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Introduction: Scientific Opportunities and Challenges in Single-Cell Analysis

Background
Individual cells are the basic units with which 
larger biological systems—circuits, tissues, and 
entire organisms—are built. Cells in the same 
tissue or circuit have various biological missions; a 
cell’s missions are reflected in its size, morphology, 
physiology, and use of its genome. Adjacent cells 
often use the same genome in dramatically different 
ways.

Historically, insights about cell types and their 
specialization were obtained one at a time, as a 
result of varying combinations of serendipity and 
painstaking work. The discovery of a cell population 
with unusual physiological properties might be 
followed later by the identification of a molecular 
marker for those cells, and then eventually by insights 
into these cells’ interactions with and connectivity 
to other cells. Several technological innovations 
promise to transform the pace of discovery about 
cell types and their properties—first, by allowing the 
collection of genome-scale information (e.g., about 
gene expression or DNA sequence) from individual 
cells (Tang et al., 2009), and more recently, by 
allowing genome-scale analyses to be conducted on 
vast numbers of individual cells at once (Klein et 
al., 2015; Macosko et al., 2015). The pace of data 
generation has increased dramatically; the pace of 
biological insights will, one hopes, begin to increase 
as well.

Moving From Proofs of Concept to 
Useful Data Resources to Insights
Emerging fields in genomics often follow a similar 
trajectory. Early “proof of concept” studies serve to 
illustrate that new kinds of analysis can be executed. 
Although the data and analysis methods are often 
quickly replaced by better approaches, such early 
results help many readers to expand their sense of 
the possible.

As experimental approaches begin to stabilize and 
mature (such that the shelf life of a dataset is longer 
and its quality more assured), it becomes possible 
to build data resources that have cumulative value. 
In human genetics, for example, datasets on human 
genome variation (alleles and allele frequencies at 
each site in the genome) are used in thousands of 
genetic inquiries every day, supporting both genome-
scale studies and analyses of individual genes 
(International HapMap Consortium, 2015; Lek 
et al., 2016). For single-cell transcriptomics, such 
resources may increasingly take the form of digital 
atlases in which the expression profiles of individual 

cell types can be looked up (Tasic, et al., 2016). Such 
resources may come to have great value because they 
allow routine lookups of genes’ expression patterns 
across cell types. Their immediate results may be 
more facile, quantitative, and reliable than images 
collected by laborious slogs involving antibodies of 
varying qualities, tissues and fixatives with varying 
properties, and hours of microscopy.

The most rewarding phase can occur as new tools and 
data resources begin to support scientific insights into 
molecular and cellular mechanisms, and as broader 
experimental programs and plans reshape themselves 
to utilize the opportunities inherent in new kinds of 
data and new ways of monitoring biological systems.

Approaching Integrated Analysis
For single-cell analysis, a growing scientific 
opportunity will come from beginning to 
draw connections among the different ways of 
characterizing individual cells—to appreciate how 
morphology, physiology, connectivity, and gene 
expression are codistributed and interconnected 
mechanistically. Ideally, the cell atlases of the 
future will report not only what genes each type 
of cell expresses but also what shape(s) it assumes, 
what neurons it connects with, what transmitters it 
responds to, and what voltage and ionic dynamics 
it has. Armed with this kind of characterization, 
we will be able to begin to understand how gene 
expression, morphology, physiology, and connectivity 
influence and arise from one another. In an early 
step in this direction, a recent study related the 
electrophysiological properties of individual cells to 
their molecular profiles (Cadwell et al., 2016).

A practical challenge of integrated analysis 
involves the fact that many kinds of analyses of 
individual cells (e.g., transcriptomics, fixation for 
immunohistochemistry) destroy these cells’ other 
properties, leaving little room for subsequent analyses 
of the same cells. In this Short Course, we will 
discuss the opportunities that arise from integrating 
multimodal data types at single-cell resolution and 
the practical challenges of accomplishing this.

Developing Clearer, More Useful 
Standards and Metrics
New fields often struggle to clarify their thinking 
about how to quantify and compare findings and 
how to distinguish real signals from artifacts. 
Single-cell analysis of somatic DNA variation, for 
example, now indicates that rates of somatic retro-
transposition are far lower than was reported in 

© 2016 McCarroll



10

NOTES some earlier studies (Evrony et al., 2016). Perhaps 
nowhere has such confusion been more abundant 
than in single-cell transcriptomics. Today, the 
thoroughness of single-cell experiments is still often 
evaluated in terms of “reads per cell”: the ratio of 
the number of sequencing reads generated to the 
number of cells analyzed. However, this metric may 
offer little information about what was learned, 
because any number of DNA or RNA molecules 
can be amplified into an arbitrarily large number 
of copies and then resequenced using an arbitrarily 
large number of sequencing reads without generating 
any new information. (Put another way, if a tree falls 
in the woods, it matters little whether that event is 
documented by one, 10, or 1000 observers, so long 
as the fall is recorded reliably and distinguished from 
that of other trees.)

A similar confusion involves the use of the metric 
“genes detected per cell.” The number of genes 
expressed in a cell depends strongly on cell type, 
and more important, this number is inflated when 
an analysis is not truly single-cell (e.g., when a cell 
doublet is assumed to be a single cell). This problem 
appears to have inflated estimates in early single-
cell studies. Significant advances, such as the use of 
unique molecular indicators (UMIs) (Kivioja et al., 
2011), which affix a particular molecular barcode 
to each cDNA and allow digital counting with 
correction for amplification effects, are increasingly 
enabling true estimates of transcript ascertainment. 
To return to our “tree falling” analogy, UMIs make 
it possible to recognize when many observers 
reporting a “tree falling” are in fact all talking about 
the same tree. Not surprisingly, the figures yielded 
by UMI-informed analyses—typically quantified as 
transcripts per cell (trees) rather than reads per cell 
(observers)—are also far more modest. Still, UMIs 
have offered a significant step forward in clarity, even 
if the resulting estimates have less “bling.” A goal of 
this Short Course will be try to clarify such terms and 
help scientists to design, evaluate, and think about 
experiments in quantitative ways.

Scaling Up Computational 
Approaches
Most single-cell experimental approaches in use 
today produce novel kinds of datasets for which 
computational methods are still in their infancy. For 
example, methods for collecting gene-expression 
information from tens of thousands of individual 
cells have created a new scientific opportunity to 

infer cell types and cell states (including rare ones) 
in “unsupervised” ways that are not constrained 
by earlier theories, categories, or lists of markers. 
This opportunity needs to be met increasingly by 
new analytical approaches. Many computational 
approaches that were developed for early, small 
single-cell RNA-seq datasets do not scale up 
successfully to, or do not realize the opportunities 
inherent in, the far-larger datasets that are being 
generated. Thus, an important direction will be to 
develop algorithms that can recognize patterns and 
structure in vast multidimensional datasets and then 
present these patterns in ways that lead to biological 
insights. This exciting emerging area will benefit 
from close multidisciplinary collaborations among 
scientists who have expertise in computer science, 
biology, statistics, and mathematics.

Seizing the Opportunity Ahead
The functions of tissues and organs derive from 
interactions and collaborations among specialized 
individual cells. Elucidating how tissue and circuit 
functions encompass the actions of specialized cells 
expressing distinct genes and molecular complexes, 
with varying proximity and connectivity, is one of 
the great scientific challenges of our time. Aspiring 
to such understanding is also increasingly within our 
grasp.
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NOTESIntroduction
Individual cells are the building blocks of tissues, 
organs, and organisms. Each tissue contains cells of 
many types, and cells of each type can switch among 
biological states. Especially in the mammalian brain, 
our knowledge of cellular diversity is incomplete. In 
particular, the extent of cell-type complexity in the 
brain remains unknown and is widely debated (Luo et 
al., 2008; Petilla Interneuron Nomenclature Group et 
al., 2008). Many important but rare cell populations 
likely remain undiscovered, potentially limiting our 
understanding of physiological function. In addition, 
the overall landscape of transcriptional variation, even 
among abundant cell types, is mostly undescribed.

A major determinant of each cell type’s function is its 
transcriptional program. Consequently, ascertainment 
of sufficient numbers of single-cell gene expression 
profiles may enable a comprehensive taxonomy of cell 
populations across the mammalian nervous system. 
Although two molecular techniques for isolating and 
amplifying small amounts of mRNA were developed 
some time ago—T7 amplification (Eberwine et al., 
1992) and SMART (switching mechanism at 5' end of 
RNA template) technology (Matz et al., 1999; Zhu et 
al., 2001)—it was the advent of high-throughput next-
generation sequencing technologies, coupled with these 
amplification techniques, that has made the analysis 
of meaningful numbers of single-cell gene expression 
profiles possible. Together with improved techniques for 
isolating individual cells, barcoding their transcriptional 
contents, and miniaturizing amplification volumes, 
single-cell gene expression profiling has moved rapidly 
from an era in which only a handful of profiles could be 
gleaned in a major study, to one in which the routine 
ascertainment of tens of thousands of profiles in a single 
experiment is now possible.

This chapter is divided into three sections, describing 
(1) the various technological innovations that made 
this recent transformation possible; (2) the important 
technical parameters for assessing the quality of data 
produced by these techniques; and (3) a discussion of 
biological applications of single-cell gene expression 
analysis and future technological directions.

Single-Cell mRNA-seq:  
From Handfuls to Thousands of 
Cell Profiles
Amplifying and interrogating small 
quantities of mRNA
Gene expression analysis at the level of individual 
cells began soon after the advent of techniques for 
amplifying minute quantities of mRNA. In 1992, 

Eberwine and colleagues used T7 amplification to 
prepare cDNA libraries from individually hand-
picked hippocampal cells (Eberwine et al., 1992). 
T7 amplification works by reverse transcription of 
an mRNA pool using an oligo dT primer fused to 
a T7 RNA polymerase promoter sequence. After 
second-strand synthesis, the double-stranded cDNA 
is used as the template for in vitro transcription 
amplification by T7 RNA polymerase. The resulting 
RNA amplicons are reverse transcribed in bulk to 
yield an amplified cDNA library. By repeating this 
process twice, Eberwine’s group was able to achieve 
an amplification factor of ~106. Sometime later, an 
alternative approach was developed that uses the 
template-switching capability of MMLV (Moloney 
murine leukemia virus) reverse transcriptase (known 
as SMART) to amplify small quantities of cDNA 
by PCR (Matz et al., 1999). This approach is the 
basis of the suite of RNA amplification products 
manufactured and sold by Clontech Laboratories 
(Mountain View, CA). Initially, the single-cell 
cDNA libraries produced by these amplification 
schemes were interrogated by hybridization 
(Northern blot and microarray analysis). Today, 
however, the improved throughput, precision, and 
accuracy of next-generation sequencing have made 
mRNA sequencing (mRNA-seq) the near-universal 
choice for measuring the concentration of individual 
RNA species.

The most common single-cell RNA-seq protocols 
currently in use continue to feature either T7 
or SMART amplification to generate cDNA 
libraries. The two amplification schemes have 
different advantages: T7 amplification, because 
it is linear, is generally believed to produce more 
even amplification of a diverse cDNA library, while 
SMART is somewhat less technically demanding.

Approaches to isolating individual cells
A major impediment to high-throughput examination 
of single-cell profiles is the technical difficulty 
associated with isolating individual cells. Hand-
picking cells (the traditional approach) allows for 
visual confirmation of cell capture and morphological 
screening for a desired cell population, but is 
inherently very time-consuming. Flow cytometry 
sorting of individual cells into microtiter plates (Jaitin 
et al., 2014; Tasic et al., 2016) provides a significant 
improvement in scale and can be combined with 
fluorescent staining to screen for subsets of cells of 
interest. Microfluidic techniques have also been 
developed to isolate cells. Traditional valve-based 
microfluidic devices capture cells within individual 
chambers and process the isolated mRNA in parallel 
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NOTES (White et al., 2011). Two commercially available 
products from Fluidigm (South San Francisco, CA) 
and WaferGen Bio-systems (Fremont, CA) enable 
several hundred cells to be captured and processed 
at once. In contrast, microfluidic droplet–generation 
devices can disperse tens of thousands of precisely 
sized (“monodisperse”) picoliter-scale or nanoliter-
scale droplets per minute (Umbanhowar, 2000; 
Thorsen et al., 2001). By critically diluting a cell 
suspension to a concentration far lower than one 
cell per droplet, individual cells can be isolated in 
extremely high throughput in these emulsions (tens 
of thousands per hour).

