculated in this fashion, we should assign
the results of a command to a variable. In this case, we
will call it “latencyToFirstSpike.” Generally speaking, it
is advisable to use variable names that are meaningful,
as that makes code much more readable.

Pseudocode Calculate latency to first spike and assign
it to a variable with meaningful name

Python >>> latencyToFirstSpike =
spikeTrain[lightOnsetTime:].
index(spikeValue)
>>> print latencyToFirstSpike
 4

MATLAB >> temp = find(spikeTrain(light
OnsetTime+mShift:end)==
spikeValue);
>> latencyToFirstSpike =
temp(1)-mShift
latencyToFirstSpike = 4

Note that in the example above, the MATLAB
computations are done in two steps. We first declare a
temporary variable temp that finds *all* instances in
which spikes occur after light onset. Then in a second
step, we find the index of the first element and correct
for the MATLAB indexing shift by subtracting 1 and
assigning that to the variable latencyToFirstSpike.

Python has its own set of idiosyncrasies—these
brief calculations in MATLAB involve only regular
parentheses. In Python, square brackets [] are used
when specifying the range of values within a list of
numbers. In contrast, regular parentheses () are used
to invoke functions with the particular parameters
within the parentheses as inputs. In this case, we
pass the variable spikeValue to the function index,

29

NOTES

Characterizing and Correlating Spike Trains

© 2016 Wallisch

which is a built-in function—index is not the only
such function. Python has many functions that we’ll
be using, and when we do, we’ll use parentheses to
give them values to operate on.

Now we have our estimate of the neuron’s latency
(4 ms). As the readers of your research papers are
likely to be primates, and primates are predominantly
visually guided animals, we should make a plot to
illustrate the spiking activity of the neuron (Fig. 3).

To plot the spiking activity, we need to know the
time of every spike in the list. People sometimes call
these the “spike timestamps,” but we’ll just call them
“spikeTimes”:

Pseudocode Find and then output the times at which
the neuron spikes

Python >>> spikeTimes = [i for i,x in
enumerate(spikeTrain) if x==1]
>>> print spikeTimes
 [9, 11, 13, 17]

MATLAB >> spikeTimes = find(spikeTrain==1)-
mShift
spikeTimes = 9 11 13 17

The Python part of this is a whopping nest of
code! Let’s untangle it a bit. First, see how we
put the list of numbers spikeTrain (a bunch of
1s and 0s) into the function enumerate. Don’t
bother typing enumerate(spikeTrain) into your
command line or trying to print it yet. The function
enumerate(spikeTrain) cycles through the list
spikeTrain and keeps track of the index of each
element in spikeTrain.

The middle part of the code i,x in
enumerate(spikeTrain) means that we will be going
through each element in spikeTrain and naming
each element along the way “x,” and wherever “x” is
in the list spikeTrain, we’ll call that location “i.”

A diagram might help:

i will successively be each element in
[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]

x will successively be each element in
[0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,1,0,0,0]

Let’s look at that line of code again:

>>> spikeTimes = [i for i,x in
enumerate(spikeTrain) if x==1]

Note that Python or MATLAB makes use of double
equals signs to test for the equality of two values.
It is worth noting that a single equals sign is an

assignment operator, assigning whatever is on the
right (usually the result of a computation) to the left
(usually a variable).

We now understand that the line means to give us
the indices of i where x = 1.

i is
[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]

and x is [0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,1,0,0,0]

As you can see, this is the case for the indices i of 9,
11, 13, and 17. And now, given this line, Python can
see it too and return it to you (and put it into the
variable “spikeTimes” as well).

We can conceive of this problem in reverse, too:

If x = 1, where x is each element in
[0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,1,0,0,0]
gives us the corresponding value in i:

[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]

Where we underlined the is and xs, where x = 1.

That’s a lot of work—the equivalent MATLAB
code seems much simpler—and would be simpler
yet if we didn’t have to bring the result into a
format that conforms to Python’s zero-indexing
conventions—but that is a small price to pay to use
a real programming language, like hackers do. After
all, social life is all about tribal signaling.

But let’s not lose sight of the fact that the point of
doing this was so we can graph it. To graph (or “plot,”
as we will call it from now on) something in Python,
we need to import a library of functions designed
for this purpose. This library is called “matplotlib,” a

Figure 3. Cartoons can efficiently illustrate important
principles.

30

NOTES

© 2016 Wallisch

library that gives us all the plotting tools we need at
this point.

Pseudocode Import library of plotting functions

Python >>> import matplotlib.pyplot
as plt

MATLAB No equivalent. These plotting functions
already come with MATLAB

This means we’ve loaded the function pyplot, a
function of the library matplotlib, but when we loaded
it we gave it a shorthand (plt) so we can refer to it
more easily—and with a nickname of our choice.
You’ll find that the strategy of importing functions as
two- or three-letter shorthands will save you a lot of
typing. We recommend it.

We will now create a figure to work on:

Pseudocode Open figure

Python >>> fig = plt.figure()

MATLAB >> figure

This establishes a frame to work within. Within
this frame, we can have from one to many smaller
windows, or “subplots.” For now, we’re plotting a
small set of spikes, so we need only one subplot.

Pseudocode Place a subplot (or axes) into the figure

Python >>> ax=plt.subplot(111)

MATLAB No equivalent. If there is only one
pair of axes, it will take up the entire
figure by default. You could still type
subplot(1,1,1) and place axes, but this
step is not necessary.

What the 111 means will be a little clearer once we
have multiple subplots in a figure. For now, just know
that if you want only one plot in your figure, you are
saying that you want one large subplot, and therefore
use subplot(111). We call this subplot “ax” in honor
of the axes of a Cartesian plot, which is the kind we
want here.

To plot the spike times, we’ll use the common
visualization method of a spike raster plot. In such
a plot, each spike is represented as a vertical line (at
the time when it occurred, with time on the x-axis).

Pseudocode Plot vertical lines at the times when a
spike occurred, then show the figure

Python >>> plt.vlines(spikeTimes, 0,
1)
>>> plt.show()

MATLAB >> line(repmat(spikeTimes,2,1),
repmat([0;],1,4),ʻcolorʼ,ʻkʼ)
shg

Let’s look at the plot this code produces in order to
discuss what it means:

Figure 4. A bare-bones raster plot of a single trial.

Voilà! We have our first plot of neuroscience data.
Shockingly, we have neither axis labels nor units—
yet. Before we rectify this problem, let’s discuss how
the figure was brought about by the commands
directly above.

In Python, we invoke the function vlines (a
subfunction of the plotting package we called plt) by
putting a period between them. This is generally the
way to invoke subfunctions of imported packages. We
then use parentheses to give values to this function.
The three arguments we pass to the function vlines
are: first a list of spike times, second the minimum
value of the vertical lines—0, and third the maximum
value of the vertical lines—1.

In MATLAB, there is no function for vertical lines
specifically, so we use the general purpose function
line. It takes matrices to specify x and y coordinates
and plots one line for each column where row values
indicate start and end positions of the lines. We have
to create these matrices first, so we create two 2 × 4
matrices with the repmat function.

31

NOTES

Characterizing and Correlating Spike Trains

© 2016 Wallisch

We also have to set the color of the lines to black (the
default MATLAB color is blue) in order to match the
plot produced by Python. The function shg shows the
current graph.

This plot illustrates when the neuron spikes, but
doesn’t contain any information about the light
stimulus yet. Let’s make the time during which the
light is on a shaded green:

Pseudocode Add a shaded green rectangle from times
5 to 14

Python In : plt.axvspan(5,14,alpha=0.1,
color=ʻgʼ)

MATLAB rectangle (ʻPositionʼ,[5,
0,9,1],ʻFaceColorʼ,[0.7 1
0.7],ʻlinestyleʼ,ʻnoneʼ)

This creates a shaded green box that spans the figure
vertically and is bounded horizontally at 5 and 14.

Python: The alpha value makes the box transparent
(smaller alpha values make the color appear lighter).

MATLAB: Specifies the color of the box by giving it
an RGB triplet, in this case, a light green.

Let’s now specify the range of times our x-axis should
span by invoking the xlim function so that we can
see times during which the neuron did not fire, i.e.,
before visual stimulation:

Pseudocode Setting the range of the x-axis to include
the entire time interval of interest

Python In : plt.xlim([0,20])

MATLAB xlim([0 20])

Before showing this figure to anyone, we strongly
recommend adding a label to the x-axis and a title
to the figure.

Pseudocode Add meaningful axis and figure labels,
which is critical in science

Python >>> plt.title(‘this neuron
spikes in response to a single
light stimulus’)
>>> plt.xlabel(‘time (in
milliseconds)’)

MATLAB >> title(‘this neuron spikes
in response to a single light
stimulus’)
>> xlabel(‘time (in
milliseconds)’)

Figure 5. A raster plot of a single trial with axis labels, title,
and stimulation condition.

Because of the noise inherent in the system as well as
the measurements, data from a single trial are rarely
sufficient to reach reliable conclusions about the
connection between visual stimulation and the neu-
ral response.
What if there is some mechanism inside the neuron
that causes it to spike highly unreliably? What if we
are recording the signals of this neuron in a noisy
environment? In theory, we would need to stimulate
the neuron an infinite number of times and collect
an infinite number of responses in order to be really
sure. But most people are not theorists, living in a
non-platonic world. As such, we neuroscientists
have to make do with less than infinite amounts of
data. Say we had just enough funding to allow us to
collect data from 10 spike trains and 10 identical
(green) light stimuli. These data are contained in the
tenSpikeTrains variable.

32

NOTES

© 2016 Wallisch

Pseudocode Representing the 10 spike trains in the respective formats

Python >>> tenSpikeTrains = [[0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,0,
1,1,0,0,0,1,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0],[0,0,0,0,0,0,
0,0,1,1,0,1,0,0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0],[0,0,0,0,
0,0,0,0,0,0,1,1,0,0,0,1,0,0,0,1,0],[0,0,0,0,0,0,0,0,1,1,1,0,0,1,1,0,0,1,1,0,0],[1,0,
0,0,0,0,0,0,0,0,1,1,0,0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0,0],
[0,0,0,0,0,0,1,0,0,1,0,1,0,0,0,0,0,1,1,0,0]]

MATLAB
analogous

>> tenSpikeTrains = {[0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,0,
1,1,0,0,0,1,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0],[0,0,0,0,0,
0,0,0,1,1,0,1,0,0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0],[0,0,
0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,0,0,1,0],[0,0,0,0,0,0,0,0,1,1,1,0,0,1,1,0,0,1,1,0,0],
[1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,
0,0],[0,0,0,0,0,0,1,0,0,1,0,1,0,0,0,0,0,1,1,0,0]}

MATLAB
suitable

>> tenSpikeTrains = [0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,1,0,0,0; 0,0,0,0,0,0,0,0,1,1,
0,0,0,1,0,0,0,1,0,0,0;0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0;0,0,0,0,0,0,0,0,1,1,
0,1,0,0,0,0,0,0,1,0,0;0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,
1,1,0,0,0,1,0,0,0,1,0;0,0,0,0,0,0,0,0,1,1,1,0,0,1,1,0,0,1,1,0,0;1,0,0,0,0,0,0,0,0,0,
1,1,0,0,0,0,1,0,0,0,0;0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0,0;0,0,0,0,0,0,1,0,0,1,
0,1,0,0,0,0,0,1,1,0,0]

Note that Python uses nested square brackets here. It
appears, from the placement of the square brackets,
that there are 10 lists (each inside square brackets)
nested inside one all-encompassing list (note the
double square brackets at the very beginning and
end of tenSpikeTrains). In fact, this is the case, and
tenSpikeTrains is technically a list of lists. We can
represent these spike trains like that in MATLAB
too, by using cells (the “MATLAB analogous” code),
but the most suitable way to represent these data
in MATLAB are as a 10 × 21 matrix (“MATLAB
suitable”). In other words, we represent each spike
train as entries in 21 consecutive columns, and
each individual spike train as a separate row. So at

every point in the MATLAB suitable code above,
where there is a],[in Python, there is a semicolon
in MATLAB. This works because the time base
(21 bins with a width of 1 ms) is the same for each
spike train. If this were not case, e.g., if there were
missing data, using cells would be more apt. Matrices
are ordered arrangements of numbers, and cells are
ordered arrangements of matrices. So Cell:Matrix as
Matrix:Number in MATLAB. Cells can accommodate
matrices with different dimensionalities in each
entry, so they are very helpful but make it harder to
do some computations on them. In addition, they
complicate the notation—note the curly braces { }
that indicate we are dealing with cells.

Returning to the data, if we look at the first entry of tenSpikeTrains, we find:

Pseudocode Return the contents of the first spike train

Python >>> tenSpikeTrains[0]
 [0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,1,0,0,0]

MATLAB
analogous

>> tenSpikeTrains{1}
ans = 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0

MATLAB
suitable

>> tenSpikeTrains(1,:)
ans = 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0

The first spike train is contained in the first row (MATLAB suitable) or first cell (MATLAB analogous) or
the 0th list (Python). This is the flipside of Python zero indexing. It made sense that the first time of a time
series would be time zero, but the first element of a list is still the first element, not the zeroth element. So
each indexing convention (0 for Python, 1 for MATLAB) has use cases where it is more “natural,” which is
why both of them are still around.

33

NOTES

Characterizing and Correlating Spike Trains

© 2016 Wallisch

Regardless of implementation, the command doesn’t
return a single value, but a list. How many elements
are in this master list?

Pseudocode How many elements does the variable
tenSpikeTrains have?

Python >>> len(tenSpikeTrains)
 10

MATLAB
analogous

>> length(tenSpikeTrains)
ans = 10

MATLAB
suitable

>> size(tenSpikeTrains,1)
ans = 10

In the “MATLAB suitable” case, we have to count
the number of rows, which is achieved by telling the
size function to evaluate the first dimension (rows).

You might have expected much more than that (~200),
but the len function in Python looks at how many things
are inside the list much in the same way that a bundle
of bananas counts as only one item at the grocery store
when you are in the express lane. It simply returns the
number of elements (in this case, lists) it contains. The
same is true for the MATLAB analogous case—the cell
has 10 entries, each of which is a matrix (and each of
which represents an individual spike train). Accessing
cell contents and doing computations on them is
beyond the scope of this chapter, so we’ll continue
solely with the “suitable” case below.

In order to make a raster plot for the data from *all*
the trials, we use a similar approach we used for
plotting the data from a single trial, except we cycle
through each list in the list. To do this, we will use a
for loop (see below).1

As for Python, there are a few noteworthy things
about this code, starting with the for loop. We know
that the length of tenSpikeTrains is 10, so we can
think of the for loop line of code as:

for trial in range(10)2:

We can also see that range(10) is:

>>> range(10)
[0,1,2,3,4,5,6,7,8,9]

That’s right, range(10) is equal to the list
[0,1,2,3,4,5,6,7,8,9]. In MATLAB, the command
1:size(tenSpikeTrains,1) achieves exactly the same
result.

We can thus think of the for loop line of code in
Python:

for trial in range(len(tenSpikeTrains)):

as equivalent to

for trial in [0,1,2,3,4,5,6,7,8,9]:

This means we are going to go to the next line of
code after the for loop 10 times, and each time we go
to the next line, the variable trial will increase to the
next value in the list (starting with 0). It is called a
for loop because it loops through a list of values. The
principles of the for loop in Python are reflected in
the for loop used in MATLAB:

for ii = 1:size(tenSpikeTrains,1)

So what’s up the line after the for loop? There are
the ellipses and some spaces before we get to the

1 for loops are your friend for easy plotting, and your enemy in heavy computation. If you are cycling through a network simulation or
calculation, too many nested for loops will bring even the most powerful computer to its knees. As you begin to learn more programming
tools, always be asking yourself if the code can be written without use of a for loop. But for now, using a for loop is fine, particularly
because it is usually much clearer to understand what is going on when using loops.

2 We put this line of code front and center to emphasize and talk about it, not for you to retype it into the command line or think that
code usually sits centered on the page.

Python MATLAB (suitable)

>>> fig = plt.figure()
>>> ax = plt.subplot(1,1,1)
>>> for trial in range(len(tenSpikeTrains)):
... spikeTimes = [i for i,x in enumerate

(tenSpikeTrains[trial]) if x==1]
... plt.vlines(spikeTimes,trial,trial+1)

>>> plt.axvspan(5,14,alpha=0.1,color=ʻgʼ)
>>> plt.xlim([0,20])
>>> plt.show()

ax=figure
rectangle(ʻPositionʼ,[5,0,9,11],ʻFaceColorʼ, ...
[0.7 1 0.7],ʻlinestyleʼ,ʻnoneʼ)
for ii = 1:size(tenSpikeTrains,1)
 spikeTimes = find(tenSpikeTrains(ii,:)==1)-
mShift;
 line(repmat(spikeTimes,2,1),

repmat([ii-0.5;ii+0.5],1,length
(spikeTimes)),ʻcolorʼ,ʻkʼ)

end
xlim([0 20])
shg

34

NOTES

© 2016 Wallisch

spikeTimes line, which is very similar to how we got
spikeTimes before. Ellipses are a placeholder for white
space. In effect, they represent white space explicitly.

>>> for trial in range(len(tenSpikeTrains)):

... spikeTimes = [i for i,x in enumerate
(tenSpikeTrains[trial]) if x==1]

... plt.vlines(spikeTimes,trial,trial+1)

It will keep creating indented lines and staying inside
the grasp of the for loop until you hit return on a
blank line. This indicates to Python that the for loop
has ended. Notice how the line of code

>>> spikeTimes = [i for i,x in enumerate
(tenSpikeTrains[trial]) if x==1]

is similar to how we got spikeTimes for a single trial.
This time, though, we have our 1s and 0s within lists
inside of the list tenSpikeTrains, so the variable
trial, which iterates through the values 0 to 9, will call
each of the 10 lists inside the list tenSpikeTrains.
spikeTimes is now a temporary variable, and each
time trial is updated in the for loop, and spikeTimes
is reassigned to a new list of spike times.

Let’s reiterate what enumerate does. This uniquely
Python function allows us to build a for loop within
a single line of code, as enumerate returns both each
value in the list (like the for loop above) as well as
the index of the value, where i is the index, and x
is the value. Additionally, within this single line
we condition returning the index i on the value x
equaling 1. Thus, in this single line of code, we return
the indices of the values equal to 1, in a Python-like
fashion known as a “list comprehension.”

The MATLAB code tries to achieve the same result,
but note that the ellipses (...) mark the end of the
line. They indicate that the command continues in
the next line. So the use of ellipses is very different in
Python versus MATLAB. In Python, indicating that
the command continues in the next line is done via
a backslash: “\.”

For each trial in tenSpikeTrains, we plot vertical
lines for the spikes, where the values trial, trial + 1,
... , trial + 9 are stacked sequentially and vertically—
and where every “row” of the plot represents a trial.

Python or MATLAB has commenting conventions,
which we are starting to use here—and from now on.
Anything after the hashtag (#) in Python isn’t read

as programming code and is ignored by the computer,
meaning it is not interpreting it as an instruction
and thus not attempting to execute it. In general, we
recommend writing a sentence at the beginning of
a paragraph of code to explain what that paragraph
is supposed to do—and in broad terms, how—and
then to comment on critical pieces of code, e.g.,
note what a variable is supposed to contain. The
analogous symbol in MATLAB is the percentage sign
(%). Anything written after it is understood to be a
comment.

Let us now add figure labels and formatting to get
Figure 6:

Python

plt.ylim([0,10])
plt.title(ʻthis neuron spikes to repeated trials
of the same stimulusʼ)
plt.xlabel(ʻtime (in milliseconds)ʼ)
plt.ylabel(ʻtrial numberʼ)
plt.yticks([x+0.5 for x in range(10)],[str(x+1)
for x in range(10)]) #1

MATLAB (suitable)

ylim([0.5 10.5])
title(ʻthis neuron spikes to repeated trials of
the same stimulusʼ)
xlabel(ʻtime (in milliseconds)ʼ)
ylabel(ʻTrial numberʼ)
set(gca,ʻLayerʼ,ʻtopʼ) %2

#1 Align the y-ticks to be in the middle of each row,
while (x + 1) sets first trial to 1.