Massive molecular barcoding
Following technical improvements in the ease and 
throughput of cell isolation, particularly by droplet 
microfluidics, the major obstacle to routine, massively 
multiplexed single-cell mRNA-seq became the cost 
and time required to prepare individual libraries from 
so many cells in individual microtiter reactions. If the 
mRNA content of individual cells could be barcoded 
at the start of processing, then all subsequent molecular 
amplification and library preparation steps could 
be performed in a single bulk reaction, dramatically 
simplifying the process. Recently, two barcoding 
approaches were developed that address this problem 
(Klein et al., 2015; Macosko et al., 2015). In each, a 
collection of microparticles (beads) is generated, each 
of which harbors a large number of barcoded oligo dT 
primers on its surface; the barcode is the same across 
all the primers on the surface of any one bead but 
differs from the barcodes on all other beads. In the 
first method, Drop-seq, barcode diversity is generated 
through a modified form of chemical oligonucleotide 
synthesis, in which beads are repeatedly split and 
pooled to achieve millions of unique sequences  
(Fig. 1). The second method, inDrop, uses an 
enzymatic approach to combinatorially stitch together 
two sets of barcoded oligos, resulting in a pool of beads 
with hundreds of thousands of individual barcodes. 
Both methods are able to collectively barcode and 
process thousands of cells in a single experiment.

Technical assessments of single-cell 
RNA-seq data
To glean meaningful biological signals from any 
technology, it is vital to have technical measurements 
that assess the strengths and limitations of the data. 
Single-cell RNA-seq (scRNA-seq) technologies 
should be evaluated by several criteria: (1) the 
amount of RNA that is captured; (2) the specificity 
of the signal (how truly “single-cell” the profile is); 
and (3) how consistent the resulting profile is across 
individual technical replicates.

RNA capture efficiency
The most common method for estimating the 
proportion of sampled transcripts is to process a 
synthetic library of RNAs (known as the External 
RNA Controls Consortium [ERCC] “spike-in” 
controls) and compute the fraction of these RNAs 
that are reported by sequencing. In general, these 
analyses have produced estimates of between 2% and 
12% capture efficiency across different technological 
platforms (Grun et al., 2014; Klein et al., 2015; 
Macosko et al., 2015). One study explained the 
majority of the loss by inefficiency in the mRNA 
hybridization step (Macosko et al., 2015); it remains 
unknown whether this step is also the bottleneck for 
other methods.

A typical mammalian cell contains 5–10 pg of 
total RNA (Tang et al., 2011), of which 1%–10% 
is polyadenylated, mature mRNA. This corresponds 
to ~100,000–500,000 unique mRNA molecules, 
distributed across thousands of individual genes. This 
means that, at a capture efficiency of 10%, many 
minimally expressed genes will go undetected in a 
given cell. High-throughput single-cell technologies 
like Drop-seq and inDrop can address this problem 
by repeatedly sampling cells of the same type to 
accrue observations of these low-copy genes.

Doublet rates and purity
One mode of failure in any single-cell method 
involves cells that stick together or happen to 
otherwise be co-isolated for library preparation. 
To measure doublet rates, two groups recently 
sequenced mixtures of cells derived from two species 
and calculated organism purity rates of individual 
cell barcodes. For droplet-based approaches (i.e., 
inDrop and Drop-seq), the doublet rate could be 
adjusted to arbitrarily low levels by reducing the cell 
concentration. Although doublet rates can be higher 
in other systems (e.g., Fluidigm C1), many of these 
doublets can be identified up front by fluorescence 
microscopy of the capture chambers (Fluidigm, 
2016). Species-mixing experiments enable a careful 
quantification of single-cell purity across libraries. 
In Drop-seq, impurity was strongly related to the 
concentration at which cell suspensions were loaded: 
organism purity ranged from 98.8% at 12.5 cells/μl to 
90.4% at 100 cells/μl.

Technical reliability
Replication across experimental sessions enables the 
construction of cumulatively more powerful datasets 
for detecting subtle biological signals. Technical 
variation can arise from day-to-day differences in cell 
preparation, molecular processing and sequencing, 
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or peculiarities specific to particular systems. We 
clustered ~45,000 Drop-seq–derived single-cell 
profiles from dissociated mouse retinas over the 
course of seven experimental sessions. The resulting 
39 clusters contained cells from each session, 
suggesting that the technical variation in gene 
expression was relatively small even compared with 
the differences between highly similar cell subtypes. 
New high-throughput technologies should provide 
large enough datasets to permit more-rigorous 

computational analyses in which portions of the data 
are withheld (e.g., k-fold cross-validation).

Biological applications and 
technological improvements
Already, studies using scRNA-seq have transformed 
our understanding of cellular diversity in many 
mammalian CNS tissues, including the spinal cord 
(Usoskin et al., 2015), cortex (Zeisel et al., 2015; 

© 2016 Macosko
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Figure 1. Drop-seq: molecular barcoding of cellular transcriptomes using droplet microfluidics. A, Schematic of single-cell mRNA-
seq library preparation using Drop-seq. A custom-designed microfluidic device joins two aqueous flows before their compart-
mentalization into discrete droplets. One flow contains cells, and the other flow contains barcoded primer beads suspended in 
a lysis buffer. Immediately after droplet formation, the cell is lysed and releases its mRNAs, which then hybridize to the primers 
on the microparticle surface. The droplets are broken up by adding a reagent to destabilize the oil–water interface, and the mic-
roparticles are collected and washed. The mRNAs are then reverse transcribed in bulk, forming STAMPs (single-cell transcriptomes 
attached to microparticles), and template switching is used to introduce a PCR handle downstream of the synthesized cDNA (Zhu 
et al., 2001). B, Sequence of primers on the microparticle. The primers on all beads contain a common sequence (“PCR handle”) 
to enable PCR amplification after STAMP formation. Each microparticle contains >108 individual primers that share the same “cell 
barcode” (C) but have different unique molecular identifiers (UMIs), enabling mRNA transcripts to be digitally counted. A 30 bp 
oligo dT sequence is present at the end of all primer sequences for capture of mRNAs. C, Split-and-pool synthesis of the cell bar-
code. To generate the cell barcode, the pool of microparticles is repeatedly split into four equally sized oligonucleotide synthesis 
reactions, to which one of the four DNA bases is added, and then pooled together after each cycle, in a total of 12 split-pool 
cycles. The barcode synthesized on any individual bead reflects that bead’s unique path through the series of synthesis reactions. 
The result is a pool of microparticles, each possessing one of 412 (16,777,216) possible sequences on its entire complement of 
primers. Reprinted with permission from Macosko EZ et al. (2015) Highly parallel genome-wide expression profiling of individual 
cells using nanoliter droplets. Cell 161:1203, 1205; their Figs. 1B, C, and 2A. Copyright 2015, Elsevier.
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2015). In addition, biologists are quickly recognizing 
the plethora of scientific opportunities enabled by 
ascertaining transcriptional variation in individual 
cells, beyond performing initial taxonomic analyses 
of tissues. For example, genome-scale genetic studies 
are identifying large numbers of genes in which 
genetic variation contributes to disease risk. Finding 
the cellular sites and biological activities of so many 
genes is an important but challenging goal. High-
throughput single-cell transcriptomics could localize 
the expression of all risk genes to specific cell types, 
and in conjunction with genetic perturbations, help 
to systematically relate each gene to (1) the cell 
types most affected by loss or perturbation of those 
genes and (2) the alterations in cell state elicited by 
such perturbations. Such approaches could help cross 
the daunting gap from gene discoveries to insights 
about pathophysiology.

ScRNA-seq (possibly coupled to additional 
manipulations) could be used to generate an 
information-rich, multidimensional readout of the 
influence of many kinds of perturbations—such 
as small molecules, genetic mutations (natural 
or engineered), pathogens, or other stimuli—on 
many kinds of cells. When studying the effects of a 
mutation, for example, scRNA-seq could illuminate 
pleiotropies by revealing the ways in which the 
same mutation differentially impacts distinct cell 
types. Single-cell expression analysis could also be 
used to characterize the heterogeneous responses of 
diverse cell populations to a drug or metabolite, or 
combinations thereof.

Enormous opportunities exist to improve approaches 
to single-cell gene expression analysis. First, the 
extension of existing methods to the analysis of 
frozen and/or fixed tissue could help relate functional 
genomic variation to transcriptional variation in 
specific cell types and provide novel hypotheses for 
how specific cell types are altered in disease states 
whose pathogeneses remain mysterious. Second, 
tissue dissociation before cell processing introduces 
artifactual signals (as the dissociated cells begin to die) 
and does not maintain spatial relationships among 
analyzed cells. Thus, multiple new technologies, 
including highly multiplexed in situ hybridization 
techniques (Chen et al., 2015; Coskun and Cai, 
2016) and approaches to sequencing mRNA directly 
from tissue slices (Lee et al., 2014; Ståhl et al., 2016) 
could ultimately make it possible to perform single-
cell profiling without tissue dissociation. Finally, the 
coupling of scRNA-seq with other cellular readouts, 

including single-cell epigenetic measurements 
and DNA sequencing, could someday provide 
fundamental insights into transcriptional regulation 
in specialized cell populations.

The functional implications of a gene’s expression 
are a product not just of a gene’s intrinsic properties 
but also of the entire cell-level context in which a 
gene is expressed. The routine facile, large-scale 
measurement of single-cell gene expression profiles 
with new technologies should enable the abundant 
and routine discovery of such relationships across 
biology.
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Clonally Related Interneurons Are Not Constrained by Functional or Anatomical Boundaries 

Introduction
In 2015, two papers were published in Neuron 
(Harwell et al., 2015, and Mayer et al., 2015) 
that jointly argued that interneuron lineages were 
dispersed across functional and structural boundaries. 
These conclusions were challenged by the laboratory 
of Songhai Shi (Sultan et al., 2016), and this Short 
Course chapter presents our response. In it, we 
discuss ongoing single-cell approaches that combine 
whole-genome analysis and lineage to take the next 
step toward understanding the possible links among 
interneuron lineage, cell type, and position within 
the brain.

During development, excitatory principal neurons 
and inhibitory interneurons assemble within the 
mammalian cortex and integrate into common 
circuits. However, a fundamental question in 
developmental neuroscience remains whether 
clonally related interneurons, like excitatory neurons, 
maintain a coherent relationship with their siblings 
while populating specific cortical areas and the local 
columnar architecture therein. Our laboratory and a 
copublished article (Harwell et al., 2015; Mayer et al., 
2015) independently took advantage of a lineage fate 
mapping method devised by the Cepko Lab. With 
this method, a replication-defective retroviral library 
that contains a highly diverse set of DNA barcodes 
can be used to tag dividing progenitor cells during 
embryonic development, thereby permitting the 
unambiguous determination of lineage relationships 
across individual cells in the adult. Both studies 
reported that interneurons derived from a single 
progenitor lineage within the forebrain disperse 
widely across both functional and anatomical 
structures. As outlined in their upcoming article 
in Neuron, the laboratory of Dr. Shi (Sultan et al., 
2016) further analyzed our datasets and concluded 
that clonally related interneurons are not “randomly 
dispersed,” and we agree with this conclusion. In fact, 
we never claimed that interneuron clones “randomly 
disperse” either within or across brain structures. 
Rather, we reported a finding consistent with Sultan 
et al. (2016) that ~30% of clones spanned more 
than one brain structure, providing clear cases in 
which progenitor lineage is not predictive of an 
interneuron’s ultimate anatomical or functional fate. 
In addition, we found that the spatial distribution 
of clones is similar among progenitors regardless of 
whether they share a lineal relationship. Based on 
our findings, we conclude that the integration of 
interneurons into functional cortical areas is unlikely 
to be constrained by lineage.

The mammalian cortex is subdivided into areas 
devoted to vision, sensation, audition, and other 
functions. Each area can be further divided 
physiologically into smaller units or functional 
columns. Excitatory and inhibitory neurons (the two 
main cell types of the cortex and hippocampus) have 
very distinct embryonic origins (Anderson et al., 
1997) and have segregated into separate lineages by 
the time the primary prosencephalon has developed 
into the secondary prosencephalon (Rubenstein 
et al., 1998). Excitatory cells are derived from the 
dorsal telencephalon or pallium. Consecutive rounds 
of asymmetric cell division produce lineage-related 
sister excitatory neurons that migrate short distances 
toward the pia and into the overlaying developing 
cortical plate. After migration, spatially organized 
vertical clusters of excitatory sibling neurons 
(referred to as “clonal units”) form functional 
columnar microcircuits in the neocortex (Noctor 
et al., 2001; Li et al., 2012). In contrast, inhibitory 
cells derive entirely from the ventral telencephalon 
or subpallium (Marin and Rubenstein, 2001; Fishell 
and Rudy, 2011), most prominently from the medial 
and caudal ganglionic eminences (MGE and CGE, 
respectively), and migrate over large distances to 
integrate into the developing cortex, hippocampus, 
or other subcortical forebrain structures.