%2 Set the label axis to the top so that the green
rectangle doesn’t cover the axis.

A raster plot yields a snapshot of raw spike times
elicited by the stimulus across trials. We can see that
the first value we calculated, the first spike latency,
seems to vary considerably between trials. On some
trials the first spike occurs at 8 ms, on some trials the
first spike happens at 9 ms, on one trial it comes at
6 ms, on a handful of trials it is 10 ms, and on one trial
there is a spike 4 ms before the light even comes on.
We can also see that the neuron seems to discharge
a spike a few times with each light stimulus, and it
often also “fires” after the stimulus has turned off.
There are many ways to classify the spiking activity
of neurons, some qualitative, some quantitative (such
as our example, “first spike latency”). Qualitatively,
we can ask ourselves if, once this neuron fires, does
it keep firing? That is, is its ongoing activity tied to
the stimulus?

35

NOTES

Characterizing and Correlating Spike Trains

© 2016 Wallisch

There are many ways to quantify this, but it is a good
habit to take a look at the raw data in the form of
a raster plot to first get a qualitative sense of the
spiking characteristics of the neuron. For instance,
the raster plot in Figure 6 seems to convey that the
neuron responds to this particular light stimulus after
3–5 ms and that its activity is maintained to some
degree after the stimulus has turned off.

Does this falsify our hypothesis that the neuron always
spikes 4 ms after the light turns on? It certainly looks
like it, since the spiking is not nearly as precise as we
hoped it to be. But because we formed the hypothesis
on a whim (based on the analysis of a single trial), we
are free to change it. So let’s say we hypothesize that
the neuron fires “tonically at a rate of 500 spikes per
second” (sp/s) to green light stimuli.

Let’s unpack this statement. “Hypothesize that the
neuron fires” is simple enough (the neuron discharges
spikes), but we go on to make a prediction about the
firing: that it fires “tonically.” “Tonic firing” is spiking
activity that is sustained or ongoing. This contrasts
with “phasic” or “transient” firing, which is locked
to the timing of the stimulus. We can come up with
some metrics for quantifying the tonicity of the firing,
but let’s posit the qualitative hypothesis that it keeps
firing and continue with the quantity “of 500 spikes
per second.” In our experiment, we didn’t stimulate
the neuron for an entire, continuous second, so we
certainly won’t have 500 spikes to count. However,
the unit of spike rates is sp/s, even if the instantaneous
firing rate is sustained for much less than a second, in
the same way that you don’t have to drive for an hour
in order to travel at 100 miles per hour at some point
in your ride.

To know how many spikes we ought to expect in our
short interval, we simply have to solve for x in the
algebraic equation where x is proportional to 500
spikes as our stimulus length (9 ms—we really should

have planned the experiment better in order to get
easier math!) is to 1 s:

(x spikes)/(9 milliseconds)=
 (500 spikes)/(1000 milliseconds) (1)

Solving for x, this leads us to expect 4.5 spikes for
the duration of our 9 ms stimulus. The tail end of the
stated hypothesis above was “to green light stimuli,”
which we partly covered, and which we’ll make more
complex just when we start to get a better grasp of
our results.

We thus need a way to visualize and condense the
many stimulus trials and responses we recorded. We
turn to the PSTH to visualize as a bar graph the
spiking activity of the neuron over time, just before
and after each (peri)stimulus. We also make use of
multiple subplots within a single figure to compare
the rasters to the PSTH. This is a standard depiction
of neural data in early exploratory analysis.

An individual subplot is a subdivision of a figure.
The code below indicates that the subplots will be
arranged so that there are 2 rows and 1 column of
subplots, and that we’ll plot in the first of these. Note
that although Python indexes lists by starting at 0,
subplot indexing starts at 1. If this seems inconsistent,
it is because it is.

Pseudocode Create the figure window using plt
(originally imported via matplotlib)
Create the first of 2 “subplots.”

Python >>> fig=plt.figure()
>>> ax=plt.subplot(2,1,1)

MATLAB >> fig = figure;
>> ax = subplot(2,1,1);

Figure 6. Raster plot of the neural response to 10 trials of
a green light stimulus.

Pseudocode

Create figure and specify subplot
Draw the stimulus presentation area green
For each of the ten trials
Extract the spike times from the spike train variables
Plot each row in the raster plot as vertical lines
Set the x-axis limits
Set the y-axis limits
Set the title
Set the x-axis label
Set the y-axis label

36

NOTES

© 2016 Wallisch

We next create code for plotting (1) a subplot of spike rasters and (2) a PSTH based on that spiking activity.
We highly advise that you comment so that (1) your “future me” can read and remember why you programmed
something the way you did and what the variables stand for—which makes the code easier (or even possible)
to maintain; and (2) so that other programmers can look at your code and have any chance of understanding
what is going on.

In Figure 6, we created the variable spikeTimes for each trial and plotted those values right away,
overwriting spikeTimes with each new trial.

Pseudocode Looping through trial 0, 1, ..., 9
 Get the index (time) of each spike and append to allSpikeTimes
 Plot vertical lines for each trial
Add the vertically spanning green box
Set the limits of the y-axis to 0 and 10
Add a title, a y-axis label, and an x-axis label to this subplot
#1 Customize the labels of the y-ticks

Python fig=plt.figure()
ax=plt.subplot(2,1,1)
for trial in range(len(tenSpikeTrains)):
 spikeTimes = [i for i,x in enumerate(tenSpikeTrains[trial]) if x==1]
 plt.vlines(spikeTimes,trial,trial+1)
plt.axvspan(5,14,alpha=0.1,color=ʻgʼ)
plt.ylim([0,10])
plt.title(ʻthis neuron still spikes to repeated trials of the same stimulusʼ)
plt.xlabel(ʻtime (in milliseconds)ʼ)
plt.ylabel(ʻtrial numberʼ)
plt.yticks([x+0.5 for x in range(10)],[str(x) for x in range(10)]) #1

MATLAB ax = subplot(2,1,1)
rectangle(ʻPositionʼ,[5,0,9,11],ʻFaceColorʼ, [0.7 1 0.7],ʻlinestyleʼ,ʻnoneʼ)
for ii = 1:size(tenSpikeTrains,1)
 spikeTimes = find(tenSpikeTrains(ii,:)==1)-1
 line(repmat(spikeTimes,2,1),repmat([ii-0.5; ii+0.5],1,length(spikeTimes)),
 ʻcolorʼ,ʻkʼ)
end
xlim([-0.5 20])
ylim([0.5 10.5])
title(ʻthis neuron still spikes to repeated trials of the same stimulusʼ)
xlabel(ʻtime (in milliseconds)ʼ)
ylabel(ʻTrial numberʼ)
ax.YTick = [0:1:10]
set(gca,ʻLayerʼ,ʻtopʼ)

We next sum across our tenSpikeTrains to see the total number of spikes that occur across all trials, using
the function bar in Python or MATLAB. This function gives us a bar plot of the spiking as a function of time.

We also save the figure. Note the extension .png at the end of the string. We could also specify .pdf or .jpg
or a few other image types.

37

NOTES

Characterizing and Correlating Spike Trains

© 2016 Wallisch

Pseudocode Now for the PSTH. We create our second subplot.
Add the green background during stimulus time.
Plot the bar plot #1 format bar (x-values, y-values, bar width)
Add labels to the x- and y-axes of this subplot
Save the figure
Let’s take a gander.

Python >>> ax=plt.subplot(2,1,2)
>>> plt.axvspan(5,14,alpha=0.1,color=ʻgʼ)
>>> ax.bar(range(21),np.sum(tenSpikeTrains,0),1) #1
>>> plt.xlabel(ʻtime (in milliseconds)ʼ)
>>> plt.ylabel(ʻ# of spike occurrences at this timeʼ)
>>> plt.savefig(ʻFigure with subplots of rasters and PSTH.pngʼ)
>>> plt.show()

MATLAB subplot(2,1,2)
rectangle(ʻPositionʼ,[5,0,9,8],ʻFaceColorʼ,[0.7 1 0.7]...
,ʻlinestyleʼ,ʻnoneʼ)
hold on
x=0:20;
bar(x,sum(tenSpikeTrains));
xlim([-0.5 20])
ylim([0 8])
xlabel(ʻtime (in milliseconds)ʼ)
ylabel(ʻ# of spikes counted at this timeʼ)

Let’s put it all together:

Python MATLAB

The Python way for Figure 7.
fig=plt.figure()
ax=plt.subplot(211)
for trial in range(len(tenSpikeTrains)):
 spikeTimes = [i for i,x in enumerate
 (tenSpikeTrains[trial]) if x==1]
 plt.vlines(spikeTimes,trial,trial+1)
plt.axvspan(5,14,alpha=0.1,color=ʻgʼ)
plt.ylim([0,10])
plt.title(ʻthis neuron still spikes to repeated
trials of the same stimulusʼ)
plt.xlabel(ʻtime (in milliseconds)ʼ)
plt.ylabel(ʻtrial numberʼ)
plt.yticks([x+0.5 for x in range(10)], [str(x+1)
for x in range(10)])

ax=plt.subplot(212)
plt.axvspan(5,14,alpha=0.1,color=ʻgʼ)
ax.bar(range(21),np.sum(tenSpikeTrains,0),1)
plt.xlabel(ʻtime (in milliseconds)ʼ)
plt.ylabel(ʻ# of spike occurrences at this
timeʼ)
End Python code for Figure 7

% What does the analogous MATLAB code % look
like?
figure
subplot(2,1,1)
rectangle(ʻPositionʼ,[5,0,9,11],ʻFaceColorʼ,[0.7
1 0.7],ʻlinestyleʼ,ʻnoneʼ)
for ii = 1:size(tenSpikeTrains,1)
spikeTimes = find(tenSpikeTrains(ii,:)==1)-1
line(repmat(spikeTimes,2,1),repmat([ii-0.5; ii+0
.5],1,length(spikeTimes)),ʻcolorʼ,ʻkʼ)
end
xlim([-0.5 20])
ylim([0.5 10.5])
title(ʻthis neuron still spikes to repeated
trials of the same stimulusʼ)
xlabel(ʻtime (in milliseconds)ʼ)
ylabel(ʻTrial numberʼ)
set(gca,ʻLayerʼ,ʻtopʼ)
subplot(2,1,2)
rectangle(ʻPositionʼ,[5,0,9,8],ʻFaceColorʼ,[0.7
1 0.7],ʻlinestyleʼ,ʻnoneʼ)
hold on
x=0:20;
bar(x,sum(tenSpikeTrains));
xlim([-0.5 20])
ylim([0 8])
xlabel(ʻtime (in milliseconds)ʼ)
ylabel(ʻ# of spikes counted at this timeʼ)
% End MATLAB code

38

NOTES

© 2016 Wallisch

Pseudocode

§ Begin English explanation of code for Figure 7
Create the figure area
Specify that there are two rows and one column, and we’ll start
with the first
Plot the vertical ticks lines
Shade the area green to indicate the time of light stimulation
Set the lower and upper bounds of the y-axis
Set the title of the plot to ‘this neuron still spikes to repeated
trials of the same stimulus’
Set the x-axis label to ‘time (in milliseconds)’
Set the y-axis label to ‘trial number’
Set the y-axis tick locations and labels

Specify that we’re making a subplot layout with two rows, one
column, plotting in the second row
Shade the stimulus area green
Make a histogram of all the spike times with bins from 0 to 20
Set the x-axis and y-axis labels
§ End English explanation of Python code for Figure 7 Figure 7. Neuron spikes to repeated trials of the same

stimulus.

Let’s go back to our hypothesis that the neuron fires
“tonically at a rate of 500 spikes per second” to green
light stimuli. We calculated that this would mean
4.5 spikes on average for the duration of our particular
stimulus. But how can we infer this spike rate from
the PSTH above? First, let us plot a new figure in
which we scale the number of spike occurrences at
each time by the number of stimulus trials (setting
aside the rasters for a moment). This will show us, on
average, how often the neuron spikes at each time
point and give us an estimate of the spike probability
for each point in time.

We start by creating the figure and omit the subplot
line, noting that you don’t need it for figures with
single plots. Since we wanted to adjust the number
of spikes for all the trials to form an estimate of spike
probability, we will plot the mean of the spikes as a
bar plot instead of a sum.

If the neuron spiked, on average, at a rate of 500 sp/s
(every 1000 ms), then we might expect that for every
millisecond there will be 0.5 spikes on average. Of
course, we could not have performed this estimation
with just a single trial, as one cannot count half a
spike. By measuring repeated trials, we form a more

robust estimate of the spike rate over time, with the
prediction (from our hypothesis) that the neuron
will maintain a spike probability of 0.5 during the
time the stimulus is presented.

Let’s draw a horizontal dashed black line (note the
linestyle which can make it dotted or dashed,
among other line types, and the color = ‘k’ to denote
black; we could have used ‘r’ for red, or ‘g’ for green,
or ‘b’ for blue) at the 0.5 spike probability threshold.
Had we wanted a vertical line, we could have used
the Python function plt.axvline.

Pseudocode Create the figure
Plot bar graph of the mean spikes
Add horizontal line as a spike threshold

Python fig=plt.figure()
plt.bar(range(21),
np.mean(tenSpikeTrains,0),1)
plt.axhline(y=0.5,xmin=0,xmax=
20,linestyle=ʻ--ʼ,color=ʻkʼ)

MATLAB figure
bar(0:20,sum(tenSpikeTrains)./
size(tenSpikeTrains,1));
line(xlim,[0.5 0.5],ʻlinestyleʼ,
ʻ--ʼ,ʻcolorʼ,ʻkʼ)

39

NOTES

Characterizing and Correlating Spike Trains

Also label the axes and title, save the figure, and
show it. Let’s put it all together, using the simplified
bar plot:

Python

The Python way for Figure 8
fig=plt.figure()
plt.axvspan(5,14,alpha=0.1,color=ʻgʼ)
plt.bar(range(21), np.mean(tenSpikeTrains,0),1)
plt.axhline(y=0.5,xmin=0,xmax=20,linestyle=ʻ--
ʼ,color=ʻkʼ)
plt.title(ʻspike probability given 10 stimulus
trialsʼ)
plt.xlabel(ʻtime (in milliseconds)ʼ)
plt.ylabel(ʻprobability of spike occurrences at
this timeʼ)
plt.savefig(ʻFigure 8 normalized PSTH with cutoff.
pngʼ)
End Python code for Figure 8

MATLAB

%What does the analogous MATLAB code look like?
figure
rectangle(ʻPositionʼ,[5,0,9,11],ʻFaceColorʼ,[0.7
1 0.7],ʻlinestyleʼ,ʻnoneʼ)
xlim([-0.5 20])
ylim([0 1])
hold on
bar(0:20,sum(tenSpikeTrains)./
size(tenSpikeTrains,1));
line(xlim,[0.5 0.5],ʻlinestyleʼ,ʻ--ʼ,
ʻcolorʼ,ʻkʼ)
title(ʻspike probability given 10 stimulus
trialsʼ)
xlabel(ʻtime (in milliseconds)ʼ)
ylabel(ʻprobability of spiking at this timeʼ)
% End MATLAB code

In MATLAB, we simply normalize by the number of
spike trains. Again, we see the power of MATLAB
when handling matrices. Thus, represent something
as a matrix whenever possible, as it will allow you to
bring powerful tools to bear.

Pseudocode

§ Begin English explanation of code for Figure 8
Create the figure plotting area
Put the green shading in the
Plot a bar plot of the mean of tenSpikeTrains
Plot a dashed black horizontal line at y = 0.5
Set the title to ‘spike probability given 10 stimulus trials’
Set the x-axis label to ‘time (in milliseconds)’
Set the y-axis label to ‘probability of spike occurrences at this
time’
Save the figure to ‘Figure 8 normalized PSTH with cutoff.png’
§ End English explanation of code for Figure 8

Figure 8. Spike probability given 10 stimulus trials.

At first glance, it seems that our hypothesis of a
consistent probability of 0.5 spikes over the stimulus
interval does not hold and is false. For now, we note that
there are several phenomena that are not consistent
with our hypothesis. For instance, there is a latency
period before the spikes start, and there is a phasic
component of high spike probability around 4 ms
and a tonically maintained probability around 0.4 or
0.5 for the remainder of the stimulus thereafter, even
continuing for a while after the stimulus turns off. So
it looks as though things are more complicated than
we initially expected—which in biology should be
expected. To further illuminate what is going on, we
could vary the intensity of the light and hypothesize
that the neuron fires more spikes with a shorter latency
for brighter stimuli.

© 2016 Wallisch

40

NOTES

© 2016 Wallisch

Let’s load in the Python dictionary called tenIntensities.pkl (or in the case of MATLAB, the .mat file
tenIntensities.mat).

Python dictionaries are arranged in a manner where all of the values are assigned to a key. The key can be
either a text string or a number, and the value can be almost anything: a number, string, list, array, or even
another dictionary. To view the keys for this dictionary in Python, we type:

>>> tenIntensities.keys()

['4_intensity',

 '2_intensity',

 '8_intensity',

 '0_intensity',

 '7_intensity',

 '5_intensity',

 '9_intensity',

 '6_intensity',

 '3_intensity',

 '1_intensity']

Each key corresponds to the intensity of the stimulus, ranging from 0 to 9. So to get the values for, say, the
key 4_intensity, we type:

>>> tenIntensities[ʻ4_intensity’]

[[15.0, 15.0, 22.0, 25.0, 34.0, 23.0],

 [10.0, 32.0, 34.0, 22.0, 34.0],

 [13.0, 17.0],

 [9.0, 30.0, 36.0, 33.0],

 [8.0, 32.0, 31.0, 35.0, 19.0, 36.0, 19.0],

 [30.0, 13.0, 31.0, 36.0],

 [21.0, 31.0, 27.0, 30.0],

 [12.0, 15.0, 23.0, 39.0],

 [23.0, 30.0, 14.0, 23.0, 20.0, 23.0],

 [9.0, 16.0, 13.0, 27.0]]

We observe that each list within this value comprises another list of spike times. We use these spike times
now to visualize the PSTHs over all stimuli.

Our raster and PSTH plotting techniques here are the same as before, with two main differences. The first (and
most obvious from the output figure) is that we now have 20 subplots: 10 rows and two columns. In the Python
package matplotlib, the first subplot, referenced as 1, is always at the top left. As we increase this index, our
plot moves across each row to the right, to the end of the row, before moving down to the next column.