Conflicting Results from Four 
Recent Studies Examining 
Interneuron Lineages
Despite the technical difficulties associated with 
fate mapping interneuron lineages resulting from 
their complex migration patterns, four recent studies 
(Brown et al., 2011; Ciceri et al., 2013; Harwell et al., 
2015; Mayer et al., 2015) have endeavored to explore 
whether clonally related interneurons are selectively 
positioned within cortical units, similar to what is 
observed in excitatory neurons. If clonally related 
interneurons were confined to discrete anatomical 
brain units (e.g., columns of the cortex), this would 
support the idea that cell lineage is dictating the 
integration of interneurons into functional cortical 
networks.

All four groups agreed that before migration, the 
majority of interneurons are generated from symmetric 
and asymmetric divisions of MGE progenitor cells, 
leading to radially aligned interneuron precursors 
being symmetrically aligned in proximity to each other 
(Brown et al., 2011; Ciceri et al., 2013; Harwell et al., 
2015; Mayer et al., 2015). Postmitotic interneurons 
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reach their final positions within the cortex through 
long-range tangential migration that requires them 
to travel 100 times farther than excitatory pyramidal 
neurons to reach the cortical plate.

However, the four studies drew different conclusions 
about how lineage contributes to the final location 
of interneurons after long-range migration. Brown et 
al. (2011) and Ciceri et al. (2013) described clonal 
clusters in the cortex that were sufficiently compact 
to suggest that they were confined by functional 
boundaries. Specifically, Brown et al. suggested that 
presumptive clones were aligned into functional 
columns, very similar to their excitatory counterparts 
(Brown et al., 2011; Yu et al., 2012), raising the 
possibility of a lineage-dependent functional 
matching in the organization of inhibitory and 
excitatory neurons (Brown et al., 2011). Ciceri et al. 
(2013) did not detect such radial clusters but rather 
described exclusively laminar clusters. In contrast, 
Mayer et al. (2015) and Harwell et al. (2015) both 
concluded that clonally related interneurons can 
disperse across anatomical and functional boundaries 
within the forebrain and are not restricted to narrow 
cortical columns or lamina. Notably, Mayer et al. 
(2015) and Harwell et al. (2015) agreed that sibling 
interneurons reside in a volume that far exceeds 
functional cortical units, such as the whisker barrels 
(Bruno et al., 2003) of the somatosensory cortex (the 
average distance between pairs of sibling neurons was 
>2 mm in Mayer et al., 2015). These data imply that 
the integration of interneurons into functional units 
is unlikely to be determined by lineage.

Can Cluster Analysis Be Used to 
Determine Lineal Relationships 
Between Interneurons?
A common feature of all studies considered above is 
that interneuron progenitors in the MGE of mouse 
embryos were labeled through infection using very 
similar fluorescently tagged retroviruses. What then 
explains the disparate results reported in these four 
investigations? Discrepancies almost certainly arose 
from the different methods used to assess and define 
interneuron clonality. Mayer et al. (2015) and 
Harwell et al. (2015) used a replication-defective 
retroviral library containing a highly diverse set of 
DNA barcodes, an approach pioneered by Walsh 
and Cepko in the early 1990s (Walsh and Cepko, 
1993), to determine lineal relations between labeled 
interneurons. Recovering the barcodes from the 
mature progeny of infected progenitor cells enabled 
Mayer et al. and Harwell et al. to unambiguously 
determine the lineal relationship between clones 
regardless of their geometric distribution within the 

brain. In contrast, Brown et al. (2011) and Ciceri 
et al. (2013) used a combination of approaches, 
including (1) time-lapse imaging (before migration), 
(2) mixing of red and green retroviruses, and  
(3) presumptive clonal labeling with low-titer 
retrovirus injections followed by the use of geometric 
criteria to infer lineal relationships among retrovirally 
labeled neurons. For the following reasons, we believe 
that none of the aforementioned methods used by 
Brown et al. (2011) and Ciceri et al. (2013) reliably 
indicated lineal relationships among interneurons.

First, whereas in principle time-lapse imaging could be 
used to determine lineal relationships, this approach 
is impractical, given both the distances involved and 
the protracted time over which interneurons migrate 
from their birth to their settling position. Second, 
the use of red and green retroviruses is confounded 
by technical difficulties that, when addressed by 
Ciceri et al. (2013), revealed that assigned clusters 
of interneurons are polyclonal in nature. In brief, 
they reported that when retroviruses encoding 
green fluorescent protein (GFP) and mCherry were 
mixed before ultracentrifugation, “most clusters were 
likely to include cells from a different progenitor 
(i.e., a different fluorescent protein), even at very 
limiting dilutions.” The authors concluded that “this 
strongly suggested that lineage relationships are not 
exclusive determinants of interneuron clustering.” 
Third, whereas low-titer retroviral injections can in 
principle be used to determine lineal relationships, in 
practice this proves untenable. If one could reliably 
label a single progenitor with a single injection, it 
would of course be possible to trace interneurons 
in the forebrain, even if individual siblings pursued 
drastically different migration paths. However, 
the labeling of a single progenitor cell cannot be 
guaranteed using current technology. Retroviral 
labeling of multiple progenitor cells unavoidably 
results in both lumping errors (clustered cells that 
are not clonal) and splitting errors (dispersed cells 
that are clonal but are not recognized as such), 
particularly if cells undergo complex migration.

Brown et al. (2011) attempted to minimize lumping 
and splitting errors by using low-titer retroviral 
injections “to label dividing progenitor cells in the 
ventricular zone…at clonal density.” Given this 
claim, we were surprised when we looked at the raw 
data provided by Dr. Shi (Figs. 1A, B) to see that 
individual brains showed >500 labeled cells—far 
exceeding what our analysis indicated would allow 
for “clonal labeling.” These data, we believe, preclude 
the assignment of lineage using the geometric criteria 
used by Brown et al. (2011) and Ciceri et al. (2013). 
More specifically, to assign lineage after interneuron 
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Figure 1. Comparison of the distributions of retrovirally infected interneurons in Mayer et al. (2015) and Brown et al. (2011). 
A, B, Two experimental datasets from Brown et al. are shown. Three-dimensional reconstructions of the distribution of cortical 
interneurons in a postnatal Nkx2.1Cre/+;R26LSL-TVAiLacZ/+ mouse infected with retroviruses expressing enhanced green fluorescence 
protein (EGFP). Datasets in Brown et al. contained ≤538 data points per brain. To predict clonal relations of inhibitory interneu-
rons, Brown et al. applied spatial parameters based on the observed distributions of excitatory neuron clusters (not shown). C, D, 
Three-dimensional reconstructions of a representative dataset reproduced from Mayer et al. (2015), illustrating the distribution of 
cortical interneurons in a postnatal Nkx2.1Cre/+;R26LSL-TVAiLacZ/+ mouse that was infected with a retroviral library. The same dataset is 
shown, before C and after D determination of clonal relations based on retroviral barcodes. The dark red symbols (stars, circles, or 
triangles) represent single-cell clones (i.e., neurons harboring a barcode that occurred only once in the dataset); light red symbols 
represent multicell clones, whereby symbols with the same shape indicate the location of sister interneurons (i.e., neurons with 
the same barcode).

labeling and migration, both Brown et al. and Ciceri et 
al. compared the distance from each interneuron to its 
closest neighbor (nearest neighbor distance [NND]) 
with a randomly computer-simulated dataset to test 
whether the labeled interneurons were clustered. 
Ciceri et al. then calculated the number of clusters 
in the experiment using a threshold distance value 
that maximized the difference between the number 

of clusters observed in the experimental dataset 
and the mean number of clusters in 100 simulated 
populations of randomly distributed neurons. Brown 
et al. used spatial parameters that picked up excitatory 
neuron clusters to predict clonally related inhibitory 
interneuron clusters.

Because these methods require that any “clonal” 
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area, as a matter of principle, these methods cannot 
be used to study dispersed clones that reside in 
different forebrain structures or distant locations 
within the neocortex. In addition to missing clonal 
dispersion across areas, our findings (as well as those 
of Harwell et al., 2015) demonstrated that the use of 
such geometric criteria also failed to predict clonality 
of interneurons within the cortex. When local 
clusters are deemed to be clonal clusters, lumping 
errors are a major confounding factor, particularly 
for datasets with a large number of total neurons 
(e.g., those used in Brown et al., 2011; Figs. 1A, B). 
This is because as the number of labeled neurons in 
a dataset increases, the chance that a nonclonally 
related cell will be found nearby clonally related 
cells also increases. Sultan et al. (2016) recognized 
this point, as they stated, “a clone forming a local 
cluster does not preclude the presence of nearby 
non-clonally related interneurons.... The more 
data points, the shorter the distance in general 
between them. Therefore, it is crucial to take into 
consideration the total number of data points in each 
dataset.” Even with much lower rates of infections 
per brain (Fig. 1C), Mayer et al. (2015) and Harwell 
et al. (2015) reported a large number of interneurons 
that were nearest neighbors but not clonally related 
(i.e., they had different DNA barcodes, indicating 
that they originated from different progenitors) (see 
dendrogram analysis in Mayer et al., 2015). In their 
recently published article in Neuron, Harwell et al. 
provided an additional detailed analysis, showing 
that the spatial parameters used in Brown et al. 
(2011) to cluster interneurons had failed to identify 
lineal boundaries in either our dataset or their own.

Complications Arising from the 
Analysis by Sultan et al.
As outlined in their upcoming article in Neuron, the 
lab of Dr. Shi (Sultan et al., 2016) further analyzed 
our datasets and concluded that clonally related 
interneurons in our datasets were not randomly 
dispersed. Their study implied that this contradicted 
our findings, attributing to us conclusions to which we 
do not subscribe. We hold that the real discrepancy 
between our conclusions and those of Sultan et al. is 
semantic, coming down to how we precisely define 
a cluster. “Clusters,” per definition, are a group 
of things that occur close together. In the cases of 
Brown et al. (2011) and Sultan et al. (2016), clusters 
were determined geometrically, as groups of cells that 
occur closer to each other than predicted in a random 
distribution (random computer-simulated cells). We 
completely agree that retrovirally labeled cohorts of 
interneurons appear clustered when compared with 

a randomly distributed (computer-simulated) group 
of data points, but given the biological constraints 
placed on interneuron development, this should 
come as no surprise. For example, it is known that 
interneurons’ ultimate location in the brain is heavily 
influenced by several factors: (1) their position and 
time of birth (Miyoshi et al., 2007), (2) prescribed 
paths of migration (Tanaka et al., 2006; Marin, 
2013), and (3) stereotyped radial migration from 
the marginal and subventricular zones to the cortical 
plate (Miyoshi and Fishell, 2011). All these factors 
indicate that although the dispersion of interneurons 
is perhaps stochastic, it is also tightly regulated, and 
therefore a random dispersion model will be grossly 
inaccurate.