In the Python code, we make use of the numpy function histogram. It calculates the number of occurrences
of values over a given range. It then returns the count of how many values occurred within each bin, and also
returns the bins used, assigning these to the variables preceding the equals sign (it doesn’t plot anything).
We use the variables obtained with np.histogram to make our histogram below with the function bar. In
the code below, we also give numpy a nickname, “np,” which lets us refer to packages in a shorthand manner,
e.g., : np.histogram():

41

NOTES

Characterizing and Correlating Spike Trains

© 2016 Wallisch

Python MATLAB

The Python way for Figure 9
import pickle
with open(ʻtenIntensities.pklʼ, ʻrbʼ) as handle:
 tenIntensities = pickle.load(handle)

fig = plt.figure()
numIntensities = len(tenIntensities)
nbar={}
for key in tenIntensities.keys():
 ax=plt.subplot(numIntensities,2,float
 (key[0])*2+1)
 for trial in range(10): # this relies on
there being 10 trials per stimulus intensity

plt.vlines(tenIntensities[key] [trial],trial,
trial+1)
 plt.xlim([0,20]);plt.ylim([0,10])
 plt.ylabel(ʻintensity: ʻ+str(key[0])+ʻ\
ntrial #ʼ,style=ʻitalicʼ,fontsize=5)
 plt.yticks(fontsize=5)
 plt.axvspan(5,14,alpha=0.1*float(key[0]),
color=ʻgʼ)
 if float(key[0]) < 9:
 plt.xlabel(ʻʼ);plt.xticks([])
 else:
 plt.xlabel(ʻtime in millisecondsʼ)
 if float(key[0]) == 0:
 plt.title(ʻraster plot of spiking for
each intensityʼ,fontsize=10)

 ax=plt.subplot(numIntensities,2,float
(key[0])*2+2)
 plt.axvspan(5,14,alpha=0.1*float(key[0]),
color=ʻgʼ)
 spikeTimes = [a for b in tenIntensities[key]
for a in b] #1
 nOut,bins=np.histogram(spikeTimes,
bins=range(20))
 nbar[float(key[0])] = nOut/10.
 plt.bar(bins[:-1],nOut/10.)
 plt.xlim([0,20]); plt.ylim([0,1])
 plt.yticks(fontsize=5)
 plt.ylabel(ʻspike probʼ,style=ʻitalicʼ,
fontsize = 6)
 if float(key[0]) == 0:
 plt.title(ʻPSTH for each intensityʼ,
fontsize=10)
 if float(key[0]) < numIntensities-1:
 plt.xlabel(ʻʼ); plt.xticks([])
 else:
 plt.xlabel(ʻtime in millisecondsʼ)
plt.savefig(ʻFigure subplot 10 intensity rasters
and psths.pngʼ)
End Python code for Figure 9

load(ʻtenIntensities.matʼ)
figure
a= [1:2:20];
b =[2:2:20];
for ii = 1:size(A2,1)
subplot(10,2,a(ii))
if ii == 1
 title(ʻraster plot for each intensityʼ)
 end
rectangle(ʻPositionʼ,[5,0,9,11],ʻFaceColorʼ,[1-
(0.1.*ii) 1 1-(0.1.*ii)],ʻlinestyleʼ,ʻnoneʼ)
for jj = 1:10
spikeTimes = find(A2{ii,1}(jj,:)==1)-1
line(repmat(spikeTimes,2,1),repmat([jj-0.5; jj+0
.5],1,length(spikeTimes)),ʻcolorʼ,ʻkʼ)
xlim([0 20])
ylim([0.5 10.5])
set(gca,ʻxtickʼ,[])
end
end

%xlabel(ʻtime (in milliseconds)ʼ)
%ylabel(ʻTrial numberʼ)
set(gca,ʻLayerʼ,ʻtopʼ)

for ii = 1:size(A2,1)
subplot(10,2,b(ii))
 if ii == 1
 title(ʻPSTH for each intensityʼ)
 end
rectangle(ʻPositionʼ,[5,0,9,8],ʻFaceColorʼ,[0.7 1
0.7],ʻlinestyleʼ,ʻnoneʼ)
hold on
x=0:length(A2{ii,1})-1;
bar(x,sum(A2{ii,1}));
xlim([-0.5 20])
ylim([0 8])
set(gca,ʻxtickʼ,[])
%xlabel(ʻtime (in milliseconds)ʼ)
%ylabel(ʻ# spikesʼ)
end

In the Python code, we slipped in the initialization of the dictionary nbar, which we did with curly braces
{ }. Later in the code, we assign values from nOut, which represents the number of occurrences of spikes for
particular times, to keys of nbar. We access all the values of nbar below with nbar.values().

Our ability to measure latency to first spike here becomes quite difficult. We can qualitatively say that higher-
intensity stimuli cause shorter latency responses. We will relish for now our ability to make colorful plots out
of the spike data.

42

NOTES

© 2016 Wallisch

Pseudocode

§ Begin English explanation of code for Figure 9
Create new figure
Declare an empty dictionary nbar
For each key in the dictionary tenIntensities
 First column, raster plots for each intensity of the light
stimulus. Plot in subplot corresponding to each intensity (an
example key is: ‘7_intensity’, so key[0] is the 0th value of the
string ‘7_intensity’, which is ‘7’, and float(‘7’) equals 7.0, We
take that value times 2 and add 1 so that subplot indices count
by row. For each trial, this relies on there being 10 trials per
stimulus intensity. Plot vertical lines corresponding to the spike
times.
 Format the raster plots: set the x-axis and y-axis limits. Set the
y-axis label to the intensity, use ‘\n’ as a carriage return, label
the trial number, italic, and fontsize, set the y-ticks’ fontsize.
Add the green box, use the alpha value so that the transparency
scales with intensity. If the intensity is <9, that is, if we are not
plotting at the bottom. Do not label the x-axis.
 Else, that is, if the intensity is 9. Label the x-axis as ‘time in
milliseconds.’
 If the intensity is 0, that is, if we are plotting at the top. Set
the title to ‘raster plot of spiking for each intensity’ and fontsize
to 10.
 First, perform list comprehension to unpack list. In the second
column, plot the PSTHs for each intensity of the light stimulus.
Plot the subplot in the second column, with each increasing
intensity moving down a row. Plot the green box and set the
alpha value to correspond to the intensity of the stimulus.
Extract all the spike times for a stimulus intensity. Get nOut,
a histogram array binned by the value bins. Add the values in
nOut/10. to the dictionary nbar with key float(key([0])). Plot the
PSTH with bar function, calling all the bins except the last bin,
and scaling nOut by the number of trials (10).
 Format the PSTHs: set the x-axis and y-axis limits to [0, 20]
and [0, 1], respectively. Set the y-axis fontsize. Set the y-label
to ‘spike prob,’ make it italic, and set the fontsize to 6. If we are
in the first row (at the top). Set the title to ‘PSTH for each
intensity,’ with a fontsize of 10.
 If we are in any plot above the bottom plot, turn off the
x-label and x-ticks.
 Else if we are at the bottom plot, set the x-label to ‘time in
milliseconds.’

Save the figure.
§ End English explanation of code for Figure 9

Python MATLAB

Begin the Python way for Figure 10
fig = plt.figure()
ax = plt.subplot(111)
aa = ax.imshow(nbar.values(),cmap=ʻhotʼ,
interpolation=’bilinear’)
plt.yticks([x for x in range(10)],[str(x) for x
in range(10)[::-1]])
plt.ylabel(’stimulus intensityʼ)
plt.xlabel(’time in millisecondsʼ)
plt.title(’heat map of mean spiking for various
intensity stimuliʼ)
cb = fig.colorbar(aa,shrink=0.5)
cb.ax.set_ylabel(ʻmean spikes per time binʼ)
End Python way for Figure 10

for ii = 1:size(A2,1)
 A3(ii,:) = (sum(A2{ii,1})./10);
end
A3(:,22:100) = [];
figure
h = pcolor(A3);
set(h,ʻFacecolorʼ,ʻinterpʼ)
set(h,ʻLinestyleʼ,ʻnoneʼ)
set(gca,ʻYDirʼ,ʻreverseʼ)
colormap(ʻhotʼ)
h = colorbar;
ylabel(h, ̒ mean spikes per time binʼ)
xlabel(ʻtime (in milliseconds)ʼ)
ylabel(ʻstimulus intensityʼ)
title(ʻheat map of mean spiking for stimuli of
varying intensityʼ)

Figure 9. Raster plot of spiking and PSTH for each light
stimulus intensity.

43

NOTES

Characterizing and Correlating Spike Trains

© 2016 Wallisch

Pseudocode

§ Begin English explanation of code for Figure 10
Create plotting area
Specify that we’re making one subplot
Plot the values of nbar as an image with a hot colormap and the
colors bilinearly interpolated
Set where the y-ticks go and what their labels are
Set the y-axis label to ‘stimulus intensity’
Set the x-axis label to ‘time in milliseconds’
Set the title to ‘heat map of mean spiking for various intensity
stimuli’
Create a colorbar, use the shrink command to customize its
height
Set the colorbar label to ‘mean spikes per time bin’
§ End English explanation of code for Figure 10

Pseudocode Create figure plotting area
Specify two rows and two columns to plot, select the first one
Plot the bar values as image with colormap hot, bilinear interpolation, and aspect 1.2
Turn the y-axis and x-axis tick marks off
Specify two rows and two columns to plot, select the second one
Plot the bar values as image with colormap bone, nearest interpolation, and aspect 1.2
Turn the y-axis and x-axis tick marks off
Specify two rows and two columns to plot, select the third one
Plot the bar values as image with colormap jet, bicubic interpolation, and aspect 1.2
Turn the y-axis and x-axis tick marks off
Specify two rows and two columns to plot, select the fourth one
Plot the bar values as image with colormap cool, nearest interpolation, and aspect 1.2
Turn the y-axis and x-axis tick marks off
Save figure

Python fig = plt.figure(); ax = plt.subplot(221)
aa = ax.imshow(nbar.values(),cmap=‘hot’ ,interpolation=‘bilinear’,aspect=1.2)
plt.yticks([]); plt.xticks([])
ax = plt.subplot(222)
aa = ax.imshow(nbar.values(),cmap=‘bone’, interpolation=‘nearest’,aspect=1.2)
plt.yticks([]); plt.xticks([])
ax = plt.subplot(223);
aa = ax.imshow(nbar.values(),cmap=‘jet’, interpolation=‘bicubic’,aspect=1.2)
plt.yticks([]); plt.xticks([])
ax = plt.subplot(224)
aa = ax.imshow(nbar.values(),cmap=‘cool’,
interpolation=‘nearest’,aspect=1.2)
plt.yticks([]); plt.xticks([])
plt.savefig(‘Figure 10—four heat maps labels off.png’)

MATLAB figure
ax1 = subplot(2,2,1)
h = pcolor(A3);
set(h,ʻFacecolorʼ,ʻinterpʼ)
set(h,ʻLinestyleʼ,ʻnoneʼ)
set(gca,ʻYDirʼ,ʻreverseʼ)
colormap(ax1,ʻhotʼ)
axis off
ax2 = subplot(2,2,2)
h = pcolor(A3);
set(h,ʻLinestyleʼ,ʻnoneʼ)
set(gca,ʻYDirʼ,ʻreverseʼ)
colormap(ax2,ʻboneʼ)
axis off
ax3 = subplot(2,2,3)
h = pcolor(A3);
set(h,ʻFacecolorʼ,ʻinterpʼ)
set(h,ʻLinestyleʼ,ʻnoneʼ)
set(gca,ʻYDirʼ,ʻreverseʼ)
colormap(ax3,ʻjetʼ)
axis off
ax4 = subplot(2,2,4)
h = pcolor(A3);
set(h,ʻLinestyleʼ,ʻnoneʼ)
set(gca,ʻYDirʼ,ʻreverseʼ)
colormap(ax4,ʻwinterʼ)
axis off

Figure 10. Heat map of mean spiking for various intensity
stimuli.

44

NOTES

© 2016 Wallisch

So that’s it for basic spike wrangling. Admittedly, this
was somewhat of a toy example, but we have to get
started somewhere. You will find in your own dataset
that you will need to employ a variety of wrangling
methods to achieve your desired outcome—the goal
here is to learn the various tools that help you to do so.

Questions We Did Not Address
In the 10 intensity stimulus-response set, what order
were the stimuli presented in? Did all of the bright
intensity stimuli occur sequentially before moving to
a lower intensity stimulus? If so, might the ordering
of the stimuli influence the neuron’s response
characteristics? Might the neuron exhibit adaptation,
where its firing probability adapts as a function of
previous stimuli and its internal characteristics? How
much time of no stimuli was there between trials—
what was the intertrial interval, or ITI? How might
changing the ITI influence the neuron’s spiking?

What other optogenetic tools could we use to study
the activity of single neurons? How many photons are
required for the activation of channelrhodopsin-2?
What sort of latency of activation patterns would
we expect for other optogenetic tools? What sort of
experimental preparation would be required to mimic
the experiment in this chapter? And lastly, what sort
of experimental apparatus would be necessary to
record from a single neuron?

Thoughts on the Proper Unit of
Measurement for Spiking Activity
of Single Neurons
Data derive from the outcome of a measurement
process. A unit of measurement is the fundamental
unit we use to express the quantity of a given quality.
For instance, the currently agreed upon unit of
measurement for length in the SI system is the meter,
defined as “the length of the path travelled by light
in vacuum during a time interval of 1/299,792,458
of a second.” (Taylor and Thompson, 2008).
Consequently, all lengths that we wish to measure

are then expressed in multiples of this reference
length, e.g., 2 m or 0.5 m. This raises the question
of what the appropriate unit of measurement for
spiking activity (firing rate) is. The firing rate of a
neuron in response to a given stimulus (or even in
the absence of a stimulus) is a quality of the neuron.
The implication is that the neuron in question
discharges action potentials (or “spikes”) a certain
number of times in a given interval, usually 1 s.
The choice of this interval is probably what led to
the fundamental confusion that one often sees in
neuroscience publications. Firing rates are frequently
expressed in terms of “Hz,” e.g., “the neuron fired
at a rate of 30 Hz.” The “Hz” in question refers to
the unit of measurement of a periodic, oscillatory
process, namely 1 cycle (or period) per second.
Unfortunately, this fundamentally mischaracterizes
the very nature of action potentials. In contrast
to harmonic oscillators (e.g., the motion of guitar
strings), action potentials are neither cyclical nor
periodic. Most frequently, they are conceptualized
as “spikes,” or point processes, in which case only
the time when they occurred and how often this
happened in a given interval are meaningfully
interpretable. Spiking activity of single neurons
is notoriously aperiodic and highly irregular—
interspike intervals in a spike train are close to what
would be expected from a Poisson process (Softky
and Koch, 1993), and the variance of spike counts
upon repeated stimulation suggests overdispersion
(Taouali et al., 2016). Finally, it makes practical sense
to avoid expressing firing rates in Hz simply in order
to avoid the potential confusion when plotting them
simultaneously with quantities that are appropriately
expressed in Hz, such as the temporal frequency of a
stimulus or the power of an analog signal in a certain
frequency bin. The debate about the theoretical
significance of neural oscillations is heated enough
(Shadlen and Movshon, 1999) without implying
that spike rates are inherently oscillatory as well.

But if it is not Hz, what is the proper unit for firing
rate? Because spikes are typically defined by the
voltage trace recorded from an electrode in the brain
crossing a reasonable threshold—and recorded as
the time at which this crossing happened—and then
counted, it makes sense to express spikes in units
of impulses per second (ips), sp/s, or simply events
(threshold crossings) per second. All of these units
are conceptually sound, and it is perhaps this range
of equally suitable available options that prevented
any of them from catching on as a consensus. In
military contexts, the “rate of fire” (of rapid-firing
guns) is typically expressed in rounds per second
(rps), so by analogy, spikes per second (which is what
we care about in a firing rate) is perhaps the most apt.

Figure 11. Four heat maps.

45

NOTES

Characterizing and Correlating Spike Trains

© 2016 Wallisch

Historically, there has been a movement to replace
these units with the eponym “Adrians,” in honor of the
pioneering Lord Edgar Douglas Adrian, the original
discoverer of the rate code (Adrian, 1926), who won
the Nobel Prize in 1932 and is the purported great-
grandfather of many a neurophysiologist (neurotree.
org). However, this unit did not catch on either, and
given the problematic nature of eponyms, this is
perhaps just as well (Wallisch, 2011). Even so, almost
anything would be better than expressing firing rates
in Hz, which is fundamentally misleading. To repeat:
a rate is not a frequency. For actual frequencies, the
entire signal scales with it if the frequency changes.
In contrast, the individual action potentials remain
invariant regardless of spike rate. These are fast
events that have to be sampled frequently—or at
high frequency—in order to be captured, even (or
particularly) if the actual spike rate is very low.

Correlating Spike Trains
This section introduces the first fully developed data
analysis project as well as the conceptual framework
to do so in a principled fashion: the canonical data
analysis cascade. Here, we go through the entire data
analysis cascade—from loading data to cleaning it,
to representing it in the right format, to doing the
actual analysis, to making output figures and saving
the results.

The authors vividly remember our first five years
of coding with Python or MATLAB: specifically,
writing code to analyze data. The latter is rather
different from coding for, let’s say, building a GUI.
Everything becomes more complicated when data
get involved, and we were admittedly rather lost
during that entire time, writing convoluted code for
programs that included thousands of lines—code that
was impossible to maintain or understand even after
a short period of time. In essence, we were lacking
the principles of software development design for the
analysis of data.

Since that time, we have discovered principles
that work, which we will outline and detail in this
section. It has not escaped our notice that these
principles closely resemble what seems to have been
implemented by the perceptual system (at least
in the primate, to the degree of understanding we
have now). This makes sense: perceptual systems
are designed to analyze the environment in order
to extract relevant actionable information. We will
show this using the example of the visual system
because it is (to date) the most studied and perhaps
best understood. Perceptual systems have been in
development for hundreds of millions of years under
relentless evolutionary pressure, yielding a high-

performance analysis framework. As far as we can tell,
all sensory systems (with the exception of olfaction,
which is special) follow the five steps outlined next,
and there are principled reasons for this.

Figure 12. A cartoon of the primate visual system up to area
V1. This illustration omits quite a few structures, e.g., the
superior colliculus and the suprachiasmatic nucleus, but shows
the basic signal flow.

Step 1: Transduction
Every sensory system has to convert some kind of
physical energy in the environment into the common
currency of the brain. This currency consists of action
potentials or spikes. In the case of vision, photons
enter the eye through a narrow aperture (the pupil)
and are focused on the retina by the lens. The retina
transduces (i.e., converts) the physical energy into
action potentials. What leaves the eye is a train of
action potentials (a spike train, discussed earlier)
carried by the optic nerve. The coding equivalent of
this is to write dedicated “loader” code whose purpose
is to load data from whatever format it was generated
in. Each physiological data collection system creates
its own data files; for example, .plx files, .nev files,
.nex files, .xls files, and .txt files are some popular
formats. For one to be able to do anything with these
in Python or MATLAB, they have to be converted
into a format that Python or MATLAB can use first.

Step 2: Filtering
Once a spike train reaches the cortex, it will
be processed. This can be a problem either if it
corresponds to information that is not relevant at the
time or if it is malformed in some way. In other words,
the brain needs a gatekeeper to keep this irrelevant
information out. In the brain, this step corresponds
to the thalamus—specifically, the LGN in the visual

46

NOTES

© 2016 Wallisch

system. This nucleus relays information from the
retina to the visual cortex, but does so in a selective
fashion. Of course, this raises the question of how the
thalamus knows what irrelevant information is before
it has been analyzed by cortex. The brain solves this
problem in several ways, including via an analysis for
low-level salient features, such as fast motion or high
contrast, and then feeds that information back to the
thalamus; many recurrent feedback loops fine-tune
the filtering process.

Similarly, we strongly recommend implementing
this step in code. It is very difficult to write analysis
code that is flexible enough to handle data that
are not usable, whether that is because parts of
the data are missing, the study participant is not
doing what he or she is supposed to, the data are
corrupted, the electrode is not working, or the
like. If such data enter the processing cascade, they
usually render the result meaningless or break the
code altogether. It is best to avoid such data being
processed in the first place. This step can be called
“cleaning,” “pruning,” or “filtering” the data. It is
important that this step be performed agnostic to
the results of the analysis. If you throw out data that
do not conform to your hypothesis, you can get data
supporting any hypothesis—this is considered “data
doctoring,” so don’t do it. In contrast, this kind of
integrity check before performing full-scale analysis
is critical. Another analogy for this step is that of a
gatekeeper—the CEO (the cortex) can’t be bothered
with irrelevant information. If all of it were let in,
then nothing would get done. That’s where a strict
personal assistant comes in. Make sure to implement
that gatekeeper in code.