Are Interneuron Clones 
Preferentially Clustered?
Similar to the analysis done in Mayer et al. (2015), 
but for cortical clones only, we further examined 
whether the average distance between pairs of 
lineage-related interneurons is preferentially reduced 
compared with unrelated interneurons. We found 
that the results for average distance between pairs 
of neurons is not influenced by the total number of 
data points in individual datasets (unlike, e.g., the 
NND; Fig. 2A), thus providing a robust measure 
for comparing clonally related and unrelated cells. 
Notably, both lineage-related and lineage-unrelated 
interneurons were labeled at the same time and with 
the same method, ensuring that they shared similar 
birthdates and migratory trajectories. The “intraclonal 
distance” was calculated as the average distance 
between pairs of clonally related interneurons, and the 
“interclonal distance” was calculated as the average 
distance between pairs of unrelated cells within 
one hemisphere (Fig. 2B). “Pairs of unrelated cells” 
included the distance between all possible pairs of 
interneurons with different barcodes: (1) individual 
members of “multicell clones” with different barcodes, 
(2) “single-cell clones,” and (3) individual members 
of “multicell clones” and “single-cell clones.” 
Significantly, the average distance between 40 pairs 
of clonally related interneurons in the cortex of P16 
mice (average distance [AD] = 2134 ± 213, SEM) was 
not statistically different from 926 pairs of clonally 
unrelated interneurons (AD = 2145 ± 34, SEM;  
p > 0.9, Kruskal–Wallis test, multiple comparison; 
p = 0.6, Mann–Whitney nonparametric t test)  
(Fig. 2C). When we broke down the analysis by dataset 
(i.e., for each retrovirally infected brain), we did not 
detect a statistical difference despite the low numbers 
of clonally related pairs in each analysis (p > 0.1  
in all three datasets, Mann–Whitney nonparametric 
t test) (Fig. 2D). Taken together, our results indicate 

© 2016 Fishell
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Figure 2. Interneuron clones within the cortex in Mayer et al. (2015) are not spatially segregated when compared with a biologi-
cally appropriate control group. A, The NND decreases as the number of cells per dataset increases. Notably, the AD between 
pairs of neurons is not influenced by the total number of data points in individual datasets. To illustrate this principle, NNDs and 
ADs were calculated for simulated datasets containing a high number of cells (200; blue dots) and a low number of cells (10; red 
five-pointed stars) in a given volume; N = 100 simulations; B, Schematic illustration showing an analysis similar to that done in 
Mayer et al. (2015), except that in the present case, only included cortical intraclonal and interclonal distances were calculated 
for interneurons. The intraclonal distance was calculated as the average distance between pairs of clonally related interneurons. 
The interclonal distance represents the sum of distances between (1) individual members of “multicell clones” with different 
barcodes, (2) “single-cell clones,” and (3) individual members of “multicell clones” and “single-cell clones.” C, Box-and-whiskers 
plot of the intraclonal and interclonal distance. Whiskers indicate minimum-to-maximum values. All three datasets from Mayer 
et al. were included in this analysis. The interclonal distance represents the sum of the three pairwise comparisons between (1) 
multicellular but unrelated clones, (2) single-cell clones, and (3) individual members of multicellular and single-cell clones (B). 
No significant difference in separation was observed when comparing intraclonal and interclonal distances (Kruskal–Wallis test, 
multiple comparison; Mann–Whitney nonparametric t test). The number above the boxes indicates the number (n) of interneuron 
pairs. D, Scatter plot of intraclonal and interclonal distances by brain (1–3). No significant difference in separation was observed 
when intraclonal and interclonal distances were compared (Kruskal–Wallis test, multiple comparison; Mann–Whitney nonpara-
metric t test); the number above the boxes indicates the number (n) of interneuron pairs.
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that in general, clonally related cells are not located 
closer to each other than a biologically similar group 
of nonrelated interneurons.

Dendrogram Analysis Has  
Limited Utility in Determining 
Clonal Clusters
As mentioned above, lumping errors and splitting 
errors cannot be avoided if clonal clusters are defined 
geometrically because these methods implicitly 
assume that neighboring cells are clonally related. 
The separation between cells that are clustered 
versus not clustered is strongly influenced by the 
total number of data points in the dendrogram. In 
Mayer et al. (2015), we performed a dendrogram 
analysis to illustrate that this is an inherent problem 
when using geometrical methods. In brief, we 
grouped GFP-labeled neurons, regardless of lineage, 
by their proximity and displayed the results in 
dendrograms (Mayer et al., 2015). We then labeled 
the neurons according to their lineage relationship 
(i.e., barcode identity). Despite the fact that we 
labeled a relatively small number of neurons (e.g., 
much lower than in Brown et al., 2011; Fig. 2) in our 
dataset, only 52% of clones (12 out of 23) formed 
closest nearest neighbors (lowest hierarchical branch 
in the dendrogram; Mayer et al., 2015). In addition, 
a number of the clones that were closest nearest 
neighbors on the dendrogram had at least one “split” 
sibling on a far branch on the dendrogram. Sultan 
et al. (2016) reached a very similar result: they 
also found that 52% of clones (14/27) were closest 
nearest neighbors. It is critical to note that our results 
preclude the use of dendrogram analysis to determine 
the lineage relationships between neurons, and it 
was never our intention to use it for that purpose.

We would like to address the “error corrections” 
made by Sultan et al. (2016) when they reanalyzed 
the dendrogram analysis presented in Mayer et al. 
(2015). In particular, Sultan et al. stated that we 
failed to add clone #32 to our dendrogram. However, 
calling this an “error correction” is inaccurate 
because we deliberately excluded this clone from our 
analysis. Clone #32 was located within the olfactory 
bulb, and the dendrogram analysis in Mayer et al. 
“focused on cortical, hippocampal, and striatal clones 
only.” In another such “error correction,” Sultan et 
al. noted that clone #12 contained three cells in the 
cortex and three cells in the hippocampus, requiring 
them to “add all six clones to the dendrogram.” 
This statement implies that we incorrectly excluded 
all these cells from our dendrogram, which again 
is inaccurate. We deliberately divided clones that 

crossed anatomical boundaries for analysis within 
brain structures.

The Use of Euclidian  
Distance Measurements
Sultan et al. (2016) noted that the use of Euclidian 
distances in structures such as the cortex is 
problematic, as it is clear that in many if not most 
cases, migration along straight lines (e.g., in cases 
where such trajectories would cross ventricles or sulci) 
is not biologically tenable. Nonetheless, all distances 
between pairs of neurons described in Mayer et al. 
(2015) as well as Sultan et al. (2016) and Brown et 
al. (2011) were calculated as Euclidian distances. 
Given the impossibility of determining more realistic 
trajectories, this approach is at least systematic, and 
by its nature chronically underestimates the real 
distances between neurons. This only strengthens 
our conclusion that clonal dispersion does not 
respect functional boundaries, as properly corrected 
measurements of the distance between clones would 
only be larger rather than smaller.

Interneuron Clones Can Span 
Multiple Brain Structures
Although the results of Mayer et al. (2015) and 
Harwell et al. (2015) demonstrated that interneuron 
clones are not obliged to populate particular 
anatomical structures, this does not rule out the 
possibility that they are predetermined to occupy 
particular brain regions. Sultan et al. (2016) discussed 
this point as follows:

1. Should lineage relationship have no influence 
on interneuron distribution, the relatively 
total interneuron output to different forebrain 
structures and the small clone size dictate 
that virtually all clones must be located in the 
cortex, the cortex and hippocampus, or the 
cortex and striatum. Interestingly, a significant 
fraction of clones was observed to be restricted 
to the hippocampus or striatum (Mayer et al., 
2015), suggesting that some MGE/PoA [medial 
ganglionic eminence/preoptic area] progenitors 
specifically produce interneurons destined for 
these two brain structures.

2. While it is evident that the majority (~66% in 
Mayer et al. and 80% in Harwell et al.) of clones 
are located within one brain structure, i.e. the 
cortex, some are dispersed in more than one brain 
structure. However, this clonal dispersion largely 
occurs between the cortex and hippocampus, the 
two highly related forebrain structures emerging 
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side-by-side in the dorsal telencephalon. The 
same tangential migration routes are responsible 
for interneuron distribution in the cortex and 
hippocampus (Ayala et al., 2007; Marin and 
Rubenstein, 2001, 2003). In comparison, only a 
small fraction (~12.5% in Mayer et al. and 20% 
in Harwell et al.) of clones is dispersed between 
developmentally unrelated brain structures such 
as the cortex and striatum, or globus pallidus, or 
olfactory bulb.

Although these statements are factual, understanding 
their implications requires a more nuanced analysis. 
Both the absolute size of the cortex, hippocampus, 
and striatum as well as the density of interneurons 
within these structures differ dramatically. For 
example, 20% of the cells within the cortex and 
hippocampus are interneurons (Fishell and Rudy, 
2011), whereas the percentage of interneurons 
within the striatum is only 3% (Marin et al., 2000; 
Tepper et al., 2010). These facts demonstrate that 
even if interneurons were randomly distributed to 
different structures, probabilistically, they would 
be preferentially found in the cortex. That said, we 
reiterate that we do not believe that the distribution 
of interneurons is random. But what rules then 
underlie the distribution of discrete interneuron 
lineages? Our results definitively indicate that if 
interneuron lineages do have a covert logic as to how 
they populate different structures, clearly the rules 
of allocation are not as simple as an interneuron 
lineage being earmarked for cortex or hippocampus 
per se. Further examination of interneuron lineages 
will be required to address whether there is a degree 
of predetermination in the positioning of sibling 
neurons derived from a common lineage.

Final Remarks
We have shown here and in previous work (Mayer 
et al., 2015) that clonally related interneurons are 
no more closely clustered than nonlineally related 
interneurons (proximally generated brethren). 
These findings, of course, neither should nor do end 
the debate as to whether lineage contributes to the 
development, subtype differentiation, or connectivity 
of interneurons. Our results were limited by the fact 
that the lineages we assembled were only partially 
reconstructed, so we can say nothing regarding the 
fate of those sibling cells that we failed to recover. In 
addition, we know startling little about the phenotypic 
identity and nothing about the connectivity of clonally 
related siblings, both of which would be fascinating 
to explore. We would, however, implore any further 
examination of lineage to confine itself to methods 

that provide a high degree of confidence about the 
lineage relationships of cells designated as clones.
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Introduction
Deriving lineage relationships between cells in a 
developing organism, or between an early dividing 
cell of unknown potential and its descendants, has 
been a long-standing interest in developmental 
biology. In recent years, many new methods have 
emerged to enable cell lineage tracing with increasing 
resolution, leading to substantial biological insights. 
In model organisms, novel cellular labels, such as 
barcoded retroviral libraries (Gerrits et al., 2010) 
and a rainbow of available fluorescent proteins (Cai 
et al., 2013), have increased the number of founder 
cells that can be uniquely labeled and traced. Unlike 
most early cellular tracers, labels inserted into the 
genome can permanently mark lineages in a variety 
of experimental organisms without being diluted by 
cell division, and these modifications are facilitated 
by genome editing technologies (Hsu et al., 2014). In 
addition, recent advances in sequencing have enabled 
naturally occurring somatic mosaic mutations to 
be used as lineage marks in both cancerous tissue 
(Navin et al., 2011; Wang et al., 2014) and normal 
tissue (Behjati et al., 2014; Lodato et al., 2015), 
illuminating a future in which lineage tracing moves 
from experimental organisms into humans.

Prospective Methods of  
Lineage Tracing
A classic genetic approach to cell lineage analysis 
is performed by labeling a single founder cell and 
tracing its progeny over time. This prospective 
method has been used since biological dyes mapped 
the fate of cells within chicken and mouse embryos 
in early observational studies (Beddington, 1981; 
Serbedzija et al., 1989), and continues to be used 
in current lineage tracing experiments. Whereas 
early developmental studies hoped to achieve clonal 
labeling by microinjecting small amounts of dye into 
an area of interest, advancements in genetic tools 
for prospective lineage tracing now allow for far 
greater cell and tissue specificity, recombinase-based 
intersectional analyses, and single-cell resolution.

Sparse retroviral labeling for  
lineage tracing
Since the advent of recombinant DNA technology in 
the late 1980s, retroviral libraries containing reporter 
transgenes such as β-galactosidase (β-gal) and green 
fluorescent protein (GFP) have been used for cell 
labeling and lineage tracing in vertebrate animal 
models (Turner and Cepko, 1987; Frank and Sanes, 
1991). Retroviral vector–mediated gene transfer 
allows viruses to introduce recombinant DNA into 
a host cell’s genome. The integrated exogenous 
DNA is then inherited by all descendants of the 

infected cell. The DNA encodes a histochemical 
or fluorescent protein that can be easily assayed to 
label cells of a “clone” and elucidate cell fate choices 
within that clone. Histological and morphological 
analyses of the progeny of virally infected cells allow 
for post hoc fate mapping within a clonally related 
cell population.

Sparse retroviral infection has also been used in live 
cell imaging of progenitors and their progeny in 
organotypic slice culture. Mouse, ferret, chimpanzee, 
and human progenitors have all been analyzed 
using time-lapse imaging. Individual progenitors 
labeled by fluorescent reporter genes are visualized 
using confocal microscopy for multiple cellular 
divisions. At the end of the imaging experiment, 
immunohistochemistry and cellular morphology can 
then be used to analyze cell fate within the imaged 
clone (Noctor et al., 2001, 2004; Brown et al., 2011; 
Gertz et al., 2014; Dehay et al., 2015). Although ex 
vivo organotypic culturing conditions closely mimic 
the in vivo cellular environment, such experiments 
typically can be performed for only a few days at most, 
and so cannot typically relate clonal relationship to 
adult structure.

Sparse retroviral labeling requires that clonality be 
inferred based solely on proximity of cells expressing 
a reporter gene. Early studies in the cerebral cortex 
soon showed that sibling cells dispersed widely from 
one another in some clones (Walsh and Cepko, 
1988). To analyze such widespread clones, the first 
retroviral libraries were developed, encoding the lacZ 
gene as a reporter, but also short DNA fragments to 
act as barcode tags (Walsh and Cepko, 1992). Clonal 
relationships were then directly revealed by PCR 
amplification of the integrated barcode tags from 
cells dissected from tissue sections, rather than being 
inferred based on proximity alone. Cells derived from 
a common progenitor share the same DNA tag at the 
vector integration site regardless of their patterns of 
migration, whereas clonally unrelated cells harbor 
different barcodes. The first library of a hundred tags 
soon expanded to a thousand tags (Walsh and Cepko, 
1993; Reid et al., 1995) and then to essentially 
unlimited complexity using random oligonucleotide 
barcodes of identical size but distinct sequence 
(Golden et al., 1995; Fuentealba et al., 2015).