Step 3: Formatting
The next step performed by the visual system is a
categorical analysis of the data arriving from the
thalamus. This step is performed by the early visual
system, particularly V1. Here, the visual system
determines the location and basic orientation of line
segments (Hubel and Wiesel, 2004), for example,
what is foreground and what is background figure
(Craft et al., 2007). Heuristically, this step can be
understood as setting the stage for further analysis,
and not so much as doing a lot of analysis here already.
The reasons for this will be understood more clearly
when discussing the next step. Thus, we conceive of
this step as “formatting” the data for further analysis:
it is an absolutely critical step for data analysis. Once
data are formatted properly, the rest of the analysis is
usually rather straightforward. It might be unsettling
to the beginner, but it is not unusual to spend *most*
of one’s time writing analysis code in this step, simply

“formatting” the data. Once data structures are set
up properly, the actual analysis often corresponds
to something very simple, such as “loop through all
participants in these conditions, then compare their
means.” Similarly, the visual system recognizes the
importance of this step—in the primate, the “early”
visual system makes up approximately half the visual
system by area (Wallisch, 2014).

Step 4: Calculator
In the visual system, the calculation step is
implemented by the extrastriate cortex—the cortical
regions after striate cortex (or primary visual cortex)
in the visual processing stream. Interestingly, whereas
the previous steps have been done mostly in serial
fashion (the feedback to thalamus notwithstanding),
this step is better referred to as plural steps because
they happen in parallel, meaning that the signal might
split into two or more copies so that multiple processes
can occur on it simultaneously (Wallisch and
Movshon, 2008). The fundamental reason for this is
that, in order to achieve the goal of the computation,
many computations have to abstract from some
aspects of the source information, in effect destroying
it. This might be information that is also important
but is better computed, in parallel, by another area.
In effect, different parts of extrastriate cortex (at a
minimum, dorsal and ventral stream) (Mishkin et al.,
1983) make copies of the information provided by V1
and work on that toward some outcome. For instance,
in order to compute the speed of objects, it might be
necessary to abstract from their location and identity
information that is also crucial to the organism, but
cannot be computed at the same time by the same
area or serially. A parallel approach is perhaps the best
attempt to solve this problem.

We recommend doing something similar in code to
implement this step. Specifically, we recommend
creating as many parallel analysis streams as there
are analysis goals. The number of analysis goals is
given by how many theoretical questions need to
be answered for any given project. For instance, it is
conceivable that one analysis is concerned with the
mean response of neurons under certain conditions,
whereas another deals with its variability; in this
case, the underlying analyses are best done on copies
of the original dataset and are complementary to
each other. More analyses (e.g., a correlational
analysis) might build on these, as we will attempt
here. We recommend labeling these steps 4a, 4b,
4c, etc., in the code, signifying analysis steps that
are in principle independent of each other but can
rely on each other (e.g., 4c being executed after 4a).
Note that parallel processing has a similar meaning

47

NOTES

Characterizing and Correlating Spike Trains

© 2016 Wallisch

in computer science, in which computations are
performed on data split onto different machines.

Figure 13. A cartoon of the extrastriate visual system after
area V1.

Step 5: Output
This might come as a surprise to people living in the
modern age, but the purpose of the visual system
is not to provide fancy images for one’s viewing
pleasure but to improve the survivability of the
organism. This is true for sensory systems in general.
Perception is not an end in itself: unless it results in
motor output, the outcomes of its calculations are
irrelevant. Over time, the system has been optimized
to provide more adaptive outputs. In primates,
the end result of the visual processing cascade in
extrastriate areas is linked with motor cortex in order
to transform the visual input to real-world outputs
and memory systems to store information (the results
of the computations on the inputs). We will do the
same here, in code.

Specifically, we will hook up the outputs of step 4
(e.g., 4a, 4b) to corresponding outputs (i.e., 5a, 5b).
Sometimes, we just want to output some numbers to
the screen. Often (but not always) in the real brain,
not every computation results in a motor output—
this will be a corresponding figure that visualizes the
outcome of a computation. Usually, we want to store
the results so that we can load them in later without
having to redo the entire analysis from scratch (this
is particularly important, as some analyses are rather
time-consuming). You will want to have as many
output functions (or files) as there are outputs of step 4.

Summing Up
And that sums up the general purpose framework
(“the canonical data analysis cascade”) that can be
used for any data analysis project. We believe it is
efficient and use it ourselves on a daily basis. As far as
we can tell, most sensory systems do as well. Note that
sometimes, some of these steps can be combined into
one, e.g., by attempting to do the filtering (pruning/
cleaning) step at the same time as the formatting
step in order to realize further efficiency gains.
Sometimes you will want to combine calculation and
output steps, although one usually can output the
same information in multiple ways. As long as you
are careful when doing so, there is no problem with
combining steps, although we recommend separating
the steps more strictly if you are an absolute novice
until all of this becomes second nature.

Concluding Advice: Add Step 0 and
Step 6
To conclude, we strongly advise re-creating these five
principal steps in code when attempting any full-scale
data analysis project. Specifically, we recommend
partitioning analysis code into these steps, either
by writing individual files that correspond to each
step or by dividing up the code into self-contained
segments. What is important is that each logical
segment fits on a screen (or just about fits); if it
does not, it will be very difficult to maintain. In our
experience, analysis code has to be revisited with
surprising regularity (e.g., when Reviewer 3 asks for
additional analyses), and unfortunately, memory for
code seems to be rather transient. In other words, if
you do not organize and comment your code well,
you will not understand the code you wrote, even
after a relatively short time. This can put you in a
difficult position, for instance, when pressed for time,
as when grant deadlines loom or code reviews are
pending. So it is best to avoid it.

In addition to these five steps implemented by sensory
systems of the brain, we recommend adding a zeroth
and a sixth step. The zeroth step is an “initialization”
step. In the brain, this might correspond to birth, and
similarly, you want to start from as nearly a blank slate
as possible. In our experience, many logical errors
in programming are caused by something lingering
in memory that you forgot about that affects the
execution of your code. These errors are hard to track
down and can be catastrophic. It is best to avoid
them in the first place, and the best way to do that
is to clear the memory before doing anything else. In
addition, in this step you will want to define some
constants, parameters, or analysis flags. The reason to

48

NOTES

© 2016 Wallisch

do this here (and not strewn throughout the code) is
that you have an easily accessible section—all in one
place, at the beginning of the code—that governs its
execution, e.g., options to run the analysis with or
without normalization, settings for which baseline
to use, and similar instructions. Even the brain at
birth does not start with a completely blank slate,
owing to the complex nature of the development of
synaptic organization via both genetics and maternal
environment, and there is a reason for that.

Finally, in the spirit of making the code
maintainable—and even runable a couple of months
after writing it, we recommend writing a file that
corresponds to the sixth step. This step is a kind of
“wrapper” and “readme” file that, if you wrote a file
for each of the five steps, calls up the right files with
the right parameters in the right order and provides
some kind of documentation of what is going on.

Acknowledgments
This chapter was adapted with permission from
Chapters 3 and 4 of the forthcoming book by Pascal
Wallisch, Neural Data Science, to be published by
Elsevier.

References
Adrian ED (1926) The impulses produced by sensory

nerve endings. J Physiol 61:49–72.

Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K
(2005). Millisecond-timescale, genetically targeted
optical control of neural activity. Nat Neurosci
8:1263–1268.

Craft E, Schütze H, Niebur E, Von Der Heydt R
(2007) A neural model of figure–ground organization.
J Neurophysiol 97:4310–4326.

Hubel DH, Wiesel TN (2004) Brain and visual
perception: the story of a 25-year collaboration.
New York, NY: Oxford University Press.

Mishkin M, Ungerleider LG, Macko KA (1983)
Object vision and spatial vision: two cortical
pathways. Trends Neurosci 6:414–417.

Peters T (2004) PEP 20—The Zen of Python.
Available at https://www.python.org/dev/peps/
pep-0020/

Rieke F (1999) Spikes: exploring the neural code.
Cambridge, MA: The MIT Press.

Shadlen MN, Movshon JA (1999) Synchrony
unbound: a critical evaluation of the temporal
binding hypothesis. Neuron 24:67–77.

Softky WR, Koch C (1993) The highly irregular
firing of cortical cells is inconsistent with temporal
integration of random EPSPs. J Neurosci 13:334–
350.

Taouali W, Benvenuti G, Wallisch P, Chavane F,
Perrinet LU (2016) Testing the odds of inherent
vs. observed overdispersion in neural spike counts.
J Neurophysiol 115:434–444.

Taylor BN, Thompson A (eds) (2008) The
international system of units (SI), Ed 8. NIST
Special Publication 330. Gaithersburg, MD:
National Institute of Standards and Technology.
Available at http://physics.nist.gov/Pubs/SP330/
sp330.pdf

Tye KM, Deisseroth K (2012) Optogenetic
investigation of neural circuits underlying brain
disease in animal models. Nat Rev Neurosci
13:251–266.

Wallisch P (2011, January 7) Eponyms are stifling
scientific progress. Pascal’s Pensées. Available at
http://pensees.pascallisch.net/?p=686

Wallisch P (2014, July 21) The relative scale of early
visual areas. Pascal’s Pensées. Available at http://
pensees.pascallisch.net/?p=1788

© 2016 Kass

Department of Statistics and Machine Learning Department
Carnegie Mellon University

Pittsburgh, Pennsylvania

The Statistical Paradigm
Robert E. Kass, PhD

51

NOTESThe Contributions of Statistics
Most scientists who analyze data have had little exposure
to the field of statistics, and what they know about it has
either been self-taught from haphazard sources or come
from a single introductory course. Although in many
circumstances such limited knowledge is enough to get
the job done, users of statistics who lack deeper training
rarely appreciate the principles that drive the discipline.
The book Analysis of Neural Data (Kass et al., 2014),
which I wrote with Uri Eden and Emery Brown, attempts
to highlight those principles in an accessible exposition,
weaving them into the body of methods traditionally
discussed in basic courses and including some topics
that are more advanced. In this Short Course chapter,
I summarize several of the key ideas, quoting liberally
from the book. One of the reasons my colleague Emery
Brown and I started down the long path toward writing
that book was our shared discomfort with treatments
of data reported in the many otherwise high-quality
papers we were reading in the neuroscience literature.
As we say in the book (hereafter, all quotes are from the
book without explicit citation):

Many researchers have excellent quantitative
skills and intuitions, and in most published work
statistical procedures appear to be used correctly.
Yet, in examining these papers we have been struck
repeatedly by the absence of what we might call
statistical thinking, or application of the statistical
paradigm, and a resulting loss of opportunity to
make full and effective use of the data. These cases
typically do not involve an incorrect application of
a statistical method (though that sometimes does
happen). Rather, the lost opportunity is a failure
to follow the general approach to the analysis of
the data, which is what we mean by the label “the
statistical paradigm.” (Kass et al., 2014, 2)

Overview: Two Fundamental
Tenets of the Statistical Paradigm
After numerous conversations with colleagues, we
have arrived at the conclusion that among many
components of the statistical paradigm, summarized
below, two are the most fundamental (Kass et al.,
2014, 8):

1. Statistical models are used to express knowledge
and uncertainty about a signal in the presence of
noise, via inductive reasoning.

2. Statistical methods may be analyzed to determine
how well they are likely to perform. (Kass et al.,
2014, 9)

I will briefly explain these ideas.

Statistical models
Statistical models describe regularity and variability
of data in terms of probability distributions. The two
examples below are from Kass et al. 2014, pages 9–13.

Example 1
Marshall and Halligan (1988) reported an interesting
neuropsychological finding from a patient, identified
as P.S. This patient was a 49-year-old woman who
had suffered damage to her right parietal cortex that
reduced her capacity to process visual information
coming from the left side of her visual space. For
example, she would frequently read words incorrectly
by omitting left-most letters (“smile” became “mile”),
and when asked to copy simple line drawings, she
accurately drew the right-hand side of the figures but
omitted the left-hand side without any conscious
awareness of her error. To show that she could actually
see what was on the left but was simply not responding
to it—a phenomenon known as “blindsight”—the
examiners presented P.S. with a pair of cards showing
identical green line drawings of a house, except that
on one of the cards, bright red flames were depicted on
the left side of the house. They presented to P.S. both
cards, one above the other (the one placed above being
selected at random), and asked her to choose which
house she would prefer to live in. She thought this
was silly “because they’re the same,” but when forced
to make a response chose the non-burning house on
14 out of 17 trials. This would seem to indicate that
she did, in fact, see the left side of the drawings but
was unable to fully process the information. But how
convincing is it that she chose the non-burning house
on 14 out of 17 trials? Might she have been guessing?

If, instead, P.S. had chosen the non-burning house
on 17 out of 17 trials, there would have been very
strong evidence that her processing of the visual
information affected her decision-making; on the
other hand, a choice of 9 out of 17 clearly would have
been consistent with guessing. The intermediate
outcome (14 out of 17) is of interest as a problem
in data analysis and scientific inference precisely
because it feels fairly convincing but leaves us unsure:
a thorough, quantitative analysis of the uncertainty
would be very helpful.

The standard way to begin is to recognize the variability
in the data, namely, that P.S. did not make the same
choice on every trial; we then say that the choice
made by P.S. on each trial was a random event, that
the probability of her choosing the non-burning house
on each trial was a value p, and that the responses on
the different trials were independent of each other.
These three assumptions use probability to describe the
variability in the data. Once these three assumptions

© 2016 Kass

The Statistical Paradigm

52

NOTES are made, it becomes possible to quantify the
uncertainty about p and the extent to which the data
are inconsistent with the value p = 0.5, which would
correspond to guessing. In other words, it becomes
possible to make statistical inferences. Specifically,
using standard statistical methods, we obtain an
approximate 95% confidence interval (CI) of (0.64,
1.0). This CI expresses strong confidence that, based
on these data, p is substantially larger than 0.5.

In this example, we introduced an abstract quantity
p in order to describe the variability of outcomes for
the repeated-choice framework of the investigation.
More specifically, we can label the choice “burning”
as a value 1 and the choice “non-burning” as a value
0; we let X be the abstract quantity that determines
the choice so that on a given trial, we have either X =
1 or X = 0; we say that p is the probability that X = 1,
often written as p = P(X = 1); and, finally, if we let Y
be the sum of the values of X across all 17 trials, then
Y could, in principle, take any value from 0 to 17 and,
beginning with p = P(X = 1), we can use probability
theory to compute the probability of any value taken
by in terms of p, such as P(Y = 14). The probability
distribution for Y is called a “binomial distribution,”
and Y itself is called a “random variable.” Random
variables are abstract mathematical objects that have
probability distributions. We refer to the representation
of the data by the random variable Y, together with the
binomial distribution for Y, as a “statistical model.” It
is important to note that there is both a systematic part
of the variation, which is what we will care about and
call “signal” (here it is represented by p), together with
a remaining component of the variation, captured by
the binomial distribution, which we call “noise.”

Notice here that I have followed a standard statistical
convention in using a capital letter to stand for
a random variable. This can be helpful in more
complicated settings because it allows us to identify
quickly key elements of the model that are assumed
to be random variables.

An additional statistical convention is to use
subscripts on random variables to identify specific
instances. In this example, the instances would be
the 17 trials, so we would have 17 outcome variables
X1,X2,…,X17 and we would write
 17

Y = Σ Xi = X1 + X2 + … X17.
 i =1

The binomial model in this example combines signal
and noise in a somewhat subtle way: the signal is a
parameter of the binomial distribution, in the sense
that we can compute the probability of each outcome

once we know p (together with the number of trials).
Conceptually, we might write

“outcome = signal + noise”,

where I have used quotes to indicate that we didn’t
actually add the signal and noise. In the next example,
involving a linear regression model, we do add signal
and noise to get the outcome random variable. In
linear regression, we relate x and y variables. The
signal here has the form

y = f (x)
f (x) = β0 + β1x,

where I have written the intercept and slope of the line
as β0 and β1 to be consistent with the most common
notation used in statistics. The corresponding
statistical model introduces the random variable Y
for the outcome of y and includes a noise random
variable customarily denoted by ε. Because the data
come as a set of (x, y) pairs, we use the subscript i to
refer to data pair i, and the statistical model becomes

 Yi = f (xi) + εi (1)

and by again taking f (x) = β0 + β1x, we have a linear
model.

Example 2
Hursh (1939) presented data on the relationship
between a neuron’s conduction velocity and its axonal
diameter, in adult cats. Hursh measured maximal
velocity among fibers in several nerve bundles, and
then measured the diameter of the largest fiber in the
bundle. The resulting data, together with a fitted line,
are shown in Figure 1. The fitted line is determined by
least-squares. In this case, the line y = β0 + β1x represents
the approximate linear relationship between maximal
velocity y and diameter x. The data follow the line
pretty closely, with the intercept β0 being nearly equal
to zero. This implies, for example, that if one fiber has
twice the diameter of another, the first will propagate
an action potential approximately twice as fast as the
second. For the slope, we found β̂0 = 6.07 with standard
error SE(β̂1) = 0.14. We would report this by saying that,
on average, action potential velocity increases by 6.07
± 0.14 m/s for every micrometer increase in diameter of
a neuron. An approximate 95% CI for the slope of the
regression line is 6.07 ± 2(0.14) or (5.79, 6.35).

The distinction between data
quantities and theoretical quantities
Fundamental to statistical reasoning is the distinction
between random variables and the data they represent.
For example, histograms are often used to display
variation in the data, and this is usually represented

© 2016 Kass

53

NOTESby the mathematical notion
of a random variable having
a probability distribution,
with its probability density
function (pdf) corresponding
to the histogram. It is easy to
confuse the two. When we
speak of “the distribution of
the data,” we may be referring
to the way the histogram
looks, but the data themselves
do not follow a probability
d i s t r ibut ion—probabi l i ty
distributions apply only to
random variables. Similarly,
we may speak of the mean or
variance of some assortment
of numbers, and we can also
speak of the mean and variance
of a probability distribution.
When we conceptualize data
variation using probability
distributions, it is easy to be
sloppy in using a term like “the
mean” by failing to say whether
we are referring to the mean in
the data or the mean in the probability distributions.
It is fine to be sloppy sometimes, but it is important to
recognize the fundamental distinction between data-
based quantities and theoretical quantities.

Specifically, the mean of a set of numbers x1, x2, …, xn is

1
 n

x = — Σ xi ,
 n i =1

whereas the mean or expectation of a random
variable X having pdf fX(x) is

μX = E (X) = Σ x fX (x),
 x

where the sum is over all the possible values of x.
When there is a continuum of possible x values, we
say that the distribution is “continuous” and we write

μx = E (X) = ∫x fX (x)dx.

Similarly, the variance of X in the continuous case is

σ 2
X = V (X) = ∫(x – μX)2 fX (x)dx.

Often the subscript X is dropped, and the most
common statistical notations for a theoretical mean
and variance are μ and σ2, with σ = σ2 being the SD.

When data consist of a set of numbers x1, x2, …, xn

representing repeated observation or measurement of
some quantity under nearly identical experimental
conditions, it is common to represent the observations,
theoretically, as a set of random variables X1, X2, …,
Xn, all of which follow the same distribution, with
all being assumed to be statistically independent. In
this case, the random variables constitute a random
sample from the distribution of each X. In Example 1,
the 17 trials were assumed to be homogeneous
and independent in this sense—they would not be
independent if the subject suffered from fatigue or
some kind of tendency to answer based on previous
answers. In Example 2, the εi variables were assumed
to be homogeneous and independent. The most
serious departures from this assumption of linear
regression occur when there is temporal structure
in the data, with adjacent values of “noise” being
related to each other.

Statistical Theory
Statistical theory is used to understand the behavior
of statistical procedures under various probabilistic
assumptions. In statistics, the greek letter theta (θ)
is used to denote a parameter to be estimated from
the data. This parameter could be either a scalar or a
vector. For instance, θ might be a binomial parameter,
as in Example 1, where θ = p, or it could be the pair of

© 2016 Kass

The Statistical Paradigm

Figure 1. Conduction velocity of action potentials as a function of diameter. The
x-axis is the diameter in micrometers; the y-axis is velocity in m/s. Also shown is
the least-squares regression line. Reprinted with permission from Kass et al. (2014),
Analysis of Neural Data, copyright 2014, Springer Science+Business Media.