Advancements in transgenic animal lines have also 
extended the applications of retroviral genetic tagging 
and fate mapping. Cell-type specificity can now be 
achieved with transgenic mouse lines expressing virus 
receptors under the control of a cell-type-specific 
promoter (Harwell et al., 2015; Mayer et al., 2015). 
Only dividing cells that contain the virus receptor can 
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allowing for more-precise viral targeting. Barcode tags 
can then be recovered using fluorescence-activated cell 
sorting (FACS) by the fluorescent reporter transgene, 
or laser capture microdissection (LCM) techniques 
that can preserve cellular position within the infected 
tissue for future reconstruction and analysis.

Although retroviral library labeling is useful for 
determining lineage relationships both in vivo and, 
it has some considerations and limitations: (1) only 
cells with the capacity to divide will propagate 
the barcode to progeny, (2) retroviral vectors 
typically spontaneously silence, so many retrovirally 
transfected cells are no longer histochemically 
labeled even though their DNA can be detected in 
the tissue, and (3) barcode tag recovery from single 
cells can prove challenging (Mayer et al., 2015). To 
circumvent the possibility of spontaneous retroviral 
silencing, new studies have been combining 
retroviral library labeling with RNA-sequencing 
(RNA-seq) technology. These studies not only 
recover barcodes to trace clonal lineage relationships 
but can also elucidate cell type using transcriptomics 
in sparse or heterogeneous cell populations (Lu et al., 
2011). This valuable advance allows for the overlay 
of phenotypic cell identity with genetic lineage 
information for a more comprehensive view of clonal 
relationships.

Plasmid transfection labeling for 
lineage tracing
In addition to viral infection, reporter transgenes for 
cell labeling and fate mapping can be introduced into 
cells using DNA plasmid transfection. Lipofection, a 
common lipid-based system, has been used to transfect 
the developing Xenopus retina and to trace retinal cell 
fate in vivo (Holt et al., 1990). Electroporation, an 
alternative nonviral delivery method, has been used 
to deliver reporter transgenes encoding fluorescent 
proteins to trace cells both in vitro and in various 
vertebrate animal models (Fukuchi-Shimogori and 
Grove, 2001; Emerson and Cepko, 2011). Reporter 
gene plasmids can be injected into the developing 
brain’s ventricles and introduced into neural 
progenitors lining the ventricular wall by electrical 
pulses. A reporter transgene, such as GFP, is then 
carried episomally by the progenitor cell and passed 
on to subsequent daughter cells. Unlike retroviral 
labeling, however, plasmid DNA is not integrated 
into the progenitor’s genome and becomes diluted or 
inactivated in progeny after serial cellular divisions. 
Plasmid electroporation techniques, therefore, are 
transient and fail to label the entire lineage (LoTurco 
et al., 2009).

A solution to plasmid loss or inactivation is a DNA 
transposon system, which stably integrates the 
reporter transgene into the progenitor’s genome. 
Transposon systems include Mos1, Tol2, Sleeping 
Beauty (SB), and piggyBac (PB), which all use 
a dual-plasmid approach with a “cut-and-paste” 
mechanism (Wu et al., 2006; VandenDriessche et al., 
2009; Yoshida et al., 2010). The typical transposon 
system includes a donor plasmid containing the 
reporter transgene of interest and a helper plasmid 
that expresses the transposase. The donor plasmid 
includes terminal repeats flanking the transgene, 
which allows for genomic integration by the 
transposase. The transgene is then propagated to 
all progeny within the lineage, but the transposase 
(like any episomal plasmid) will be diluted over 
cellular divisions. Donor and helper plasmids can 
be driven by different promoters, allowing for cell-
type specificity and genetic intersectional analyses. 
Compared with the other transposon systems, PB 
has a more precise cut-and-paste mechanism, higher 
transposition efficiency, and a larger cargo capacity 
(Chen and LoTurco, 2012). These attributes have 
made the PB transposon system particularly popular. 
In addition, PB transposase can be co-electroporated 
with multiple fluorescent reporter constructs, 
each driven by a cell-type-specific promoter. In 
this experimental design, multiple lineages can be 
examined in a single animal (Siddiqi et al., 2014). 
PiggyBac has been successfully used in multiple 
mammalian cell lines and in combination with in 
utero electroporation (IUE) to trace and manipulate 
cell lineages in animal models (Ding et al., 2005; 
Wilson et al., 2007; Woltjen et al., 2009; Siddiqi et 
al., 2014).

The piggyBac transposon plasmid system allows 
remarkable flexibility and cell-type specificity, but as 
with any random genomic insertion event, the precise 
location or number of transposition occurrences 
introduces a risk of confounded results due to 
mutagenesis. Transposition of the reporter transgene 
may cause endogenous genes at or near the insertion 
site to become unintentionally dysregulated. One 
study, however, found no evidence of mutagenesis by 
transposon insertion in cells labeled with the PB IUE 
method (Chen and LoTurco, 2012). Transposase 
plasmid systems are a remarkable tool for transgenesis 
and cell lineage tracing in both classically genetically 
modifiable animal models, such as mice, and 
otherwise non–genetically tractable animals, such as 
the ferret.

© 2016 Walsh
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Genetic recombination for  
lineage tracing
Cell lineage tracing by genetic recombination 
leverages the expression of recombinase enzymes in 
a cell-specific or tissue-specific manner to activate 
expression of a conditional reporter gene. Two 
genetically encoded, site-specific recombination 
systems include Cre-loxP and FLP-FRT. In the Cre-
loxP system, mice are engineered to express Cre 
recombinase under the control of a chosen promoter, 
limiting Cre expression to a specific tissue or cell type 
(Orban et al., 1992). These mice are then crossed with 
a second mouse line in which a reporter transgene, 
such as lacZ or GFP, is preceded by a loxP-flanked 
transcriptional stop cassette. In cells expressing Cre 
recombinase, the STOP sequence is excised, and the 
reporter transgene is expressed. Temporal control of 
recombination can be gained by using an inducible 
Cre system, which selectively activates Cre under 
promoters that are also active at undesired time 
points such as embryogenesis. In an inducible system, 
Cre recombinase is fused to the human estrogen or 
progesterone receptor and activated only with the 
presence of an anti-estrogen such as tamoxifen 
or an anti-progestin, respectively. A pulse-chase 
strategy with an inducible Cre system can be used to 
determine lineage relationships. Leakiness, however, 
is a common problem of inducible Cre systems; 
nonetheless, these inducible systems have been used 
for lineage tracing in many adult tissues.

Dual or multicolor reporter lines have become 
increasingly popular for tracing cell lineage 
relationships. Mosaic analysis with double markers 
(MADM) uses a Cre-loxP system to express GFP and 
red fluorescent protein in cell populations of interest 
(Zong et al., 2005). Before recombination, no reporter 
transgene is expressed, but after Cre recombinase is 
activated, one or both transgenes are reconstituted. 
Green, red, or double-labeled yellow cells are 
generated depending on the recombination and the 
chromosomal segregation type. MADM can be used 
with cell-type-specific and inducible Cre systems to 
provide single-cell resolution and to more precisely 
examine progenitor division patterns (Zong et al., 
2005; Hippenmeyer et al., 2010; Bonaguidi et al., 2011; 
Mayer et al., 2015). Multicolor lineage tracing is also 
possible with recent mouse reporter lines, including 
Brainbow and Confetti (Livet et al., 2007; Snippert et 
al., 2010). The Brainbow mouse lines harness stochastic 
Cre-mediated recombination using incompatible loxP 
sites to drive combinatorial expression of fluorescent 
reporter transgenes. The Brainbow mouse can label 
individual cells with ≤90 distinguishable colors by 
stochastic expression of several fluorescent reporter 

transgenes. Cells expressing a particular color share 
a common lineage. A modified line, the Confetti 
mouse, ubiquitously expresses Cre from the ROSA26 
locus and has been used to trace individual stem cell 
lineages in the mouse intestinal crypt (Snippert et 
al., 2010). Owing to the expression of a multitude of 
unique colors, costaining with antibodies to determine 
protein expression within Brainbow or Confetti mice 
is nearly impossible. Endogenous fluorescence of the 
reporter genes, however, can be used for imaging 
clones. Advancements in microscopy, such as the two-
photon microscope, continue to make these lines an 
attractive choice for in vivo cell lineage tracing.

Recent methodological advances in 
prospective lineage tracing
Innovations in both microfluidic platforms and 
genome editing strategies have also recently been 
used to prospectively trace cell lineage. Microfluidic 
technologies allow for capture and culture of single 
progenitor cells and up to five generations of their 
progeny on a single chip. In vitro time-lapse imaging 
for both division kinetics and identification of 
lineage relationships can be coupled with on-chip 
immunohistochemistry to assess cell fate within the 
captured clones. Clones can also be retrieved after 
culturing for single-cell transcriptomics with known 
lineage relationships. Kimmerling et al. (2015) used 
this microfluidic trap array technology, paired with 
single-cell RNA-seq, to look at both interclonal and 
intraclonal variability in activated CD8+ T cells; they 
demonstrated that lineage-dependent transcriptional 
profiles corresponded to functional cellular 
phenotypes. This study was the first to link single-cell 
transcriptomics with cell lineage history (Kimmerling 
et al., 2015).

Recently, CRISPR/Cas9 genome editing technology 
(CRISPR signifies clustered regularly interspaced 
short palindromic repeats; Cas9 is a class of RNA-
guided endonucleases) has been applied to trace and 
synthetically reconstruct cell lineage relationships 
in complex, multicellular organisms. McKenna et 
al. developed genome editing of synthetic target 
arrays for lineage tracing (GESTALT), a highly 
multiplexed method that uses barcodes composed 
of multiple CRISPR/Cas9 target sites (McKenna et 
al., 2016). These barcodes progressively and stably 
accumulate unique mutations over cellular divisions 
and can be recovered by targeted sequencing. Cell 
lineage relationships are determined based on the 
pattern of shared mutations among analyzed cells. 
While prospective in the sense that the barcode 
is introduced at the start of the experiment, the 
GESTALT method also parallels retrospective, 

© 2016 Walsh



36

NOTES somatic-mutation-based tracing, discussed below. 
The incrementally edited barcodes from thousands 
of cells were used in large-scale reconstructions 
of multiple cell lineages within cell culture and 
zebrafish. Although precise anatomical position and 
cell type of each assayed cell cannot be determined 
with this method, this published study and others in 
progress demonstrate the potential for cumulative 
and combinatorial barcode editing in prospective 
lineage tracing of whole organisms (Junker et al., 
2016; Kalhor et al., 2016; McKenna et al., 2016). 
Advances during the past 30 years, since the 
advent of genetic barcoding and recombinase-based 
transgenic animals, have allowed prospective cell 
lineage tracing experiments to not only uncover 
clonal relationships at the single-cell level but also 
map cell fate choices in a wide variety of cells, tissues, 
and model organisms.

Retrospective Methods of  
Lineage Tracing
It has only recently become possible to harness 
naturally occurring mutations to retrospectively 
infer cell lineage information, owing to advances 
in genome sequencing. Like prospective lineage 
tracers in model organisms, somatic mutations 
indelibly mark the progeny of the dividing cell in 
which they occurred, and the cells bearing these 
naturally occurring lineage marks can be analyzed 
later to reconstruct the genealogy of organs and 
cell types (Salipante et al., 2010). To use naturally 
occurring somatic mutations for lineage tracing, it is 
first necessary to discover mutations shared among 
multiple cells of that individual; however, somatic 
mutations are difficult to identify by sequencing a 
mixed population of cells at conventional depths, 
as they are low-frequency by nature. Nonetheless, 
the declining cost of deep next-generation genome 
sequencing and the advent of single-cell genome 
sequencing have made it possible to discover rare 
mutations that mark minority lineages within a larger 
cellular population (Shapiro et al., 2013). These 
variants—from the least frequently somatically 
mutated to the most—include retrotransposons, 
copy number variants, single-nucleotide variants 
(SNVs), and microsatellites. The different rates at 
which these variants occur in somatic tissues allow 
lineage tracing experiments to be conducted at 
different levels of granularity according to the types of 
variants, tissue, and disease state selected. Single-cell 
genome sequencing promises to revolutionize lineage 
tracing in humans, although potential technical 
artifacts and complications must be considered 
when planning a single-cell genome sequencing 
experiment. Critically, whole-genome sequencing 

currently requires considerably more DNA than 
the 6 pg present in a single cell, necessitating a 
presequencing genome amplification step that may 
introduce errors (Grün and van Oudenaarden, 2015; 
Gawad et al., 2016).

Somatic mutations for lineage tracing 
in normal tissue
Endogenous retroelements, principally including 
long interspersed nuclear element–1 (LINE-1 or L1), 
compose much of the human genome; L1 elements 
alone make up nearly one-fifth of the genome 
(Ostertag and Kazazian, 2001). Some of these L1 
elements retain the ability to mobilize in humans 
and can insert into a new genomic location during 
somatic cell division (Muotri et al., 2005). This 
mobilization has raised substantial interest in their 
potential contribution to somatic diversity, especially 
within complex tissues like the brain (Erwin et 
al., 2014). Estimates of L1 mobilization frequency 
derived by sorting single neurons, amplifying the 
whole genome, and analyzing L1 retrotransposition at 
a single-cell level (Evrony et al., 2012) suggest there 
are fewer than one somatic insertion per neuronal 
genome on average (Evrony et al., 2012). A single-
neuron whole-genome sequencing study confirmed 
the low rate of L1 retrotransposition events but also 
illustrated the striking spatial distribution patterns 
of clonal retrotransposition events, providing strong 
proof of principle for the use of spontaneous somatic 
L1 events for lineage tracing (Evrony et al., 2015).

SNVs are a significant source of evolutionary and 
disease-causing mutations, yet they can also occur 
very frequently in noncoding portions of the genome 
without having functional effects on somatic cells. 
Somatic SNVs represent a rich source of lineage-
marking mutations because they are both abundant 
and frequently functionally neutral. Indeed, work in 
mouse stomach, intestine, and prostate (Behjati et al., 
2014), mouse brain (Hazen et al., 2016), and human 
brain (Lodato et al., 2015) suggests that somatic SNVs 
can be identified from single cells or clones and used 
to reconstruct developmental lineages; in one study, 
9 of 16 sequenced neurons, and 136 of 226 total 
neurons from the same area of cortex, could be placed 
in a lineage tree with four independent clades that 
diverged before gastrulation. One clade contained 
a nested set of 11 somatic mutations, which were 
progressively regionally restricted across the brain 
and present in progressively decreasing frequency in 
bulk tissue (Lodato et al., 2015). These results suggest 
that analysis of such nested mutations might enable 
the analysis of the progressively narrower lineage trees 
characterizing the developing embryo.
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The most frequently mutated somatic loci are 
microsatellites (Ellegren, 2004). Because of the 
instability of microsatellite repeats, analysis of all 
microsatellite locations in the genome is predicted 
to be capable of reconstructing the entire cell 
lineage tree of an organism (Frumkin et al., 2005), 
using methods adapted from organism-level 
phylogenetic analysis (Salipante et al., 2010). Like 
microsatellites, the polyadenylated tracts following 
somatic L1 retrotransposition events are subject to 
frequent polymerase slippage, and therefore, lineages 
defined by a somatic L1 retrotransposition event 
can be further delineated by analyzing poly-A tail 
polymorphisms (Evrony et al., 2015).

Perspective
When designing a lineage tracing experiment, it is 
important to consider the strengths and weaknesses 
of prospective and retrospective approaches. For 
prospective lineage tracing, there must be genetic 
access to the population in question, whether by a 
regionally directed method such as viral injection 
or electroporation, or by population-specific marker 
lines or promoters. Because prospective lineage 
tracing depends on labeling and follow-up analysis, 
its use is restricted to experimental organisms and 
cell-culture systems. Alternately, retrospective 
lineage tracing can investigate lineage directly in 
human tissue, allowing unprecedented access to 
lineage information relevant to human development 
and disease. Currently, retrospective lineage 
tracing relies heavily on sequencing, frequently of 
single cells, and is therefore lower-throughput and 
more expensive than most prospective methods. 
Although emerging prospective lineage systems are 
engineering revolutionary ways to investigate lineage 
in model organisms, it will always be necessary to 
retrospectively map lineage in naturally occurring 
tissues without engineered lineage marks. 

No longer limited to tracing a small number of cells 
with serially diluted dyes, biologists can now access a 
variety of methods for tracing lineage forward from 
the application of a genetic label. Additionally, 
recent advances in sequencing—particularly genome 
sequencing of single cells—allow lineage tracing to 
be performed retrospectively, reconstructing lineage 
decisions that occurred well before sequencing. 
A hundred years after the first investigations of 
cell lineage, developmental biologists have built a 
tremendously enriched genetics toolkit for examining 
the developmental fate decisions that construct a 
whole organism. 
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Introduction
More than a century ago, Ramon y Cajal and others 
speculated that even the most complex functions 
of the human brain—perception, memory, and 
decision-making—might eventually be understood at 
the level of neuronal cell types and their connections 
(Cajal et al., 2002). Since that time, it has become 
increasingly clear that different brain regions 
contain distinct molecularly specified neuronal 
cell types with characteristic morphological and 
electrophysiological properties. Furthermore, these 
different kinds of neurons are arranged in stereotypical 
circuits that are essential to the functions that each 
brain area performs. True understanding of the 
workings of the normal and pathological brain will 
require identification of all the constituent cell types, 
mapping their interconnections, and determining 
their function in vivo.

Approaches to Cell-Type 
Classification
For decades, the gold standard for classification 
of neuronal cell types has been their complex and 
diverse morphology (Cajal et al., 2002; Burkhalter, 
2008; Petilla Interneuron Nomenclature Group 

et al., 2008). In particular, axonal geometry and 
projection patterns have been the most informative 
morphological features for predicting how a neuron 
is integrated into the local circuit (Burkhalter, 2008). 
To better understand the extensive diversity of cell 
types in the neocortex and how they are connected 
into functional circuits, we recently performed a 
census of morphologically defined neuronal types 
(primarily GABAergic interneurons) in adult mouse 
visual cortex layers 1, 2/3, and 5 (L1, L2/3, and 
L5) using octuple simultaneous, whole-cell patch-
clamp recordings, and an improved avidin–biotin–
peroxidase staining technique that allowed detailed 
recovery of axonal and dendritic arbor morphology 
(Fig. 1) (Jiang et al., 2015). We identified 15 major 
types of interneurons, each of which has stereotypical 
electrophysiological properties and morphological 
features and can be differentiated from all others 
by cell-type-specific axonal geometry and axonal 
projection patterns. Notably, each type of neuron has 
its own unique input–output connectivity profile, 
connecting with other constituent neuronal types 
with varying degrees of specificity in postsynaptic 
targets, laminar location, and synaptic characteristics. 
Despite specific connection patterns for each cell 
type, we found that a small number of simple 

Figure 1. Connectivity among morphologically defined cell types in adult neocortex. Left panel, simultaneous octuple whole-cell 
recording to study connectivity followed by morphological reconstruction. Scale bar, 0.1 mm. Middle panel, synaptic connectivity 
among morphologically distinct types of neurons, including pyramidal neurons. Right panel, connectivity from NGCs to other cell 
types. This connectivity is believed to be nonsynaptic and mediated by volume transmission. B, basket cell; BP, bipolar cell; BT, 
bitufted cell; Ch, chandelier cell; D, deep projecting cell; DB, double bouquet cell; E, horizontally elongated cell; M, Martinotti cell; 
NG, neurogliaform cell; P, pyramidal neuron; S, shrub cell. Adapted from Jiang X et al., 2015, Principles of connectivity among 
morphologically defined cell types in adult neocortex, Science 350:aac9462, their Figs. 3A, 6A, and 6B, with permission from 
AAAS.
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connectivity motifs are repeated across layers and 
cell types, defining a canonical cortical microcircuit.

Recent advances in molecular biology, particularly 
high-throughput single-cell RNA-sequencing 
(RNA-seq) (Tang et al., 2009; Sandberg, 2014), have 
begun to reveal the rich genetic programs that give 
rise to cellular diversity (Fishell and Heintz, 2013). 
These advances have enabled de novo identification 
of cell types in many tissues, including neuronal 
subtypes in the retina, neocortex, and hippocampus 
(Macosko et al., 2015; Zeisel et al., 2015; Tasic et 
al., 2016). Unfortunately, it has been difficult to 
reconcile these molecular classification schemes 
with the classical morphologically defined cell types 
(Burkhalter, 2008; Petilla Interneuron Nomenclature 
Group et al., 2008; DeFelipe et al., 2013). Currently 
available transgenic lines for targeting molecular 
subclasses of neurons paint a picture of the cortex 
in broad strokes, with insufficient resolution to 
distinguish many of the known morphologically 
defined cell types. For instance, in our study of 
interneuron subtypes, we recorded from three widely 
used transgenic lines (targeting parvalbumin [PV]–
expressing, somatostatin [SST]–expressing, and 
vasoactive intestinal peptide [VIP]–expressing 
interneurons). We found that each molecular 
class included a number of distinct morphological 
subtypes, some of which were identified in more 
than one molecular class, and some of which were 
not represented in any of the lines (Jiang et al., 
2015). Novel molecular markers and techniques to 
correlate gene expression and morphology at the 
level of single cells are therefore needed to arrive 
at a comprehensive cell-type classification scheme 
that incorporates molecular, morphological, and 
physiological criteria.

Development of the  
Patch-seq Protocol
We developed a protocol called Patch-seq that 
combines whole-cell patch-clamp recordings with 
high-quality RNA-seq of single neurons, and used L1 
of the mouse neocortex as a simple proof of principle 
to demonstrate the feasibility of this approach to 
cell-type classification (Cadwell et al., 2016). L1 is 
known to contain only two main morphological 
classes of neurons, both of which are inhibitory 
interneurons, with their own distinct firing patterns 
and connectivity profiles: elongated neurogliaform 
cells (eNGCs) and single bouquet cells (SBCs) 
(Jiang et al., 2013). Using standard electrophysiology 
techniques in cortical slices, we first generated 

a dataset of 72 L1 interneurons, for which we 
recorded their firing pattern in response to sustained 
depolarizing current and also reconstructed their 
detailed morphology using avidin–biotin–peroxidase 
staining (Figs. 2a, b). Using this as training data, 
we built an automatic cell-type classifier based on 
electrophysiological properties that could predict 
morphological cell class with ~98% accuracy  
(Figs. 2d, e). In a separate set of experiments, we 
patched an additional set of 67 L1 interneurons in 
acute cortical slices using the Patch-seq protocol. 
This protocol makes use of an optimized mechanical 
recording approach (tip size, volume inside pipette, 
etc.) as well as a modified intracellular recording 
solution to extract and preserve as much full-length 
mRNA from each cell as possible (see Cadwell et al., 
2016, for a detailed protocol). For downstream RNA-
seq analysis, we recorded their firing patterns (Fig. 2c) 
and extracted their cell contents until the cell had 
visibly shrunken (Fig. 2g). Each neuron from this 
RNA-seq dataset was assigned to a neuronal class of 
either eNGC or SBC by blinded expert examination 
of the firing pattern and using the automated classifier 
just described. Both classifications were performed 
independently and led to very similar cell-type labels 
(r = 0.91) (Fig. 2f). In addition, we recorded from 32 
L1 interneurons in vivo in anesthetized animals and 
extracted their cell contents for RNA-seq. Large 
fluctuations in the resting membrane potential, likely 
resulting from ongoing activity in the local circuit 
and/or fluctuations in cortical state (Reimer et al., 
2014), made it difficult to classify neurons recorded 
in vivo based on their electrophysiological properties. 
Thus, these cells did not receive a cell-type label. 
Although we aimed to target L1 interneurons, we 
occasionally patched an excitatory neuron (n = 1  
ex vivo; n = 7 in vivo) or astrocyte (n = 1 in vivo) near the 
L1/L2 border. Rather than discarding these samples, 
we proceeded with RNA-seq in the same manner as 
for the L1 interneurons and used them as additional 
controls to validate cell-type-specific markers (see 
below). In addition, each experiment included at 
least one negative control, in which a recording 
pipette was inserted into the tissue but no cell was 
patched. The negative controls were processed in the 
same manner as the rest of the samples to assess the 
amount of background contamination during sample 
collection and amplification.