54

NOTES coefficients in a line, as in Example 2, where θ = (β0,
β1). A common notation for an “estimator,” meaning a
random variable that is used to estimate a parameter θ,
is θ̂. Sometimes, especially when it is important to stress
the generality of an estimation process (so that the
quantity it is estimating is implicit rather than explicit),
an estimator is written as a random variable T.

Additional information about essential ideas in
statistical theory, including elaboration of the points
made below, may be found in Kass et al. 2014,
Chapter 8.

Mean-squared error
A relatively simple and very commonly applied
criterion for evaluating how well an estimator T is
able to estimate a parameter θ is mean squared error
(MSE), defined by

MSE (T) = E((T – θ)2).

An interesting and important feature of MSE, which
can be derived with a few lines of algebra, is that it
combines two ways an estimator can perform poorly.
The first involves the systematic tendency for the
estimator T to miss its target value θ. An estimator’s
“bias” is Bias(T) = E(T) – θ. When the bias is large,
on average T will not be close to θ. The second is the
variance V(T). If V(T) is large, then T will rarely be
close to θ. Figure 2 illustrates, by analogy with shooting
at a bull’s-eye target, the situations in which only the
bias is large, only the variance is large, both are large
(the worst case), and finally, both are small (the best
case). Part of the appeal of MSE is that it combines
bias and variance in a beautifully simple way:

MSE(T) = Bias(T)2 + Variance(T). (2)

Optimality
Using MSE, it is possible to evaluate alternative
estimators of a parameter θ. A fundamental result

high bias
low variance

low bias
high variance

low bias

low variance

high bias

high variance

Figure 2. Illustration of shots aimed at a bull’s-eye to illustrate the way estimates can miss their “target.” They may be systemati-
cally biased, or they may have high variability, or both. The best situation, of course, is when there is little systematic bias and little
variability. Reprinted with permission from Kass et al. (2014), Analysis of Neural Data, copyright 2014, Springer Science+Business
Media.

© 2016 Kass

55

NOTES

The Statistical Paradigm

(essentially, first arrived at by Fisher in 1922, but
made more precise and general by many subsequent
authors in work running through the 1970s) is that,
in large samples of data, the method of maximum
likelihood (ML) minimizes MSE. In this sense,
maximum likelihood estimators (MLEs) are optimal.
In addition, it may be shown that Bayes estimators
are also optimal in this sense, and in fact, MLEs
and Bayes estimators are approximately equal
(again, for large samples of data). A different, but
also fundamental, mathematical result is that Bayes
classifiers are optimal in the sense of minimizing the
average number of misclassified observations.

One key qualification to keep in mind about these
optimality results is that they hold true for random
variables that follow specified probability distributions.
That is, they hold when it is assumed that a random
variable follows a specific probability distribution (so
that all probabilities for values of the random variable
become known once the value of the parameter θ is
known). When a knowledgeable data analyst chooses
not to use ML or Bayes estimation, or not to apply
a Bayes classifier, it is because he or she is worried
that the probabilistic assumptions needed to justify
optimality may be highly inaccurate representations
of the variation in the data. Other procedures can
be shown to perform relatively well, in certain
circumstances, with less restrictive assumptions.

Confidence Intervals and the
Bootstrap
The idea of a confidence interval
By themselves, estimates are of little value without
some notion of their accuracy. Theory shows that in
many cases, the squared bias in Equation 2 is much
smaller than the variance, so the variance represents
accuracy. The square root of the estimator variance
has the same units as the estimator and the parameter
being estimated. It is called the standard error (SE) of
the estimator:

SE = V(T)

This definition of SE should not be confused with
the standard error of mean (SEM), which is a special
case. In fact, the SEM is applied so frequently that
many people use SE to refer only to this special case.
Here, however, I am using the general statistical
terminology for SE.

In the many common situations where SE summarizes
accuracy, it also typically happens that the estimator
T is approximately normally distributed, for large
samples. Specifically, because the bias is small, this
means that T follows, approximately, a normal

distribution with mean θ and SD SE. When a random
variable X follows a normal distribution with mean μ
and SD σ, the probability that X will take a value
in the interval (μ – 2σ, μ + 2σ) is 0.95 (rounding to
two digits). Therefore, in these common situations,
for large samples, there will be a probability of
0.95 that T will fall within 2SE of the target value
θ. Now writing the estimator as θ̂ = T, we have the
formulation of the usual ~95% CI:

~ 95% CI = (θ̂ – 2SE, θ̂ + 2SE).

This is the way we obtained intervals reported at
the end of Examples 1 and 2. See Kass et al., 2014,
Chapter 7, for further discussion of CIs.

Getting a distribution via computer
simulation
In standard situations, there are readily available
formulas for SE that are furnished by statistical
software. However, as problems become somewhat
more complicated, or if the quantity being estimated
is not one considered by the software developers, it is
necessary to obtain SE a different way. Often the most
convenient method is to apply computer simulation.
To write down the algorithm, we have to use the
formula for T, i.e., the formula used to compute the
value of T from the data (as in the formula for the
sample mean used earlier). As a general notation, let
us write this formula as a function h(x1, x2, …, xn)
so that T = h(X1, X2, …, Xn) where Xi is the random
variable representing the ith data value. I am
assuming that all of the Xi random variables have
the same distribution (and that they are statistically
independent), which I will call the distribution of X.
Here is the algorithm:

(1) For g = 1 to G,

Generate a sample U1
(g),U2

(g), …, Un
(g) based on the

distribution of X.

Compute W(g) = h(U1
(g), U2

(g), …, Un
(g))

(2) Compute

1

W = — ΣG

i =1 W(g),
 G

and then

SEsim (T) =

1
 G

 Σ (W(g) – W)2 .
 G –1 g =1

Step 1 of this scheme would evaluate the estimator
T on all the sets of “pseudo-data” U1

(g), U2
(g), …, Un

(g)

for g = 1,…,G. Each set of simulated values U1
(g),U2

(g),
…, Un

(g) may also be called a “sample of pseudo-data.”

© 2016 Kass

56

NOTES

© 2016 Kass

The squared value SEsim(T)2 is simply the sample
variance of the W(g) random variables, and for large
G, it would become close to the variance V(T). Thus,
for large G, we would get SEsim(T) as an approximate
value of the desired SE.

The “plug-in” idea of the parametric
bootstrap
The only problem with the algorithm for computing
SE (approximately) given above is that, even when
we assume the distribution of X has a particular
distribution that depends on a parameter θ, we
cannot yet simulate from this distribution until we
pick a value of θ. However, it may be shown that
if we use the value θ = θ̂, where θ is the MLE, then
the resulting SE is approximately correct, and thus
the ~95% CI given above will have the correct
probability ~0.95 of containing the unknown
parameter value θ.

The nonparametric bootstrap
In some situations, we may have trouble writing down
a probability distribution that we think will do a good
job representing variability in the data. In addition,
sometimes even when we do have such a probability
distribution, it may be cumbersome to write code to
simulate from this distribution. Often, it is possible
to do something different, which is known as the
nonparametric “bootstrap.” The key idea requires
the notion of the “distribution function” of a random
variable X, written FX(x), where the lowercase x
is a possible value of the random variable X. The
value FX(x) is the probability that X is less than or
equal to the number x. Suppose we have a random
sample X1, X2, …, Xn from a distribution having
distribution function FX(x). We can resample these
variables by picking one of them at random, with
equal probability of drawing each, then repeating
by picking another (again, from the original set X1,
X2, …, Xn with equal probability of drawing each, so
that it is possible to pick the same variable twice),
and then picking another, etc., until we again have
n values. Typically we will have a different set of
n variables than the original set because some of
them will be repeated and some will be missing. In
general, this kind of sampling is called “sampling
with replacement” (because we replace each value
we pick at random before picking another one),
and here, with resampling, it becomes “bootstrap
sampling.” To each of the bootstrap samples we can
apply the estimator T. It turns out that (for large n)
the distribution of T applied to bootstrap samples
will be nearly the same as the correct distribution of
T from the distribution having distribution function
FX(x). This means we can define a relatively simple

and general algorithm for approximating SE. Again
letting T = h(X1, …, Xn) to get the nonparametric
bootstrap SE = SE(T), we proceed as follows:

(1) For g = 1 to G,

Generate a sample U1
(g), U2

(g), …, Un
(g), by resampling,

with replacement, the observations x1, …, xn.

Compute T(g) = h(U1
(g), U2

(g), …, Un
(g))

(2) Compute

1

T = — ΣG

i =1 T(g),
 G

 and then

SE(T) =

1
 G

 Σ (T(g) – T)2.
 G –1 g =1

The bootstrap is useful in situations where we have
to write computer code to get an estimator T, the
code being represented above as a computation T =
h(X1, …, Xn). To obtain SE, we apply the same code
to our resampled data, as specified in the algorithm
above.

One caveat is that arbitrary “shuffles” of the data do
not necessarily correspond to bootstrap samples. The
fundamental assumption is that the data values being
resampled are observations from random variables
(more generally, random vectors) that have the same
distribution and are independent of each other. In
many situations, it takes extra work to figure out
how to sample in such a way that this fundamental
assumption is reasonable. Additional remarks about
bootstrap methods may be found in Kass et al., 2014,
Chapter 9.

Conclusion
Beginnning with a summary of the statistical
paradigm in the form of two basic tenets, I have
tried to emphasize the notion of a statistical model,
which involves a theoretical abstraction based
on probability distributions for random variables
that aim to describe variation in data. Advanced
statistical training not only provides students with
knowledge of the inner workings of many statistical
tools and procedures, it also indoctrinates them with
the idea that there are principled approaches to
data analysis and that the principles always invoke
statistical models. I focused on CIs and bootstrap CIs
partly because they are important, but also because
they are derived from principles (although I was able
to mention these principles only briefly). I hope a
much deeper understanding will come from studying
carefully the material in Analysis of Neural Data.

57

NOTES

The Statistical Paradigm

© 2016 Kass

Acknowledgments
This chapter was excerpted with permission from
Robert E. Kass, Uri T. Eden, and Emery M. Brown,
Analysis of Neural Data, part of the Springer Series in
Statistics, copyright 2014, Springer Science+Business
Media New York.

References
Fisher RA (1922) On the mathematical foundations

of theoretical statistics. Philos Trans R Soc A
222:309–368.

Hursh JB (1939) Conduction velocity and diameter
of nerve fibers. Am J Physiol 127:131–139.

Kass R, Eden UT, Brown EN (2014) Analysis of
neural data. New York: Springer.

Marshall JC, Halligan PW (1988) Blindsight and
insight in visuo-spatial neglect. Nature 336:766–
768.

Preface to Chapters by
Jonathan Pillow, PhD

In the following two Short Course chapters, we will discuss more advanced statistical techniques for
modeling neural spike trains. The Poisson generalized linear model (GLM) is a nonlinear regression
model for identifying the relationship between external and internal covariates of the response and
instantaneous probability of spiking in a single neuron. In the chapter entitled “Likelihood-Based
Approaches to Modeling the Neural Code,” we will discuss the basic formulation of GLMs and
techniques for estimating their parameters from data.

In the chapter that follows, “Spatiotemporal Correlations and Visual Signaling in a Complete
Neuronal Population,” we will discuss extensions that allow the GLM to incorporate dependencies on
spike history, as well as the spike histories of other neurons in a multineuron recording. Incorporating
spike history gives the model the ability to capture a rich spectrum of non-Poisson spiking behaviors,
including refractoriness, bursting, adaptation, regular and irregular firing, bistability, and type I
and type II firing-rate curves. Incorporating dependencies on the spike history of other neurons
in the population gives the model the ability to identify functional connectivity and capture rich
spatiotemporal noise correlations among neurons. Lastly, we will discuss techniques for regularization,
allowing model parameters and connectivity to be accurately estimated from limited data.

© 2016 Pillow

Princeton Neuroscience Institute
Princeton, New Jersey

Likelihood-Based Approaches
to Modeling the Neural Code

Jonathan W. Pillow, PhD

63

NOTES

Figure 1. Illustration of the neural coding problem. The goal is to find a model mapping x to y that provides an accurate repre-
sentation of the conditional distribution p(y | x). Right, Simulated distribution of neural responses to two distinct stimuli, x1 and x2
illustrating (1) stochastic variability in responses to a single stimulus and (2) that the response distribution changes as a function
of x. A complete solution involves predicting p(y | x) for any x.

...
...

p(y|x2)

x1

x2

p(y|x1)???x y

p(y|x)

© 2016 Pillow

Likelihood-Based Approaches to Modeling the Neural Code

Introduction
One of the central problems in systems neuroscience
is that of characterizing the functional relationship
between sensory stimuli and neural spike responses.
Investigators call this the “neural coding problem”
because the spike trains of neurons can be considered
a code by which the brain represents information
about the state of the external world. One approach
to understanding this code is to build mathematical
models of the mapping between stimuli and spike
responses; the code can then be interpreted by
using the model to predict the neural response to a
stimulus, or to decode the stimulus that gave rise to a
particular response. In this chapter, we will examine
“likelihood-based” approaches, which use the
explicit probability of response to a given stimulus
for both fitting the model and assessing its validity.
We will show how the likelihood can be derived for
several types of neural models, and discuss theoretical
considerations underlying the formulation and
estimation of such models. Finally, we will discuss
several ideas for evaluating model performance,
including time-rescaling of spike trains and optimal
decoding using Bayesian inversion of the likelihood
function.

The Neural Coding Problem
Neurons exhibit stochastic variability. Even for
repeated presentations of a fixed stimulus, a neuron’s
spike response cannot be predicted with certainty.
Rather, the relationship between stimuli and neural

responses is probabilistic. Understanding the neural
code can therefore be framed as the problem of
determining p(y | x): the probability of response
y conditional on a stimulus x. For a complete
solution, we need to be able compute p(y | x) for
any x, meaning a description of the full response
distribution for any stimulus we might present to a
neuron. Unfortunately, we cannot hope to get very
far trying to measure this distribution directly, owing
to the high dimensionality of stimulus space (e.g., the
space of all natural images) and the finite duration of
neurophysiology experiments. Figure 1 illustrates the
general problem.

A classical approach to the neural coding problem
has been to restrict attention to a small, parametric
family of stimuli (e.g., flashed dots, moving bars, or
drifting gratings). The motivation underlying this
approach is the idea that neurons are sensitive only
to a restricted set of “stimulus features” and that we
can predict the response to an arbitrary stimulus
simply by knowing the response to these features.
If x{ψ} denotes a parametric set of features to which
a neuron modulates its response, then the classical
approach posits that p(y | x) ≈ p(y | xψ), where xψ is
the stimulus feature that most closely resembles x.

Although the “classical” approach to neural coding
is not often explicitly framed in this way, it is not so
different in principle from the “statistical modeling”
approach that has gained popularity in recent years,

64

NOTES

© 2016 Pillow

and which we pursue here. In this framework, we
assume a probabilistic model of the neural response
and attempt to fit the model parameters θ so that
p(y | x, θ)—the response probability under the model,
provides a good approximation to p(y | x). Although
the statistical approach is often applied using stimuli
drawn stochastically from a high-dimensional
ensemble (e.g., Gaussian white noise) rather than a
restricted parametric family (e.g., sine gratings), the
goals are essentially similar: to find a simplified and
computationally tractable description of p(y | x). The
statistical framework differs primarily in its emphasis
on detailed quantitative prediction of spike responses,
and in offering a unifying mathematical framework
(likelihood) for fitting and validating models.

Model Fitting with Maximum
Likelihood
Let us now turn to the problem of using likelihood
for fitting a model of an individual neuron’s
response. Suppose we have a set of stimuli x = {xi}
and a set of spike responses y = {yi} obtained during
a neurophysiology experiment, and we would like
to fit a model that captures the mapping from x to
y. Given a particular model, parametrized by the
vector θ, we can apply a tool from classical statistics
known as “maximum likelihood” (ML) to obtain
an asymptotically optimal estimate of θ. For this,
we need an algorithm for computing p(y | x, θ),
which, considered as a function of θ, is called the
“likelihood” of the data. The ML estimate θ̂ is the
set of parameters under which these data are most
probable, or the maximizer of the likelihood function:

θ̂ = arg max p(y | x, θ). (1)

θ

Although this solution is easily stated, it is
unfortunately the case that for many models of
neural response (e.g., detailed biophysical models
such as Hodgkin–Huxley) it is difficult or impossible
to compute likelihood. Moreover, even when we
can find simple algorithms for computing likelihood,
maximizing it can be quite difficult; in most cases, θ
lives in a high-dimensional space, containing tens to
hundreds of parameters (e.g., describing a neuron’s
receptive field and spike-generation properties).
Such nonlinear optimization problems are often
intractable.

In the following sections, we will introduce several
probabilistic neural spike models, derive the
likelihood function for each model, and discuss the
factors affecting ML estimation of its parameters. We

will also compare ML with standard (e.g., moment-
based) approaches to estimating model parameters.

The linear–nonlinear–Poisson model
One of the best-known models of neural response is
the linear–nonlinear–Poisson (LNP) model, which
is alternately referred to as the linear–nonlinear
“cascade” model. The model, which is schematized
in the left panel of Figure 2, consists of a linear filter
(k), followed by a point nonlinearity (f), followed
by Poisson spike generation. Although many
interpretations are possible, a simple description of
the model’s components holds that:

• k represents the neuron’s space–time receptive
field, which describes how the stimulus is converted
to intracellular voltage;

• f describes the conversion of voltage to an
instantaneous spike rate, accounting for such
nonlinearities as rectification and saturation;

• instantaneous rate is converted to a spike train via
an inhomogeneous Poisson process.

The parameters of this model can be written as
θ = {k, φf }, where φf are the parameters governing
f. Although the LNP model is not biophysically
realistic (especially the assumption of Poisson
spiking), it provides a compact and reasonably
accurate description of average responses, e.g.,
peristimulus time histogram (PSTH), in many early
sensory areas.

Another reason for the popularity of the LNP model
is the existence of a simple and computationally
efficient fitting algorithm, which consists of using
spike-triggered average (STA) as an estimate for k and
a simple histogram procedure to estimate φf (Bryant
and Segundo, 1976; Chichilnisky, 2001). It is a well-
known result that the STA (or “reverse correlation”)
gives an unbiased estimate of the direction of k (i.e.,
the STA converges to αk, for some unknown α) if the
raw stimulus distribution p(x) is spherically symmetric,
and f shifts the mean of the spike-triggered ensemble
away from zero (i.e., the expected STA is not the zero
vector) (Bussgang, 1952; Paninski, 2003). However,
the STA does not generally provide an optimal
estimate of k, except in a special case we will examine
in more detail below (Paninski, 2004).

First, we derive the likelihood function of the
LNP model. The right panel of Figure 2 shows the
dependency structure (also known as a graphical

65

NOTES

© 2016 Pillow

Likelihood-Based Approaches to Modeling the Neural Code

model) between stimulus and response, where arrows
indicate conditional dependence. For this model, the
bins of the response are conditionally independent of
one another, given the stimulus—an essential feature
of Poisson processes. This means that the probability
of the entire spike train factorizes as

p(y | x, θ) = Πp(yi | xi, θ), (2)
 i

where yi is the spike count in the ith time bin, and
xi is the stimulus vector causally associated with this
bin. Equation 2 asserts that the likelihood of the
entire spike train is the product of the single-bin
likelihoods. Under this model, single-bin likelihood is
given by the Poisson distribution with rate parameter
∆f (k · xi), where k · xi, is the dot product of k with xi,
and ∆ is the width of the time bin. The probability of
having yi spikes in the ith bin is therefore

 1 yi e−∆f (k·xi)
p(yi | xi, θ) = — [∆f (k · xi)] , (3)
 y i!

and the likelihood of the entire spike train can be
rewritten as:

 f (k · xi)yi

 p(y | x, θ) = ∆nΠ e−∆f (k·xi)

, (4)
 i

yi!

where n is the total number of spikes.

We can find the ML estimate θ̂ = {k̂, φ̂} by maximizing
the log of the likelihood function (which is
monotonically related to likelihood), and given by

log p(y | x, θ) =

Σyi log f (k · xi) − ∆ Σ f (k · xi) + c, (5)
 i i

where c is a constant that does not depend on k or f.
Because there is an extra degree of freedom between
the amplitude of k and input scaling of f, we can
constrain k to be a unit vector, and consider only the
angular error in estimating k. By differentiating the
log-likelihood with respect to k and setting it to zero,
we find that the ML estimate satisfies:

 f (k̂ · xi)
λk̂ = Σyi

 xi − ∆Σ f (k̂ · xi)xi , (6)

f (k̂ · xi)
 i i

where λ is a Lagrange multiplier introduced
to constrain k to be a unit vector. As noted in
Paninski (2004), the second term on the right
hand converges to a vector proportional to k if the
stimulus distribution p(x) is spherically symmetric.
(It is the expectation over p(x) of a function radially
symmetric around k.) If we replace this term by its
expectation, we are left with just the first term, which
is a weighted STA, since yi is the spike count and xi

is the stimulus preceding the ith bin. This term is
proportional to the (ordinary) STA if f / f is constant,
which occurs only when f (z) = eaz+b.

Therefore, the STA corresponds to the ML estimate
for k whenever f is exponential; conversely, if f differs
significantly from exponential, Equation 6 specifies a
different weighting of the spike-triggered stimuli, and

Figure 2. Schematic and dependency structure of the linear–nonlinear–Poisson (LNP) model. Left, LNP model consists of a linear
filter k, followed by a point nonlinearity f, followed by Poisson spike generation. Right: Depiction of a discretized white noise
Gaussian stimulus (above) and spike response (below). Arrows indicate the causal dependency entailed by the model between
portions of the stimulus and portions of the response. The highlighted gray box and gray oval show this dependence for a
single time bin of the response, while gray boxes and arrows indicate the (time-shifted) dependency for neighboring bins of the
response. As indicated by the diagram, all time bins of the response are conditionally independent, given the stimulus (Eq. 2).

k f

66

NOTES

© 2016 Pillow

the traditional STA is suboptimal. Figure 3 illustrates
this point with a comparison between the STA and
the ML estimate for k on spike trains simulated using
three different nonlinearities. In the simulations, we
found the ML estimate by directly maximizing log-
likelihood (Eq. 5) for both k and φf, beginning with
the STA as an initial estimate for k. As expected, the
ML estimate outperforms the STA except when f is
exponential (rightmost column).

Figure 4 shows a similar analysis comparing ML with
an estimator derived from spike-triggered covariance
(STC) analysis, which uses the principal eigenvector
of the STC matrix to estimate k. Recent work has
devoted much attention to fitting LNP models with
STC analysis, which is relevant particularly in cases
where the f is approximately symmetric (de Ruyter
van Steveninck and Bialek, 1988; Schwartz et al.,
2002; Touryan et al., 2002; Aguera y Arcas and
Fairhall, 2003; Simoncelli et al., 2004; Bialek and de
Ruyter van Steveninck, 2005; Schwartz et al., 2006).
The left column of Figure 4 shows a simulation
where f is a quadratic, shifted slightly from the origin
so that both the STA and the first eigenvector of the
STC provide consistent (asymptotically convergent)
estimates of k. Both, however, are significantly

outperformed by the ML estimator. Although it is
beyond the scope of this chapter, a derivation similar
to the one above shows that there is an f for which
the ML estimator and the STC estimate are identical.
The relevant f is a quadratic in the argument of an
exponential, which can also be represented as a ratio
of two Gaussians (Pillow and Simoncelli, 2006). The
right column of Figure 4 shows results obtained with
such a nonlinearity. If we used a similar nonlinearity
in which the first term of the quadratic is negative,
e.g., f(x) = exp(−x2), then f produces a reduction
in variance along k, and the STC eigenvector with
the smallest eigenvalue is comparable with the ML
estimate (Pillow and Simoncelli, 2006).

Before closing this section, it is useful to review
several other general characteristics of ML estimation
in LNP models. First, note that the LNP model can
be generalized to include multiple linear filters and a
multidimensional nonlinearity, all of which can be
fit using ML. In this case, the likelihood function is
the same as in Equation 4, only the instantaneous
spike rate is now given by:

rate(xi) = f (k1 · xi, k2 · xi , …, km · xi), (7)

Figure 3. Comparison of STA and ML estimates of the linear filter k in an LNP model. Top row, three different types of nonlinearity
f: a linear function (left), a half-wave rectified linear function (middle), and an exponential function. For each model, the true k
was a 20-tap temporal filter with biphasic shape similar to that found in retinal ganglion cells. The stimulus was temporal Gauss-
ian white noise with a frame rate of 100 Hz, and k was normalized so that filter output had unit SD. Bottom row, Plots show the
convergence behavior for each model as a function of the amount of data collected. Error is computed as the angle between the
estimate and the true k, averaged more than 100 repeats at each stimulus length. deg: degrees; sp/s: spikes per second.

67

NOTES

© 2016 Pillow

Likelihood-Based Approaches to Modeling the Neural Code

where {k1, k2, …, km} is a collection of filters, and
f is an m-dimensional point nonlinearity. Second,
ML estimation of the LNP model enjoys the same
statistical advantages as several information-
theoretic estimators that have been derived for
finding “maximally informative dimensions” or
features of the stimulus space (Paninski, 2003;
Sharpee et al., 2004). Specifically, the ML estimator
is unbiased even when the raw stimulus distribution
lacks spherical symmetry (e.g., “naturalistic
stimuli”), and it is sensitive to higher-order
statistics of the spike-triggered ensemble, making
it somewhat more powerful and more general than
STA or STC analysis. Unfortunately, ML also shares
the disadvantages of these information-theoretic
estimators: it is computationally intensive, difficult
to use for recovering multiple (e.g., > 2) filters (in
part due to the difficulty of choosing an appropriate
parametrization for f), and cannot be guaranteed to
converge to the true maximum using gradient ascent,
owing to the existence of multiple local maxima in
the likelihood function.

We address this last shortcoming in the next two
sections, which discuss models constructed to have
likelihood functions that are free from suboptimal
local maxima. These models also introduce
dependence of the response on spike-train history,

eliminating a second major shortcoming of the LNP
model: the assumption of Poisson spike generation.

The generalized linear model
The generalized linear model (GLM), schematized in
Figure 5, generalizes the LNP model to incorporate
feedback from the spiking process, allowing the
model to account for history-dependent properties
of neural spike trains such as the refractory period,
adaptation, and bursting (Paninski, 2004; Truccolo
et al., 2004). As shown in the dependency diagram
(right panel, Fig. 5), the responses in distinct time
bins are no longer conditionally independent, given
the stimulus; rather, each bin of the response depends
on some time window of the recent spiking activity.
Luckily, this does not prevent us from factorizing the
likelihood, which can now be written as

p(y | x, θ) = Πp(yi | xi, y[i – k : i –1]θ), (8)
 i

where y[i−k : i−1] is the vector of recent spiking activity
from time bin i − k to i − 1. This factorization holds
because, by Bayes’ rule, we have

p(yi , y[i−k : i−1] | x, θ) =

 p(yi | y[i−k : i−1] , x, θ)p(y[i−k : i−1] | x, θ), (9)

ax2 + bx + c exp(ax2+ bx + c)

Figure 4. Comparison of STA, STC, and ML estimates of k in an LNP model. Top row, Two types of nonlinearity functions used
to generate responses; a quadratic function (left), and a quadratic raised to an exponential (right). Stimulus and true k as in
Fig. 3. Bottom row, Convergence behavior of the STA, first (maximum-variance) eigenvector of the STC, and ML estimate. The
STA is omitted from the right plot, as it fails to converge under a symmetric nonlinearity. deg: degrees; sp/s: spikes per second.

68

NOTES

© 2016 Pillow

and we can apply this formula recursively to obtain
Equation 8. (Note, however, that no such factorization
is possible if we allow loopy, e.g., bidirectional, causal
dependence between time bins of the response.)

Except for the addition of a linear filter, h, operating
on the neuron’s spike-train history, the GLM is
identical to the LNP model. We could therefore call
it the “recurrent LNP” model, although its output is
no longer a Poisson process, owing to the history-
dependence induced by h. The GLM likelihood
function is similar to that of the LNP model. If we let

ri = f (k · xi + h · y[i−k : i−1]) (10)

denote the instantaneous spike rate (or “conditional
intensity” of the process), then the likelihood and
log-likelihood (following Eq. 4 and 5), respectively,
are given by:
 ri

yi

p(y x, θ) = ∆n Π e
−∆ri

 (11) yi!
 i

log p(y | x, θ) = Σyi log ri − ∆Σ ri + c. (12)
 i i

Unfortunately, we cannot use moment-based
estimators (STA and STC) to estimate k and h
for this model, because the consistency of those
estimators relies on spherical symmetry of the input
(or “Gaussianity,” for STC), which the spike-history
input term y[i−k : i−1] fails to satisfy (Paninski, 2003).

As mentioned above, a significant shortcoming
of the ML approach to neural characterization is
that it may be quite difficult in practice to find the
ML function. Gradient ascent fails if the likelihood

function is rife with local maxima, and more robust
optimization techniques (e.g., simulated annealing)
are computationally exorbitant and require delicate
oversight to ensure convergence.

One solution to this problem is to constrain the model
so that we guarantee that the likelihood function is
that of free-from (nonglobal) local maxima. If we can
show that the likelihood function is “log-concave,”
meaning that the negative log-likelihood function
is convex, then we can be assured that the only
maxima are global maxima. Moreover, the problem of
computing the ML estimate θ̂ is reduced to a convex
optimization problem, for which there are tractable
algorithms even in very high-dimensional spaces.

As shown by Paninski (2004), the GLM has a
concave log-likelihood function if the nonlinearity
f is itself convex and log-concave. These conditions
are satisfied if the second derivative of f is
nonnegative and the second derivative of log f is non-
positive. Although this may seem like a restrictive
set of conditions (e.g., it rules out symmetric
nonlinearities), a number of suitable functions seem
like reasonable choices for describing the conversion
of intracellular voltage to instantaneous spike rate,
for example:

• f (z) = max(z + b, 0)

• f (z) = ez+b

• f (z) = log(1 + ez+b),

where b is a single parameter that we also estimate
with ML.

Figure 5. Diagram and dependency structure of a GLM. Left, Model schematic, showing the introduction of history-dependence
in the model via a feedback waveform from the spiking process. In order to ensure convexity of the negative log-likelihood, we
now assume that the nonlinearity f is exponential. Right, Graphical model of the conditional dependencies in the GLM. The
instantaneous spike rate depends on both the recent stimulus and recent history of spiking.

k f

h

69

NOTES

© 2016 Pillow

Likelihood-Based Approaches to Modeling the Neural Code

Thus, for appropriate choice of f , ML estimation of a
GLM becomes computationally tractable. Moreover,
the GLM framework is quite general and can easily
be expanded to include additional linear filters that
capture dependence on spiking activity in nearby
neurons, behavior of the organism, or additional
external covariates of spiking activity. ML estimation
of a GLM has been successfully applied to the analysis
of neural spike trains in a variety of sensory, motor,
and memory-related brain areas (Chornoboy et al.,
1988; Truccolo et al., 2004; Okatan et al., 2005;
Pillow et al., 2005a).

Generalized integrate-and-fire model
We now turn our attention to a dynamical systems
model of the neural response, for which the
likelihood of a spike train is not so easily formulated
in terms of a conditional intensity function (i.e., the
instantaneous probability of spiking, conditional on
stimulus and spike-train history). Recent work has
shown that the leaky integrate-and-fire (IF) model,
a canonical but simplified description of intracellular
spiking dynamics, can reproduce the spiking statistics
of real neurons (Reich et al., 1998; Keat et al., 2001).
It can also mimic important dynamical behaviors
of more complicated models like Hodgkin–Huxley
(Gerstner and Kistler, 2002; Jolivet et al., 2003). It
is therefore natural to ask whether likelihood-based
methods can be applied to models of this type. Figure 6
shows a schematic diagram of the generalized IF
model (Paninski, 2004; Pillow et al., 2005b), which
is a close relative of the well-known spike response
model (Jolivet et al., 2003). The model generalizes
the classical IF model so that injected current is
a linear function of the stimulus and spike-train
history, plus a Gaussian noise current that introduces
a probability distribution over voltage trajectories.
The model dynamics (written here in discrete time,
for consistency) are given by

vi+1 − vi 1
 = (vi − vL) + (k · xi) +

∆ τ

 1
(h · y[i−k : i−1]) + σNi ∆−2 , (13)

where vi is the voltage at the ith time bin, which
obeys the boundary condition that whenever vi ≥ 1,
a spike occurs and vi is reset instantaneously to zero.
∆ is the width of the time bin of the simulation, and
Ni is a standard Gaussian random variable, drawn
independently on each i. The model parameters
k and h are the same as in the GLM: linear filters
operating on the stimulus and spike-train history
(respectively), and the remaining parameters are: τ,
the time constant of the membrane leak; vL, the leak
current reversal potential; and σ, the amplitude of
the noise.

The lower left panel of Figure 6 depicts the
dependency structure of the model as it pertains to
computing the likelihood of a spike train. In this
case, we can regard the probability of an entire
interspike interval (ISI) as depending on a relevant
portion of the stimulus and spike-train history. The
lower right panel illustrates how we might compute
this likelihood for a single ISI under the generalized
IF model using Monte Carlo sampling. Computing
the likelihood in this case is also known as the “first-
passage time” problem. Given a setting of the model
parameters, we can sample voltage trajectories from
the model, drawing independent noise samples for
each trajectory and following each trajectory until it
hits threshold. The gray traces show five such sample
paths, while the blue trace shows the voltage path
obtained in the absence of noise. The probability of
a spike occurring at the ith bin is simply the fraction
of voltage paths crossing threshold at this bin. The
black trace above shows the probability distribution
obtained by collecting the first passage times of a
large number of paths. Evaluated at the actual spike,
this density gives the likelihood of the relevant ISI.
Because of voltage reset following a spike, all ISIs are
conditionally independent, and we can again write
the likelihood function as a product of conditionally
independent terms:

p(y | x, θ) = Πp(y[tj-1 + 1 : tj] | x, y[0 : tj], θ), (14)
 tj

where {tj} is the set of spike times emitted by the
neuron, y[tj − 1 + 1 : tj] is the response in the set of time
bins in the jth ISI, and y[0 : tj] is the response during
time bins previous to that interval.

The Monte Carlo approach to computing likelihood
of a spike train can in principle be performed for
any probabilistic dynamical-systems–style model.
In practice, however, such an approach would be
unbearably slow and would likely prove intractable,
particularly because the likelihood function must be
computed many times in order find the ML estimate
for θ. However, for the generalized IF model, there
exists a much more computationally efficient method
for computing the likelihood function using the
Fokker–Planck equation. Although beyond the
scope of this chapter, the method works by “density
propagation” of a numerical representation of the
probability density over subthreshold voltage,
which can be quickly computed using sparse matrix
methods. More important, results have shown that
the log-likelihood function for the generalized IF
model (like that of the GLM) is concave. This means
that the likelihood function contains a unique global
maximum, and that gradient ascent can be used
to find the ML estimate of the model parameters

70

NOTES

© 2016 Pillow

(Paninski et al., 2004). Other work has applied the
generalized IF model to the responses of macaque
retinal ganglion cells using ML, showing that the
model can be used to capture stimulus dependence,
spike-history dependence, and noise statistics of
neural responses recorded in vitro (Pillow et al.,
2005b).

Model Validation
Once we have a used ML to fit a particular model
to a set of neural data, there remains the important
task of validating the quality of the model fit. In this
section, we discuss three simple methods for assessing
the goodness-of-fit of a probabilistic model using
the same statistical framework that motivated our
approach to fitting.

Likelihood-based cross-validation
Recall that the basic goal of our approach is to find
a probabilistic model such that we can approximate

the true probabilistic relationship between stimulus
and response, p(y | x), by the model-dependent
p(y | x, θ). Once we have fit θ using a set of training
data, how can we tell if the model provides a good
description of p(y | x)? To begin with, let us suppose
that we have two competing models, pA and pB,
parametrized by θA and θB, respectively, and we wish
to decide which model provides a better description
of the data. Unfortunately, we cannot simply compare
the likelihood of the data under the two models, pA
(y | x, θA) versus pB (y | x, θB), owing to the problem
of “overfitting.” Even though one model assigns the
fitted data a higher likelihood than the other, it may
not generalize as well to new data.

As a toy example of the phenomenon of overfitting,
consider a dataset consisting of five points drawn
from a Gaussian distribution. Let model A be a single
Gaussian distribution, fit with the mean and SD of the
sample points (i.e., the ML estimate for this model).

Figure 6. Generalized IF model. Top: Schematic diagram of model components, including a stimulus filter k and a postspike cur-
rent h that is injected into a leaky integrator following every spike, and independent Gaussian noise to account for response vari-
ability. Bottom left: Graphical model of dependency structure, showing that the likelihood of each ISI is conditionally dependent
on a portion of the stimulus and spike-train history prior to the ISI. Bottom right, Schematic illustrating how likelihood could be
computed with Monte Carlo sampling. Blue trace shows the voltage (and spike time) from simulating the model without noise,
while gray traces show sample voltage paths (to the first spike time) with noise. The likelihood of the ISI is shown above, as a
function of the spike time (black trace). Likelihood of an ISI is equal to the fraction of voltage paths crossing threshold at the true
spike time.

i

k

hN

71

NOTES

© 2016 Pillow

Likelihood-Based Approaches to Modeling the Neural Code

For model B, suppose that the data come from a mixture
of five very narrow Gaussian distributions, and fit this
model by centering one of these narrow Gaussian
distributions at each of the five sample points. Clearly,
the second model assigns higher likelihood to the data
(because it concentrates all probability mass near the
sample points), but it fails to generalize; as a result,
it will assign very low probability to new data points
drawn from the true distribution that do not happen
to lie very near the five original samples.

This suggests a general solution to the problem of
comparing models, which goes by the name “cross-
validation.” Under this procedure, we generate a new
set of “test” stimuli, x*, and present them to the neuron
to obtain a new set of spike responses, y*. (Alternatively,
we could set aside a small portion of the data at the
beginning.) By comparing the likelihood of these
new data sets under the two models, pA (y*|x*, θA)
versus pB (y*| x*, θB), we get a fair test of the models’
generalization performance. Note that, under this
comparison, we do not actually care about the number
of parameters in the two models: increasing the number
of parameters in a model does not actually improve its
ability to generalize. (In the toy example above, model B
has more parameters but generalizes much more poorly.
We can view techniques like regularization as methods
for reducing the effective number of parameters in a
model so that overfitting does not occur.) Although we
may prefer a model with fewer parameters for aesthetic
or computational reasons, from a statistical standpoint,
we should care only about which model provides a
better account of the novel data.

Time-rescaling
Another powerful idea for testing the validity of a
probabilistic model is to use the model to convert
spike times into a series of independent and identically
distributed random variables. This conversion will
be successful only if we have accurately modeled the
probability distribution of each spike time. This idea,
which goes under the name “time-rescaling” (Brown
et al., 2002), is a specific application of the general
result that we can convert any random variable into a
uniform random variable using its cumulative density
function (CDF).

First, let us derive the CDF of a spike time under
the LNP and GLM models. If ri is the conditional
intensity function of the ith time bin (i.e., f (k · xi)
under the LNP model), then the probability that the
“next” spike tj + 1 occurs on or before bin k, given that
the previous spike occurred at tj, is simply 1 minus
the probability that no spikes occur during the time
bins tj + 1 to k. This gives

p(tj + 1 ≤ k | tj) = 1 − (Π e
−∆ri), (15)

 i∈[tj + 1, k]

 which we can rewrite:
 k

p(tj + 1 ≤ k | tj) = 1 − exp (−∆) Σri). (16)
 tj + 1

Note that the argument of the exponential is simply
the negative integral of the intensity function since
the time of the previous spike.