After harvesting the cell contents, single-cell 
mRNA was converted to cDNA and used to 
generate sequencing libraries following a protocol 
similar to Smart-seq2 (Picelli et al., 2013; Cadwell 
et al., 2016). Libraries with low cDNA yield (<200 
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Figure 2. Two morphologically and electrophysiologically distinct neuronal classes in neocortical L1. a, Schematic of experimental 
approach. QC, quality control. b, Representative examples of the morphology (top) and firing pattern (bottom) of the two main 
types of neurons found in L1: eNGCs (orange) and SBCs (cyan). For morphological reconstructions, the darker outline represents 
the somatodendritic region, and the lighter color is the axonal arbor. Scale bar, 100 μm. For firing patterns, gray lines represent 
current steps used to elicit the firing patterns shown above. Scale bars, 300 ms (horizontal bar), 40 mV and 500 pA (vertical 
bar). Arrows denote prominent after-depolarization in SBCs. c, Neurons recorded using Patch-seq protocol display similar firing 
responses as seen using standard electrophysiological techniques, as shown in b. d, Output of automated cell-type classifier ro-
bustly predicts morphological class based on electrophysiological features. e, Weights of features used in the automated cell-type 
classifier. f, Results of the automated classifier highly correlate with an independent, blinded expert classification of the electro-
physiological properties as “eNGC-like” or “SBC-like”; r = 0.91. g, Example cells before and after RNA extraction. Reprinted with 
permission from Cadwell CR et al., 2016, Electrophysiological, transcriptomic and morphologic profiling of single neurons using 
Patch-seq, Nat Biotech 34:199–203, Fig. 1. Copyright 2016, Nature Publishing Group.
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pg/μl) or poor quality suggesting cDNA degradation 
(<1500 bp mean size) were excluded from further 
analysis (50/108 cells and 32/32 negative controls). 
A higher fraction of in vivo samples was excluded 
(31/40) compared with ex vivo samples (19/68), 
likely because of a combination of lower amounts of 
cDNA obtained as well as increased contamination 
during in vivo sample acquisition (i.e., the pipette 
must penetrate the dura and traverse more tissue in 
order to reach the target cell). We sequenced the 58 
single-cell libraries that met our inclusion criteria; 
they corresponded to 48 L1 interneurons patched in 
slices, 5 L1 interneurons patched in vivo, 1 pyramidal 
neuron patched in slices, 3 pyramidal neurons patched 
in vivo, and 1 astrocyte patched in vivo. Analyses of 
the sequenced libraries revealed that, on average, 
65% of reads mapped uniquely to the mouse genome, 
and 60% of those mapped within exons. As expected, 
the pyramidal neuron and astrocyte samples showed 
clear differences in gene expression compared with 
the L1 interneurons (Fig. 3a) (Cadwell et al., 2016), 
consistent with known cell-type-specific markers 
(Bignami et al., 1972; Marshak, 1990; Chan et al., 
2001; Fremeau et al., 2001). We subsequently focused 
our analyses on the L1 interneurons, which expressed 
interneuron markers including Gad1, Reln, and 
Cplx3 (Alcantara et al., 1998; Stuhmer et al., 2002). 
We detected ~7000 genes per interneuron (Fig. 3b), 
with an average Spearman correlation of 0.59 and 
0.56 between ex vivo and in vivo cells, respectively 
(Fig. 3c). This result was on par with those of high-
quality cDNA libraries used for molecular cell-type 
classification in other tissue types (Jaitin et al., 2014; 
Treutlein et al., 2014) and had a higher detection of 
genes per cell than a recent study using dissociated 
neurons (Zeisel et al., 2015).

Correlation of Morphology, 
Physiology, and Gene Expression 
Using Patch-seq
In order to explore the interneuron transcriptomes 
and to resolve the molecular cell classes in an unbiased 
manner, we performed unsupervised clustering and 
dimensionality reduction analysis using the 3000 
most variable genes. Affinity propagation was used 
to cluster cells in this high-dimensional gene space 
(without prespecifying the number of clusters), and 
we reduced the dimensionality of the data to visualize 
the resulting clusters using t-distributed stochastic 
neighbor embedding (t-SNE). We identified two 
molecular interneuron clusters (Fig. 3d) (Cadwell et 
al., 2016) with high correspondence to the eNGC 
and SBC classification (41/47 cells, 87%) (Figs. 3d, e). 
Random subsampling of the data demonstrated that 
the two cell classes could be robustly distinguished 

using as few as 31 samples. In addition, we asked 
whether we could predict cell class based on single-cell 
gene expression using a regularized generalized linear 
model (GLM). The classifier performed at ~86% 
accuracy for predicting cell type (Fig. 3f). Together, 
these results demonstrate a strong agreement between 
cell-type assignments based on morphological, 
electrophysiological, and transcriptional profiles.

Next we asked whether specific physiological 
properties could also be predicted using single-
neuron gene expression data. We trained a sparse, 
regularized GLM for each of seven quantitative 
electrophysiological measurements using the single-
cell transcriptome data (selecting the most variable 
50–250 genes across cells) as input. Three of these 
measurements (after-hyperpolarization amplitude 
[AHP], after-depolarization amplitude [ADP], and 
action potential [AP] amplitude) could be predicted 
based on differential gene expression, as shown by the 
correlation between cross-validated predictions and 
the ground truth for individual neurons (Figs. 3g–i). 
The remaining variables (membrane time constant, 
adaptation index, AP width, and resting membrane 
potential) could not be modeled using gene 
expression data, suggesting either that variability 
along these features may reflect factors other than 
differential gene expression or that a larger dataset is 
needed to infer these properties from single-cell gene 
expression.

Transcriptome analyses of cells collected in vivo 
assigned many of them to a specific cell class  
(Fig. 3e). They also suggested a shift in gene expression 
compared with cells collected ex vivo (Fig. 3e, second 
t-SNE component [tSNE2]) that may reflect an 
increased stress response in the acute slice preparation 
(e.g., increased Fos expression ex vivo compared with 
in vivo). Notably, these results demonstrate that high-
quality, whole-transcriptome data can be obtained 
even from single neurons in intact animals, and that 
the gene expression profile within a cell class is mostly 
preserved across in vivo and ex vivo preparations. 
Extension of cell-type classification to include 
dynamic functional properties, such as receptive fields 
and tuning properties (which can be measured only 
in vivo) may ultimately lead to better understanding 
of cell types in terms of their role in information 
processing in the cortex.

Identification of Novel Cell-Type 
Markers Using Patch-seq
Cell-type-specific transcriptome data can be used to 
generate improved driver lines for cell-type targeting. 
As noted earlier, current genetic cell-type-specific 
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markers often lack sufficient specificity to capture 
the known diversity of morphological cell classes 
(Burkhalter, 2008; Petilla Interneuron Nomenclature 
Group et al., 2008; Jiang et al., 2015). In the case 
of L1 interneurons, previous studies have suggested 
that late-spiking eNGCs express Reelin, whereas 
burst-spiking SBCs express vasoactive intestinal 
peptide (VIP) (Miyoshi et al., 2010). However, other 

studies have shown that Reelin is found in similar 
proportions of both cell types, and only ~20% of 
burst-spiking cells express VIP (Ma et al., 2014). We 
found that neither of these markers was very useful for 
distinguishing eNGCs from SBCs at the mRNA level 
(Fig. 4a). This finding calls into question whether 
single-neuron reverse transcriptase (RT)–PCR and 
protein-level studies are well suited for predicting 

Figure 3. Single-neuron transcriptome profiles predict cell type and electrophysiological properties. a, Clustering analysis sepa-
rates interneurons (blue dendrogram subtree) from other neuronal classes (green dendrogram subtree, includes four pyramidal 
neurons and one astrocyte) based on marker gene expression. Two L1 interneurons clustered with non-interneuron cell types, 
indicating possible contamination of these samples, and so these two cells were excluded from our analysis of interneuron sub-
types. b, Number of genes detected per neuron using two different expression thresholds, shown for both ex vivo and in vivo 
collection methods. c, Pairwise Spearman correlation across all detected genes for ex vivo and in vivo patched interneurons. d, Two- 
dimensional t-SNE representation of gene expression for all L1 interneurons. Cells are colored according to affinity propagation– 
based clustering in gene space spanned by the 3000 most variable genes before dimensionality reduction. e, The same two-
dimensional map as in d, but with cells color-coded according to expert classification of cell type based on electrophysiological 
properties. Performance of GLMs using single-neuron gene expression to predict cell type (f), ADP (g), AHP (h), or AP amplitude (i). 
RPKM, reads per kilobase of transcript per million reads. Reprinted with permission from Cadwell CR et al., 2016, Electrophysiologi-
cal, transcriptomic and morphologic profiling of single neurons using Patch-seq, Nat Biotech 34:199–203, Fig. 2. Copyright 2016, 
Nature Publishing Group.
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which mRNA transcripts are differentially expressed 
between cell types. Using single-cell differential 
expression (SCDE) analysis (Kharchenko et al., 
2014), we identified several genes that are strongly 
differentially expressed between the two cell types 
(Fig. 4b). These genes have the potential to serve as 
more robust cell-type markers and facilitate future 
studies on the functional roles of these cell types in 
the cortical microcircuit.

Patch-seq Provides Insight 
Into Mechanisms of Synaptic 
Specificity and Disease 
Pathophysiology
In the past several decades, we have witnessed a 
revolution in human genetics that has revealed 
hundreds of gene mutations that correlate with 
neuropsychiatric disorders such as autism spectrum 

Figure 4. Differential gene expression analysis reveals novel markers for L1 interneuron classes. a, Box plots summarize the 
cell-type expression level of previously proposed marker genes (Vip and Reelin). b, Box plots with expression levels across cell 
types for novel differentially expressed genes identified between the two affinity propagation clusters. c, Significant gene ontol-
ogy categories from GSEAs on ranked genes from SCDE analysis of SBCs and eNGCs. The gene matrix illustrates gene overlap 
among categories; the bar plot shows the false discovery rates (FDR), and the numbers indicate normalized enrichment scores per 
category from GSEA. RPKM, reads per kilobase of transcript per million reads. Reprinted with permission from Cadwell CR et al., 
2016, Electrophysiological, transcriptomic and morphologic profiling of single neurons using Patch-seq, Nat Biotech 34:199–203, 
Fig. 3. Copyright 2016, Nature Publishing Group.
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disorders, schizophrenia, and depression. Many of 
these disease-related genes have been linked to 
synapse formation and function (Spooren et al., 2012; 
Delorme et al., 2013). However, the expression of 
disease-associated genes has not been systematically 
mapped to specific cell types or circuits. Knowing 
which cell type(s) a disease-associated gene is 
expressed in is crucial to understanding the disease 
mechanism and developing novel therapeutic 
strategies (Siegert et al., 2012). Moreover, having 
reference transcriptomes for different neuronal cell 
types will facilitate cell-type engineering through the 
reprogramming of pluripotent stem cells into specific 
types of neurons and could lead to more principled 
treatments for neurological disorders.

In our study of L1 interneurons, gene set enrichment 
analysis (GSEA) revealed that genes involved in 
cell–cell signaling (transmembrane and extracellular 
proteins, receptors, ion channels, and intracellular 
signaling molecules) were particularly upregulated 
in SBCs, whereas genes involved in RNA processing 
and mitochondrial function were upregulated in 
eNGCs (Fig. 4c). These findings are consistent 
with previous reports that eNGCs communicate 
nonspecifically with all cell types using volume 
transmission, whereas SBCs form highly selective 
synapses onto particular neuronal types (Olah et 
al., 2009; Jiang et al., 2013, 2015). In particular, 
our results predict that increased expression of cell 
adhesion molecules (including CDH18 [cadherin 
18], CDH4, and ALCAM [activated leukocyte cell 
adhesion molecule]) and synaptic regulatory proteins 
(such as SYNDIG1 [synapse differentiation inducing 
1]) may play an important role in shaping the synaptic 
specificity of SBCs (Jiang et al., 2013, 2015). Taken 
together, these results demonstrate that whole-
transcriptome profiling of patched neurons is a useful 
approach to identify novel, unpredicted mechanisms 
of synaptic specificity.

A number of the differentially expressed genes we 
identified are also associated with human disease. 
For example, the genes encoding the transcription 
factors NPAS1 (neuronal PAS domain protein 1) 
and NPAS3 are highly expressed in SBCs but not in 
eNGCs (Fig. 4b). Notably, these proteins have been 
implicated in autism spectrum disorders (ASD) and 
schizophrenia and were previously shown to regulate 
the generation of specific neocortical interneurons 
(Macintyre et al., 2010; Stanco et al., 2014). SBCs 
also preferentially express Dpp6 (dipeptidylpeptidase 
6) and Cplx2 (complexin 2) (Fig. 4b). DPP6 is an 
auxiliary subunit of the Kv4 family of voltage-gated K+ 
channels implicated in ASD that regulates channel 

function and dendrite morphogenesis (Lin et al., 
2013), whereas CPLX2 is a presynaptic protein linked 
to schizophrenia that controls neurotransmitter 
release and presynaptic differentiation (Brose, 2008). 
Our observation that four disease genes implicated in 
neuropsychiatric illness are significantly upregulated 
in SBCs, combined with previous studies suggesting 
that SBCs may play an important role in the detection 
of salient sensory information and the mediation of 
top-down influences (Jiang et al., 2013), raises the 
question of whether SBC dysfunction may contribute 
to the pathophysiology of autism and schizophrenia. 
The ability to map disease-associated genes onto 
specific neuronal cell types will lay the foundation 
for a more principled, circuit-level understanding of 
neuropsychiatric disorders.