For the generalized IF model, computing the likelihood
function involves computing the probability density
function (PDF) over each interspike interval (as
depicted in Fig. 6), which we can simply integrate to
obtain the CDF (Paninski et al., 2004).

Given the CDF for a random variable, a general
result from probability theory holds that it provides
a remapping of that variable to the one randomly
distributed unit interval [0, 1]. Even though the
CDF for each spike time is different, if we remap
the entire spike train using tj − → C DFj (tj), where
C DFj is the cumulative density of the jth spike time,
then, if the model is correct, we should obtain a
series of independent, uniform random variables.
This suggests we test the validity of the model by
testing the remapped spike times for independence;
any correlation (or some other form of dependence)
between successive pairs of remapped spike times, for
example, indicates a failure of the model. We can also
examine the marginal distribution of the remapped
times (e.g., using a Kolmogorov–Smirnov test) to
detect deviations from uniformity. The structure of any
deviations may be useful for understanding the model’s
failure modes: an excess of small-valued samples, for
example, indicates that the model predicts too few
short interspike intervals. If we wish to compare
multiple models, we can use time-rescaling to examine
which model produces the most nearly independent
and most nearly uniform remapped spike times.

Model-based decoding
A third tool for assessing the validity of a probabilistic
model is to perform stimulus decoding using the
model-based likelihood function. Given the fitted
model parameters, we can derive the posterior
probability distribution over the stimulus given a
spike train by inverting the likelihood function using
the Bayes’ rule:

 p(y | x, θ)p(x)
p(x | y, θ) =
 p(y | θ) , (17)

72

NOTES

© 2016 Pillow

where p(x) is the prior probability of the stimulus
(which we assume to be independent of θ), and the
denominator is the probability of response y, given
θ. We can obtain the most likely stimulus to have
generated the response y by maximizing the posterior
for x, which gives the maximum a posteriori (MAP)
estimate of the stimulus, which we can denote

x̂MAP = arg max p(y | x, θ)p(x) (18)
 x

since the denominator term p(y | θ) does not vary
with x.

For the GLM and generalized IF models, the concavity
of the log-likelihood function with respect to the
model parameters also extends to the posterior with
respect to the stimulus, since the stimulus interacts
linearly with model parameters k. Concavity of the
log-posterior holds so long as the prior p(x) is itself
log-concave (e.g., Gaussian, or any distribution of
the form αe−(x/σ)γ, with γ ≥ 1). This means that, for
both of these two models, we can perform MAP
decoding of the stimulus using simple gradient ascent
of the posterior.

If we wish to perform decoding with a specified
loss function (e.g., mean-squared error), optimal
decoding can be achieved with Bayesian estimation,
which is given by the estimator with minimum
expected loss. In the case of mean-squared error, this
estimator is given by

x̂Bayes = E[x | y, θ], (19)

which is the conditional expectation of x, or the mean
of the posterior distribution over stimuli. Computing
this estimate, however, requires sampling from the
posterior distribution, which is difficult to perform
without advanced statistical sampling techniques
and is a topic of ongoing research.

Considered more generally, decoding provides an
important test of model validity, and it allows us to
ask different questions about the nature of the neural
code. Even though it may not be a task carried out
explicitly in the brain, decoding allows us to measure
how well a particular model preserves the stimulus-
related information in the neural response. This is
a subtle point, but one worth considering: we can
imagine a model that performs worse under cross-
validation or time-rescaling analyses but performs
better at decoding, and therefore gives a better
account of the stimulus-related information that is
conveyed to the brain. For example, consider a model
that fails to account for the refractory period (e.g., an
LNP model) but gives a slightly better description

of the stimulus-related probability of spiking. This
model assigns non-zero probability to spike trains
that violate the refractory period, thereby “wasting”
probability mass on spike trains whose probability
is actually zero, and performs poorly under cross-
validation. The model also performs poorly under
time-rescaling owing to the fact that it overpredicts
spike rate during the refractory period. However,
when decoding a real spike train, we do not encounter
violations of the refractory period, and the “wasted”
probability mass affects only the normalizing term
p(y | θ). Here, the model’s improved accuracy for
predicting the stimulus-related spiking activity leads
to a posterior that is more reliably centered around
the true stimulus. Thus, even though the model
fails to reproduce certain statistical features of the
response, it provides a valuable tool for assessing what
information the spike train carries about the stimulus
and gives a perhaps more valuable description of
the neural code. Decoding may therefore serve as
an important tool for validating likelihood-based
models, and a variety of exact or approximate
likelihood-based techniques for neural decoding
have been explored (Warland et al., 1997; Brown et
al., 1998; Barbieri et al., 2004; Pillow et al., 2005b).

Summary
We have shown how to compute likelihood and
perform ML fitting of several types of probabilistic
neural models. In simulations, we have shown
that ML outperforms traditional moment-based
estimators (STA and STC) when the nonlinear
function of filter output does not have a particular
exponential form. We have also discussed models
whose log-likelihood functions are provably
concave, making ML estimation possible even in
high-dimensional parameter spaces and with non-
Gaussian stimuli. These models can also be extended
to incorporate dependence on spike-train history
and external covariates of the neural response, such
as spiking activity in nearby neurons. We have
examined several statistical approaches to validating
the performance of a neural model, which allow us
to decide which models to use and to assess how well
they describe the neural code.

In addition to the insight they provide into the
neural code, the models we have described may be
useful for simulating realistic input to downstream
brain regions, and in practical applications such as
neural prosthetics. The theoretical and statistical
tools that we have described here, as well as the vast
computational resources that make them possible,
are still a quite recent development in the history
of theoretical neuroscience. Understandably, their

73

NOTES

© 2016 Pillow

Likelihood-Based Approaches to Modeling the Neural Code

achievements are still quite modest: we are far away
from a “complete” model that predicts responses
to any stimulus (e.g., incorporating the effects of
spatial and multiscale temporal adaptation, network
interactions, and feedback). There remains much
work to be done both in building more powerful and
accurate models of neural responses, and in extending
these models (perhaps in cascades) to the responses
of neurons in brain areas more deeply removed from
the periphery.

Acknowledgments
This chapter was previously published as Pillow J
(2007) Likelihood-based approaches to modeling
the neural code. In: Bayesian brain: probabilistic
approaches to neural coding, Chap 7 (Doya K, Ishii S,
Pouget A, Rao R, eds), pp 53–70. Cambridge, MA:
MIT Press.

References
Aguera y Arcas B, Fairhall AL (2003) What causes

a neuron to spike? Neural Comput 15:1789–1807.

Barbieri R, Frank L, Nguyen D, Quirk M, Solo V,
Wilson M, Brown E (2004) Dynamic analyses of
information encoding in neural ensembles. Neural
Comput 16:277–307.

Bialek W, de Ruyter van Steveninck R (2005)
Features and dimensions: motion estimation in
fly vision. Quantitative Biology—Neurons and
Cognition arXiv:qbio.NC/0505003.

Brown E, Frank L, Tang D, Quirk M, Wilson M
(1998) A statistical paradigm for neural spike
train decoding applied to position prediction from
ensemble firing patterns of rat hippocampal place
cells. J Neurosci 18:7411–7425.

Brown E, Barbieri R, Ventura V, Kass R, Frank L (2002)
The time-rescaling theorem and its application to
neural spike train data analysis. Neural Comput
14:325–346.

Bryant H, Segundo J (1976) Spike initiation by
transmembrane current: a white-noise analysis.
J Physiol 260:279–314.

Bussgang J (1952) Crosscorrelation functions
of amplitude-distorted Gaussian signals. RLE
Technical Reports 216. Boston: MIT Research
Laboratory of Electronics.

Chichilnisky EJ (2001) A simple white noise analysis
of neuronal light responses. Network 12:199–213.

Chornoboy E, Schramm L, Karr A (1988) Maximum
likelihood identification of neural point process
systems. Biol Cybern 59:265–275.

de Ruyter van Steveninck R, Bialek W (1988)
Real-time performance of a movement-sensitive
neuron in the blowfly visual system: coding and
information transmission in short spike sequences.
Proc R Soc Lond B 234:379–414.

Doya K, Ishii S, Pouget A, Rao R (eds). Bayesian
brain: probabilistic approaches to neural coding.
Cambridge, MA: MIT Press.

Gerstner W, Kistler W (2002) Spiking neuron
models: single neurons, populations, plasticity.
Cambridge, UK: University Press.

Jolivet R, Lewis TJ, Gerstner W (2003) The spike
response model: a framework to predict neuronal
spike trains. In: Springer lecture notes in computer
science, Vol 2714 (Kaynak O, ed), pp 846–853.
Berlin: Springer.

Keat J, Reinagel P, Reid R, Meister M (2001)
Predicting every spike: a model for the responses of
visual neurons. Neuron 30:803–817.

Okatan M, Wilson M, Brown E (2005) Analyzing
functional connectivity using a network likelihood
model of ensemble neural spiking activity. Neural
Comput 17:1927–1961.

Paninski L (2003) Convergence properties of some
spike-triggered analysis techniques. Network
14:437–464.

Paninski L (2004) Maximum likelihood estimation
of cascade point-process neural encoding models.
Network 15:243–262.

Paninski L, Pillow J, Simoncelli E (2004) Maximum
likelihood estimation of a stochastic integrate-and-
fire neural model. Neural Comput 16:2533–2561.

Pillow JW, Simoncelli EP (2006) Dimensionality
reduction in neural models: an information-
theoretic generalization of spike-triggered average
and covariance analysis. J Vis 6:414–428.

Pillow JW, Shlens J, Paninski L, Chichilnisky EJ,
Simoncelli EP (2005a) Modeling the correlated
spike responses of a cluster of primate retinal
ganglion cells. Soc Neurosci Abstr 31:591.3.

Pillow JW, Paninski L, Uzzell VJ, Simoncelli
EP, Chichilnisky EJ (2005b) Prediction and
decoding of retinal ganglion cell responses with a
probabilistic spiking model. J Neurosci 25:11003–
11013.

Reich DS, Victor JD, Knight BW (1998) The power
ratio and the interval map: spiking models and
extracellular recordings. J Neurosci 18:10090–
10104.

74

NOTES

© 2016 Pillow

Schwartz O, Chichilnisky EJ, Simoncelli EP (2002)
Characterizing neural gain control using spike-
triggered covariance. In: Advances in neural
information processing systems (Dietterich TG,
Becker S, Ghahramani Z, eds), Vol 14, pp 269–
276. Cambridge, MA: MIT Press.

Schwartz O, Pillow JW, Rust NC, Simoncelli EP
(2006) Spike-triggered neural characterization.
J Vis 6:484–507.

Sharpee T, Rust N, Bialek W (2004) Analyzing
neural responses to natural signals: maximally
informative dimensions. Neural Comput 16:223–
250.

Simoncelli E, Paninski L, Pillow J, Schwartz O
(2004) Characterization of neural responses with
stochastic stimuli. In: The cognitive neurosciences
III (Gazzaniga M, ed), pp 327–338. Cambridge,
MA: MIT Press.

Touryan J, Lau B, Dan Y (2002) Isolation of relevant
visual features from random stimuli for cortical
complex cells. J Neurosci 22:10811–10818.

Truccolo W, Eden UT, Fellows MR, Donoghue JP,
Brown EN (2004) A point process framework for
relating neural spiking activity to spiking history,
neural ensemble and extrinsic covariate effects.
J Neurophysiol 93:1074–1089.

Warland D, Reinagel P, Meister M (1997) Decoding
visual information from a population retinal
ganglion cells. J Neurophysiol 78:2336–2350.

© 2016 Pillow

1Princeton Neuroscience Institute
Princeton, New Jersey

2Department of Neurosurgery and Department of Ophthalmology
Stanford University

Stanford, California

3Department of Statistics and Center for Theoretical Neuroscience
Kavli Institute for Brain Science

Columbia University
New York, New York

4Santa Cruz Institute for Particle Physics
University of California, Santa Cruz

Santa Cruz, California

5Howard Hughes Medical Institute
Center for Neural Science

Courant Institute of Mathematical Sciences
New York University

New York, New York

Spatiotemporal Correlations
and Visual Signaling in a

Complete Neuronal Population
Jonathan W. Pillow, PhD,1 Jonathon Shlens, PhD,2

Liam Paninski, PhD,3 Alexander Sher, PhD,4 Alan M. Litke, PhD,4
E. J. Chichilnisky, PhD,2 and Eero P. Simoncelli, PhD5

77

NOTES

© 2016 Pillow

Spatiotemporal Correlations and Visual Signaling in a Complete Neuronal Population

Introduction
Statistical dependencies in the responses of sensory
neurons govern both the amount of stimulus
information conveyed and the means by which
downstream neurons can extract it. Although a
variety of measurements indicate the existence of
such dependencies (Mastronarde, 1989; Meister et al.,
1995; Shadlen and Newsome, 1998), their origin and
importance for neural coding are poorly understood.
Here we analyze the functional significance of
correlated firing in a complete population of macaque
parasol retinal ganglion cells (RGCs) using a model
of multineuron spike responses (Paninski, 2004;
Truccolo et al., 2004). The model, with parameters
fit directly to physiological data, simultaneously
captures both the stimulus dependence and detailed
spatiotemporal correlations in population responses,
and provides two insights into the structure of
the neural code. First, neural encoding at the
population level is less noisy than one would expect
from the variability of individual neurons: spike
times are more precise, and can be predicted more
accurately when the spiking of neighboring neurons
is taken into account. Second, correlations provide
additional sensory information: optimal, model-
based decoding that exploits the response correlation
structure extracts 20% more information about the
visual scene than decoding under the assumption
of independence, and preserves 40% more visual
information than optimal linear decoding (Warland
et al., 1997). This model-based approach reveals the
role of correlated activity in the retinal coding of
visual stimuli and provides a general framework for
understanding the importance of correlated activity
in populations of neurons.

Neuronal Spiking Activity and the
Sensory Environment
How does the spiking activity of a neural population
represent the sensory environment? The answer
depends critically on the structure of neuronal
correlations, or the tendency of groups of neurons to fire
temporally coordinated spike patterns. The statistics
of such patterns have been studied in a variety of brain
areas, and their significance in the processing and
representation of sensory information has been debated
extensively (Meister et al., 1995; Dan et al., 1998;
Shadlen and Newsome, 1998; Nirenberg et al.,
2001; Panzeri et al., 2001; Nirenberg and Latham, 2003;
Schneidman et al., 2003; Averbeck and Lee,
2004; Latham and Nirenberg, 2005).

Previous studies have examined visual coding by
pairs of neurons (Nirenberg and Latham, 2003)
and the statistics of simultaneous firing patterns in

larger neural populations (Schneidman et al., 2006;
Shlens et al., 2006). However, no previous approach
has addressed how correlated spiking activity in
complete neural populations depends on the pattern
of visual stimulation, or has answered the question of
how such dependencies affect the encoding of visual
stimuli.

Here we introduce a model-based methodology for
studying this problem. We describe the encoding
of stimuli in the spike trains of a neural population
using a generalized linear model (GLM) (Fig. 1a), a
generalization of the well-known linear–nonlinear–
Poisson (LNP) cascade model (Plesser and Gerstner,
2000; Paninski, 2004; Simoncelli et al., 2004;
Truccolo et al., 2004). In this model, each cell’s input
is described by a set of linear filters: a stimulus filter,
or spatiotemporal receptive field; a postspike filter,
which captures dependencies on spike-train history
(e.g., refractoriness, burstiness, and adaptation); and
a set of coupling filters, which captures dependencies
on the recent spiking of other cells. For each neuron,
the summed filter responses are exponentiated
to obtain an instantaneous spike rate. This is
equivalent to exponentiating the filter outputs and
then multiplying; the exponentiated postspike and
coupling filters (as plotted in Fig. 1) may therefore be
interpreted as spike-induced gain adjustments of the
neuron’s firing rate.

Although this model is strictly phenomenological, its
components can be loosely compared to biophysical
mechanisms: the stimulus filter approximates the
spatiotemporal integration of light in the outer
retina and passive dendritic filtering; the postspike
filter mimics voltage-activated currents following a
spike; coupling filters resemble synaptic or electrical
interactions between cells (and can mimic the
effects of shared input noise); and the exponential
nonlinearity implements a “soft threshold,”
converting membrane potential to instantaneous
spike probability. Note that the postspike and
coupling filters, which allow stochastic spiking in
one cell to affect subsequent population activity, give
rise to shared, non-Poisson variability in the model
response.

A Model-Based Analysis of
RGC Encoding
We fit the model to data recorded in vitro from a
population of 27 ON and OFF parasol RGCs in a
small patch of isolated macaque monkey retina,
stimulated with 120 Hz spatiotemporal binary white
noise. The receptive fields of each of the two cell
types formed a complete mosaic covering a small

78

NOTES

© 2016 Pillow

region of visual space (Fig. 1b), indicating that every
parasol cell in this region was recorded (Frechette
et al., 2005; Shlens et al., 2006). Such complete
recordings, which have not been achieved elsewhere
in the mammalian nervous system, are essential for
understanding visual coding in neural populations.

The model contains many parameters that specify
the shapes of all filters, but fitting by maximizing
likelihood remains highly tractable (Paninski,
2004). A penalty on coupling filters was used to
obtain a minimally sufficient set of coupling filters,
which yields an estimate of the network’s functional
connectivity (Okatan et al., 2005; Rigat et al., 2006).

Figure 1 shows the estimated filters describing input
to example ON and OFF cells. The stimulus filters
exhibit center-surround receptive field organization
consistent with previous characterizations of parasol
cells. Postspike filters show the time course of recovery
from refractoriness after a spike, and coupling filters
show the effects of spikes from nearby cells: for
the ON cell (top), spikes in neighboring ON cells
elicit a large, transient excitation (increasing the
instantaneous spike rate by a factor of three), whereas

spikes in nearby OFF cells elicit suppression. These
effects are reversed in the OFF cell, which is excited
or suppressed by spikes in neighboring OFF/ON
cells. Both populations exhibit approximate nearest-
neighbor connectivity, with coupling strength falling
as a function of distance between receptive field
centers (Shlens et al., 2006). We found that fitted
stimulus filters have smaller surrounds than the spike-
triggered average, indicating that a portion of the
classical surround can be explained by interactions
between cells (DeVries, 1999).

To assess accuracy in capturing the statistical
dependencies in population responses, we compared
the pairwise cross-correlation function (CCF) of
RGCs and simulated model spike trains (Fig. 2).
For nearby ON–ON and OFF–OFF pairs, the CCF
exhibits a sharp peak at zero, indicating the prevalence
of synchronous spikes; however, for ON–OFF pairs,
a trough at zero indicates an absence of synchrony.
For all 351 possible pairings, the model accurately
reproduces the CCF (Figs. 2a–c, e, f).

To examine whether interneuronal coupling was
necessary to capture the response correlation

μ

Figure 1. Multineuron encoding model and fitted parameters. a, Model schematic for two coupled neurons: each neuron has a
stimulus filter, a postspike filter, and coupling filters that capture dependencies on spiking in other neurons. Summed filter output
passes through an exponential nonlinearity to produce the instantaneous spike rate. b, Mosaics of 11 ON and 16 OFF RGC recep-
tive fields, tiling a small region of visual space. Ellipses represent 1 SD of a Gaussian fit to each receptive field center; the square
grid indicates stimulus pixels. Scale bar, 120 μm. c–e, Parameters for an example ON cell. c, Temporal and spatial components of
center (red) and surround (blue) filter components, the difference of which is the full stimulus filter. d, Exponentiated postspike
filter, which may be interpreted as multiplying the spike rate after a spike at time zero. It produces a brief refractory period and
gradual recovery (with a slight overshoot). e, Connectivity and coupling filters from other cells in the population. The black-filled
ellipse is this cell’s RF center, and blue and red lines show connections from neighboring OFF and ON cells, respectively (line thick-
ness indicates coupling strength). Below, exponentiated coupling filters show the multiplicative effect on this cell’s spike rate after
a spike in a neighboring cell. f–h, Analogous plots for an example OFF cell.

79

NOTES

© 2016 Pillow

structure, we refitted the model without coupling
filters (that is, so that each cell’s response depends
only on the stimulus and its own spike-train history).
This “uncoupled model” assumes that cells encode
the stimulus independently, although correlations
may still arise from the overlap of stimulus filters.
However, the uncoupled model fails to reproduce the
sharp CCF peaks observed in the data. These peaks
are also absent from CCFs computed on trial-shuffled
data, indicating that fast-timescale correlations
are not stimulus-induced and therefore cannot be
captured by any independent encoding model.

Higher-order statistical dependencies were
considered by inspecting correlations in three-
neuron groups: triplet CCFs show the spike rate of
one cell as a function of the relative time to spikes in
two other cells (Figs. 2e–g) (Shlens et al., 2006). For
adjacent neurons of the same type, triplet CCFs have
substantial peaks at zero (“triplet synchrony”), which
are well matched by the full model.

Although the full and uncoupled models differ
substantially in their statistical dependencies,
the two models predict average light responses in

Spatiotemporal Correlations and Visual Signaling in a Complete Neuronal Population

Figure 2. Analysis of response correlations. a–c, Example CCFs of retinal responses, and simulated responses of the full and
uncoupled models, for two ON cells (a), two OFF cells (b) and an ON–OFF pair (c). The baseline is subtracted so that units are
in spikes per s above (or below) the cell’s mean rate. d, Receptive field mosaic overlaid with arbitrary labels. Dark gray indicates
cells shown in Fig. 1; light gray indicates cells used for triple correlations (h, i). e, CCFs between all ON pairs, where the i,jth plot
shows the CCF between cell i and cell j. The gray box indicates the CCF plotted in a, f, g, CCFs between all OFF–OFF pairs (f), and
all ON–OFF pairs (g; abscissa height = 30 Hz). h, Third-order (triplet) CCF between three adjacent ON cells, showing the instanta-
neous spike rate of cell 5 as a function of the relative spike time in cells 4 and 8 (left, RGCs; middle, full model; right, uncoupled
model). i, Analogous triplet CCF for OFF cells 15, 16, and 22. j, Comparison of the triplet CCF peak in RGC and model responses
(full model, black; uncoupled, gray) for randomly selected triplets of adjacent ON (open) and OFF (filled) cells.

80

NOTES

© 2016 Pillow

individual cells with nearly identical accuracy,
capturing 80–95% of the variance in the peristimulus
time histogram (PSTH) in 26 out of 27 cells (Figs.
3a–c). Both models therefore accurately describe
average single-cell responses to new stimuli.
However, the full model achieves higher accuracy,
predicting multineuronal spike responses on a single
trial (8% ± 3% more bits per spike; Fig. 3d). This
discrepancy can be explained by the fact that noise
is shared across neurons. Shared variability means
that population activity carries information about
a single cell’s response (owing to coupling between
cells) beyond that provided by the stimulus alone.
Individual neurons therefore appear less noisy when

conditioned on spiking activity in the rest of the
population than they appear in raster plots.

We measured the effect of correlations on single-
trial, single-cell spike-train prediction by using the
model to draw samples of a single cell’s response,
given both the stimulus and the spiking activity in
the rest of the population on a single trial (Figs. 3e, f).
Averaging the resulting raster plot gives a prediction
of the cell’s single-trial spike rate, or “population-
conditioned” PSTH for a single trial. We compared
these predictions with the cell’s true spike times
(binned at 2 ms) across all trials and found that
on nearly every trial, the model-based prediction is

R
G
C

PSTHs

RGC

RGC PSTH

PSTH

PSTH

Figure 3. Spike-train prediction comparison. a, Raster of responses of an ON RGC to 25 repeats of a novel 1 s stimulus (top), and
responses of uncoupled (middle) and full (bottom) models to the same stimulus. b, PSTH of the RGC (black), uncoupled (blue) and
coupled (red) model; both models account for ~84% of the variance of the true PSTH. c, PSTH prediction by full and uncoupled
models, showing that coupling confers no advantage in predicting average responses. d, Log-likelihood of novel RGC spike re-
sponses under full and uncoupled models; the full model provides 8% more information about novel spike trains. e, Magnified
150 ms portion of RGC raster and PSTH (gray box in a). Red dots highlight RGC spike times on selected individual trials (replotted
in f). f, Single-trial spike-train prediction using the coupled model. The top half of each plot shows the population activity on a
single trial: true spike times of the cell (red dots), coupled ON cells (light gray dots), and coupled OFF cells (dark gray dots; each
line in the raster shows the spike times of a different cell). The bottom half of each plot shows a raster of 50 predicted responses
of the cell in question, using both the stimulus and coupled responses (shown above) to predict spike trains. The red trace shows
the single-trial rate prediction (population-conditioned PSTH), compared with true PSTH of the cell (black trace, identical in all
plots). g, Correlation coefficient of true spike trains with the PSTH (x-axis) and with population-conditioned predictions (y-axis);
the full model predicts single-trial responses with higher accuracy than the true PSTH.

81

NOTES

© 2016 Pillow

more highly correlated with the observed spikes than
the neuron’s full PSTH (Fig. 3g). Note that the full
PSTH achieves the highest correlation possible for
any trial-independent prediction. Thus, by exploiting
the correlation structure, the coupled model predicts
single-neuron spike times more accurately than any
independent encoding model.

Bayesian Decoding of
the Retinal Ganglion Cell
Population Response
Although the full model accurately captures
dependencies in the activity of RGCs, it is not obvious
a priori whether these dependencies affect the amount
of sensory information conveyed by RGC responses.
In principle, the correlation structure could be
necessary to predict the responses, but not to extract
the stimulus information that the responses carry
(Latham and Nirenberg, 2005). To examine this issue
directly, we used the full and uncoupled models to
perform Bayesian decoding of the population response
(Fig. 4a), which optimally reconstructs stimuli, given
an accurate description of the encoding process. For
comparison, we also performed Bayesian decoding
under a Poisson (i.e., LNP) model and optimal linear
decoding (Warland et al., 1997).

Each decoding method was used to estimate short
(150 ms) segments of the stimulus given all relevant
spike times from the full population (Fig. 4b).

Bayesian decoding under the coupled model
recovers 20% more information than Bayesian
decoding under the uncoupled model, indicating
that knowledge of the correlation structure is critical
for extracting all sensory information contained in
the population response. This improvement was
invariant to enhancements of the model’s stimulus
filters and nonlinearities, indicating that the
difference in performance arises specifically from the
coupled model’s ability to incorporate the correlation
structure. Our results also show that spike history is
relevant for decoding (a Poisson model preserves 6%
less information than the uncoupled model) (Pillow
et al., 2005) and that restricting to a linear decoder
further reduces the information that can be recovered
from RGC responses.

Decoding analysis can also be used to examine the
coding fidelity of specific stimulus features. As a simple
illustration, we examined the temporal frequency
spectrum of reconstructed stimuli and found that the
response correlation structure is most important for
decoding those stimulus frequencies (6–20 Hz) that
are encoded with highest fidelity (Fig. 4c).

Results and the Limitations of the
Generalized Linear Model
These results demonstrate that the responses of a
population of RGCs are well described by a GLM,
and that correlations in the response can be exploited

Spatiotemporal Correlations and Visual Signaling in a Complete Neuronal Population

{

p(s |r)

p(r |s)
p(s)

Figure 4. Decoding performance comparison. a, a Bayesian decoding schematic: to estimate an unknown stimulus segment from
a set of observed spike times (highlighted in boxes), the stimulus prior distribution p(s) is multiplied by the model-defined likeli-
hood p(r | s) to obtain the posterior p(s | r). The posterior mean is the Bayes’ least-squares stimulus estimate. b, Log of the SNR for
linear decoding, as well as for Bayesian decoding under the Poisson, uncoupled, and full models (Warland et al., 1997). The full
model preserves 20% more information than the uncoupled model, which indicates that there is additional sensory information
available from the population response when correlations are taken into account. Error bars show 95% confidence intervals based
on 2000 bootstrap resamplings of 3000 decoded stimulus segments. c, Log SNR decomposed as a function of temporal frequency
for various decoding methods (Poisson omitted for clarity).

82

NOTES

© 2016 Pillow

to recover 20% more visual information than if
responses were regarded as independent, given the
stimulus. In contrast, previous studies have reported
this information gain to be <10% for pairs of neurons
(Nirenberg et al., 2001; Averbeck and Lee, 2004).
However, pairwise analyses provide little evidence
about the importance of correlations across an entire
population. Second-order correlations between pairs
of neurons could give rise to either much larger
(scaling with the number of neurons n) or much
smaller (falling as 1/n) gains for a full population.
To compare more directly with previous findings, we
performed Bayesian decoding using isolated pairs of
neurons from the same population; we found a ≤10%
gain in sensory information when correlations were
included. This is consistent with previous findings
and shows that the information gain for a complete
population is larger than that observed for pairs. We
also compared the model with a pairwise maximum-
entropy model, which has recently been shown to
capture the instantaneous spiking statistics of groups
of RGCs (Schneidman et al., 2006; Shlens et al.,
2006). The coupled model exhibits similar accuracy
in capturing these statistics, but has the advantage
that it accounts for the temporal correlation structure
and stimulus dependence of responses, which are
essential for assessing the effect of correlations on
sensory coding.

Although it provides an accurate functional
description of correlated spike responses, the
GLM does not reveal the biophysical mechanisms
underlying the statistical dependencies between
neurons: coupling does not necessarily imply
anatomical connections between cells but could (for
example) reflect dependencies due to shared input
noise (Mastronarde, 1989). The model also lacks
several mechanisms known to exist in RGCs (e.g.,
contrast gain-control) (Shapley and Victor, 1978),
which may be required for characterizing responses
to a wider variety of stimuli. One additional caveat is
that Bayesian decoding provides a tool for measuring
the sensory information available in the population
response, but it does not reveal whether the brain
makes use of this information. Physiological
interpretations of the model and mechanisms for
neural readout of sensory information in higher
brain areas are thus important directions for future
research.

Nevertheless, the GLM offers a concise,
computationally tractable description of the
population encoding process and provides the
first generative description of the space–time
dependencies in stimulus-induced population
activity. It allows us to quantify the relative

contributions of stimulus, spike history, and network
interactions to the encoding and decoding of visual
stimuli and clarifies the relationship between single-
cell and population variability. More generally, the
model can be used to assess which features of the
visual environment are encoded with highest and
lowest fidelity and to determine how the structure
of the neural code constrains perceptual capabilities.
We expect this framework to extend to other brain
areas and to have an important role in revealing the
information processing capabilities of spiking neural
populations (Harris et al., 2003; Paninski et al., 2004;
Truccolo et al., 2004; Okatan et al., 2005).

Methods Summary
Data
Multielectrode extracellular recordings were
obtained in vitro from a segment of isolated,
peripheral macaque monkey (Macaca mulatta) retina,
and analysis was restricted to two cell types (ON and
OFF parasol) (Watanabe and Rodieck, 1989; Litke
et al., 2004; Shlens et al., 2006). A standard spike-
sorting procedure, followed by a specialized statistical
method for detecting simultaneous spikes, was used
to sort spikes (Segev et al., 2004). The retina was
stimulated with a photopic, achromatic, optically
reduced spatiotemporal binary white-noise stimulus
refreshing at 120 Hz, with a root-mean-square
contrast of 96%.

Fitting
Model parameters were fitted to 7 min of spike
responses to a nonrepeating stimulus. Each cell’s
parameters consisted of a stimulus filter (parametrized
as a rank 2 matrix), a spike-history filter, a set of
incoming coupling filters, and a constant. Temporal
filters were represented in a basis of cosine “bumps”
(Pillow et al., 2005). Parameters for the uncoupled
and Poisson (LNP) models were fitted independently.
Parameters were fitted by penalized maximum
likelihood (Paninski, 2004; Truccolo et al., 2004)
using an L1 penalty on the vector length of coupling
filters to eliminate unnecessary connections.

Encoding
Spike prediction was cross-validated using the log-
likelihood of 5 min of novel spiking data (scaled to
units of bits/s). Repeat rasters were obtained using 200
presentations of a novel 10 s stimulus. Population-
conditional rasters were obtained from the coupled
model by sampling the model-defined probability
distribution over the neuron’s response, given the
stimulus and surrounding-population activity on a
single trial (Pillow et al., 2008).

83

NOTES

© 2016 Pillow

Decoding
Population responses were decoded using the
Bayes’ least-squares estimator (posterior mean)
to reconstruct 18-sample single-pixel stimulus
segments (cross-validation data). Linear decoding
was performed using the optimal linear estimator
(Warland et al., 1997). Decoding performance was
quantified using the log signal-to-noise ratio (SNR)
of each technique, which gives an estimate of mutual
information. Breakdown by temporal frequency was
obtained by computing the Fourier power spectra of
the stimuli and residuals and then computing log
SNR.

Acknowledgments
We thank M. Bethge, C. Brody, D. Butts, P. Latham,
M. Lengyel, S. Nirenberg, and R. Sussman for
comments and discussions; G. Field, M. Greschner,
J. Gauthier, and C. Hulse for experimental assistance;
M.I. Grivich, D. Petrusca, W. Dabrowski, A. Grillo,
P. Grybos, P. Hottowy, and S. Kachiguine for technical
development; H. Fox, M. Taffe, E. Callaway, and
K. Osborn for providing access to retinas; and S. Barry
for machining. Funding was provided by a Royal
Society USA/Canada Research Fellowship to J.W.P.;
a National Science Foundation (NSF) Integrative
Graduate Education and Research Training Grant
DGE-03345 to J.S.; a National Eye Institute Grant
EY018003 to E.J.C., L.P., and E.P.S.; a Gatsby
Foundation Pilot Grant to L.P.; a Burroughs Wellcome
Fund Career Award at the Scientific Interface to A.S.;
an NSF Grant PHY-0417175 to A.M.L.; McKnight
Foundation support to A.M.L. and E.J.C.; and a
Howard Hughes Medical Institute grant to J.W.P., L.P.,
and E.P.S.

This chapter was excerpted with permission from
Pillow JW et al. (2008) Spatio-temporal correlations
and visual signalling in a complete neuronal
population, Nature 454:995–999. Copyright 2008,
Nature Publishing Group. A complete description of
Methods and associated references are available in
the online version of the paper at www.nature.com/
nature.

References
Averbeck BB, Lee D (2004) Coding and transmission

of information by neural ensembles. Trends
Neurosci 27:225–230.

Dan Y, Alonso JM, Usrey WM, Reid RC (1998)
Coding of visual information by precisely
correlated spikes in the lateral geniculate nucleus.
Nat Neurosci 1:501–507.

DeVries SH (1999) Correlated firing in rabbit retinal
ganglion cells. J Neurophysiol 81:908–920.

Frechette ES, Sher A, Grivich MI, Petrusca D,
Litke AM, Chichilnisky EJ (2005) Fidelity of the
ensemble code for visual motion in primate retina.
J Neurophysiol 94:119–135.

Harris K, Csicsvari J, Hirase H, Dragoi G, Buzsaki G
(2003) Organization of cell assemblies in the
hippocampus. Nature 424:552–556.

Latham P, Nirenberg S (2005) Synergy, redundancy,
and independence in population codes, revisited.
J Neurosci 25:5195–5206.

Litke AM, N Bezayiff, Chichilnisky EJ, Cunningham W,
Dabrowski W, Grillo AA, Grivich M, Grybos P,
Hottowy P, Kachiguine S, Kalmar RS, Mathieson K,
Petrusca D, Rahman M, Sher A (2004) What does
the eye tell the brain? Development of a system for
the large scale recording of retinal output activity.
IEEE Trans Nucl Sci 51:1434–1440.

Mastronarde DN (1989) Correlated firing of retinal
ganglion cells. Trends Neurosci 12:75–80.

Meister M, Lagnado L, Baylor DA (1995) Concerted
signaling by retinal ganglion cells. Science
270:1207–1210.

Nirenberg S, Carcieri S, Jacobs A, Latham P (2001)
Retinal ganglion cells act largely as independent
encoders. Nature 411:698–701.

Nirenberg S, Latham PE (2003) Decoding neuronal
spike trains: How important are correlations?
Proc Natl Acad Sci USA 100:7348–7353.

Okatan M, Wilson M, Brown E (2005) Analyzing
functional connectivity using a network likelihood
model of ensemble neural spiking activity. Neural
Comput 17:1927–1961.

Paninski L (2004) Maximum likelihood estimation
of cascade point-process neural encoding models.
Network Comp Neural Syst 15:243–262.

Paninski L, Fellows M, Shoham S, Hatsopoulos N,
Donoghue J (2004) Superlinear population encoding
of dynamic hand trajectory in primary motor cortex.
J Neurosci 24:8551–8561.

Panzeri S, Golledge H, Zheng F, Tovee MP, Young MJ
(2001) Objective assessment of the functional role of
spike train correlations using information measures.
Vis Cogn 8:531–547.

Pillow JW, Latham P (2008) Neural characterization
in partially observed populations of spiking neurons.
In: Advances in neural information processing
systems, Vol 20 (Platt JC, Koller D, Singer Y,
Roweis S, eds), pp 1161–1168. Cambridge, MA:
MIT Press.

Spatiotemporal Correlations and Visual Signaling in a Complete Neuronal Population

84

NOTES

© 2016 Pillow

Pillow JW, Paninski L, Uzzell VJ, Simoncelli EP,
Chichilnisky EJ (2005) Prediction and decoding of
retinal ganglion cell responses with a probabilistic
spiking model. J Neurosci 25:11003–11013.

Plesser H, Gerstner W (2000) Noise in integrate-
and-fire neurons: from stochastic input to escape
rates. Neural Comput 12:367–384.

Rigat F, de Gunst M, van Pelt J (2006) Bayesian
modelling and analysis of spatio-temporal neuronal
networks. Bayes Anal 1:733–764.

Schneidman E, Bialek W, Berry MJ (2003) Synergy,
redundancy, and independence in population
codes. J Neurosci 21:11539–11553.

Schneidman E, Berry M, Segev R, Bialek W
(2006) Weak pairwise correlations imply strongly
correlated network states in a neural population.
Nature 440:1007–1012.

Segev R, Goodhouse J, Puchalla J, Berry MJ (2004)
Recording spikes from a large fraction of the
ganglion cells in a retinal patch. Nat Neurosci
7:1155–1162.

Shadlen M, Newsome W (1998) The variable
discharge of cortical neurons: implications for
connectivity, computation, and information
coding. J Neurosci 18:3870–3896.

Shapley RM, Victor JD (1978) The effect of contrast
on the transfer properties of cat retinal ganglion
cells. J Physiol 285:275–298.

Shlens J, Field GD, Gauthier JL, Grivich MI,
Petrusca D, Sher A, Litke AM, Chichilnisky EJ.
(2006) The structure of multi-neuron firing patterns
in primate retina. J Neurosci 26:8254–8266.

Simoncelli EP, Paninski L, Pillow J, Schwartz O
(2004) Characterizations of neural responses with
stochastic stimuli. In: The cognitive neurosciences
III (Gazzaniga M, ed), pp 327–338. Cambridge,
MA: MIT Press.

Truccolo W, Eden UT, Fellows MR, Donoghue JP,
Brown EN (2004) A point process framework for
relating neural spiking activity to spiking history,
neural ensemble and extrinsic covariate effects.
J Neurophysiol 93:1074–1089.

Warland D, Reinagel P, Meister M (1997) Decoding
visual information from a population of retinal
ganglion cells. J Neurophysiol 78:2336–2350.

Watanabe M, Rodieck RW (1989) Parasol and
midget ganglion cells of the primate retina.
J Comp Neurol 289:434–454.