Conclusions and Future Directions
Generating a complete census of neocortical 
cell types that integrates morphological, 
electrophysiological, and gene expression data into a 
cohesive classification scheme presents a tremendous 
challenge for the field of neuroscience. We have 
developed a technique to bridge these three distinct 
modalities, bringing them into a common framework 
by combining whole-cell patch-clamp recordings 
and high-quality RNA-sequencing of individual 
neurons. Using Patch-seq, we demonstrated that 
cellular morphology, physiology, and gene expression 
can be integrated at the single-cell level to generate 
a comprehensive profile of neuronal cell types, using 
neocortical L1 interneurons as a proof of principle. 
In addition, we identified several molecular markers 
that can be used to target these cell types for further 
study, generate new hypotheses regarding the 
molecular mechanisms of their synaptic specificity, 
and link specific cell types to neuropsychiatric 
illness. Notably, this approach can be used broadly to 
characterize neuronal cell types in any brain region, 
in different mouse models of disease, and even in 
nongenetically tractable organisms such as primates. 
We hope that the ability to perform unbiased, whole-
genome transcriptome analysis and to physiologically 
characterize individual neurons will help to resolve 
long-standing questions in the field of neuroscience 
and initiate entirely new directions of investigation.
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Introduction
In the mammalian brain, the neocortex is essential 
for sensory, motor, and cognitive behaviors. 
Although different cortical areas have dedicated 
roles in information processing, they exhibit a similar 
layered structure, with each layer harboring distinct 
neuronal populations (Harris and Shepherd, 2015). 
In the adult cortex, many types of neurons have 
been identified by characterizing their molecular, 
morphological, connectional, physiological, and 
functional properties (Sugino et al., 2006; Rudy et 
al., 2011; DeFelipe et al., 2013; Greig et al., 2013; 
Sorensen et al., 2013). Despite much effort, however, 
objective classification on the basis of quantitative 
features has been challenging, and our understanding 
of the extent of cell-type diversity remains incomplete 
(Toledo-Rodriguez et al., 2004; DeFelipe et al., 2013; 
Greig et al., 2013).

Cell types can be preferentially associated with 
molecular markers that underlie their unique 
structural, physiological, and functional properties, 
and these markers have been used for cell classification. 
Transcriptomic profiling of small cell populations 
from fine dissections (Belgard et al., 2011; Hawrylycz 
et al., 2012) on the basis of cell surface (Cahoy et 
al., 2008; Zhang et al., 2010) or transgenic markers 
(Sugino et al., 2006; Doyle et al., 2008) has been 
informative; however, any population-level profiling 
obscures potential heterogeneity in collected cells. 
Recently, robust and scalable transcriptomic single-
cell profiling has emerged as a powerful approach 
to characterization and classification of single cells, 
including neurons (Pollen et al., 2014; Usoskin et 
al., 2014; Macosko et al., 2015; Zeisel et al., 2015). 
We used single-cell RNA-sequencing (RNA-seq) 
to characterize and classify >1600 cells from the 
primary visual cortex in adult male mice. The 
annotated dataset and a single-cell gene expression 
visualization tool are freely accessible via the Allen 
Brain Atlas data portal (http://casestudies.brain-
map.org/celltax).

Cell-Type Identification by Single-
Cell Transcriptomics
To minimize the potential variability in cell types 
that results from differences in cortical region, 
age, and sex, we focused on a single cortical area 
in adult (8-week-old) male mice. We selected the 
primary visual cortex (VISp or V1), which receives 
and transforms visual sensory information and is 
one of the main models for understanding cortical 
computation and function (Glickfeld et al., 2014). 
To access both abundant and rare cell types in VISp, 
we selected a set of 24 transgenic mouse lines in 

which Cre, Dre, or Flp recombinases are expressed in 
specific subsets of cortical cells (Tasic et al., 2016). To 
isolate individual cells for transcriptional profiling, 
we sectioned fresh brains from adult transgenic 
male mice; microdissected the full cortical depth, 
combinations of sequential layers, or individual 
layers (L1, 2/3, 4, 5, and 6) of VISp; and generated 
single-cell suspensions using a previously published 
procedure (Sugino et al., 2006; Hempel et al., 2007) 
with some modifications (Fig. 1a) (Tasic et al., 
2016). We developed a robust procedure for isolating 
individual adult live cells from the suspension by 
fluorescence-activated cell sorting (FACS); reverse-
transcribed and amplified full-length poly(A)-RNA 
using the SMARTer protocol (SMARTer Ultra 
Low RNA Kit for Illumina Sequencing, Clontech, 
Mountain View, CA); converted the cDNA into 
sequencing libraries by tagmentation (Nextera XT, 
Illumina, San Diego, CA); and sequenced them using 
next-generation sequencing (NGS) (Fig. 1a). We 
established quality control (QC) criteria to monitor 
the experimental process and data quality (Tasic et 
al., 2016). Our final QC-qualified dataset contains 
1679 cells, with >98% of cells sequenced to a depth 
of ≥5,000,000 total reads (median, ~8,700,000; 
range, ~3,800,000–84,300,000).

To identify cell types, we developed a classification 
approach that takes into account all expressed genes 
and is agnostic as to the origin of cells (Fig. 1b). Briefly, 
we applied two parallel and iterative approaches for 
dimensionality reduction and clustering, iterative 
principal component analysis (PCA), and iterative 
weighted gene coexpression network analysis 
(WGCNA); we then validated the cluster membership 
from each approach using a nondeterministic machine 
learning method (random forest). The results from 
these two parallel cluster identification approaches 
were intersected and subjected to another round  
of cluster membership validation. This step assessed 
the consistency of individual cell classification: we 
refer to the 1424 cells that were consistently classified 
into the same cluster as “core cells” and refer to the 
255 cells that were classified into more than one 
cluster by the random forest approach as “intermediate 
cells” (Fig. 1b).

This analysis segregated cells into 49 distinct core 
clusters (Fig. 1c). On the basis of known markers 
for major cell classes, we identified 23 GABAergic 
neuronal clusters (Snap25+, Slc17a7−, Gad1+); 19 
glutamatergic neuronal clusters (Snap25+, Slc17a7+, 
Gad1−); and 7 non-neuronal clusters (Snap25−, 
Slc17a7−, Gad1−) (Fig. 1c).We assigned location and 
identity to cell types within VISp on the basis of three 
complementary lines of evidence: layer-enriching 
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Figure 1. Workflow overview and cell-type identification. a, Experimental workflow started with the isolation, sectioning, and 
microdissection of the primary visual cortex from a transgenic mouse. The tissue samples were converted into a single-cell sus-
pension; single cells were isolated by FACS; poly(A)-RNA from each cell was reverse transcribed (RT); and cDNA was amplified 
(SMARTer protocol, Clontech), tagmented (Nextera XT, Illumina), and sequenced on an NGS platform. b, Analysis workflow 
started with the definition of high-variance genes and iterative clustering based on two different methods—PCA (shown here) 
and WGCNA—and cluster membership validation using a random forest classifier. Cells that are classified consistently into one 
cluster are referred to as “core cells” (N = 1424), whereas cells that are mapped to more than one cluster are labeled as “inter-
mediate cells” (N = 255). After the termination criteria are met, clusters from the two methods are intersected and iteratively 
validated until all core clusters contain at least four cells. c, The final 49 clusters were assigned an identity based on cell location 
and marker gene expression. Each type is represented by a color bar with the name and number of core cells representing that 
type. The violin plots represent distribution of mRNA expression on a linear scale, adjusted for each gene (maximum RPKM on the 
right), for major known marker genes: Snap25 (pan-neuronal); Gad1 (pan-GABAergic); Vip, Sst, and Pvalb (GABAergic); Slc17a7 
(pan-glutamatergic); Rorb (mostly L4 and L5a); Foxp2 (L6); Aqp4 (astrocytes); Pdgfra (OPCs); Mog (oligodendrocytes); Itgam 
(microglia); Flt1 (endothelial cells); and Bgn (SMCs). RPKM, reads per kilobase per million. Reprinted with permission from Tasic B  
et al. (2016), Adult mouse cortical cell taxonomy revealed by single cell transcriptomics, Nature Neuroscience 19:335–346, their 
Fig. 1. Copyright 2016, Nature Publishing Group.
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dissections from specific Cre lines, expression of 
previously reported and/or newly discovered marker 
genes in our RNA-seq data, and localized expression 
patterns of marker genes determined using RNA in 
situ hybridization (ISH) (Tasic et al., 2016).

Our single-cell analysis detects most previously 
known marker genes and identifies many new 
differentially expressed genes. For a select set of 
markers, we used single-label and double-label 
RNA ISH and quantitative reverse transcription 
PCR (qRT-PCR) to confirm predicted specificity 
of marker expression or cell location obtained from 
layer-enriching dissections (Tasic et al., 2016). 
Our Cre line–based approach also enabled the 
characterization of these lines’ specificity, thereby 
informing their proper use for labeling and perturbing 
specific cellular populations (Taniguchi et al., 2011; 
Olsen et al., 2012; Harris et al., 2014; Huang, 
2014). In general, we found that the examined Cre 
lines mostly label the expected cell types based on 
promoters and other genetic elements that control 
Cre recombinase expression in each line; however, 
all but one Cre line (Chat-IRES-Cre) labeled more 
than one transcriptomic cell type (Tasic et al., 2016).

Cortical Cell Types: Markers  
and Relationships
To provide an overall view of the transcriptomic cell 
types that we identified, we integrated our data into 
constellation diagrams that summarize the identity, 
select marker genes, and putative location of these 
types along the pia-to-white-matter axis (Figs. 2a–c). 
In these diagrams, each transcriptomic cell type is 
represented by a disk whose surface area corresponds 
to the number of core cells in our dataset belonging 
to that type. Intermediate cells are represented 
by lines connecting the disks; the line thickness is 
proportional to the number of intermediate cells. We 
separately present GABAergic, glutamatergic, and 
non-neuronal constellations because we detected 
only a single intermediate cell between these 
major classes. This mode of presentation paints the 
overall phenotypic landscape of cortical cell types 
as a combination of continuity and discreteness: 
the presence of a large number of intermediate cells 
between a particular pair of core types suggests a 
phenotypic continuum, whereas a lack of intermediate 
cells connecting one type to others suggests its more 
discrete character (Figs. 2a–c). We represent the 
overall similarity of gene expression between the 
transcriptomic cell types by hierarchical clustering of 
groups of their core cells based on all genes expressed 
above a variance threshold (Fig. 2d). These two views 
of transcriptomic cell types are complementary: one 

shows the extent of intermediate phenotypes, and the 
other shows the overall similarity in gene expression 
among cluster cores.

We identified 18 transcriptomic cell types belonging 
to three previously described major classes of 
GABAergic cells named after the corresponding 
markers Vip (vasoactive intestinal peptide), Pvalb 
(parvalbumin), and Sst (somatostatin) (Gonchar et 
al., 2008; Xu et al., 2010; Rudy et al., 2011). In a 
substantial portion of these cells, we detected more 
than one of these markers; however, our method, 
which takes into account genome-wide gene 
expression, usually classified these double-expressing 
cells into the major type corresponding to the most 
highly expressed major marker in that cell.

We identified five additional GABAergic types. In 
accord with a previous report (Pfeffer et al., 2013), 
we detected Tnfaip8l3 and Sema3c in these types. We 
named two of them on the basis of a gene for a putative 
neuropeptide—neuron-derived neurotrophic factor 
(Ndnf)—and we found that they corresponded to 
neurogliaform cells (Tasic et al., 2016). We refer 
to the three other types according to markers they 
express: synuclein gamma (Sncg), interferon gamma–
induced GTPase (Igtp), and SMAD family member 
3 (Smad3).

Beyond the major types, correspondence of our 
transcriptomic types to those previously described in 
the literature was not straightforward and relied on 
the existence of a Rosetta stone: a shared reagent, 
feature, or molecular marker with unambiguous 
translational power. Potential inferences on 
correspondence to previously proposed types were 
further complicated by previous studies’ use of a 
variety of animal models, at various ages, focusing on 
different cortical areas and a few molecular markers 
(Rudy et al., 2011; DeFelipe et al., 2013).

We found only one Sst type (Sst-Cbln4) that was 
prevalent in upper cortical layers, whereas all the 
other Sst types appeared to be enriched in lower 
layers (Fig. 2a) (Tasic et al., 2016). On the basis of 
upper-layer enrichment and Calb2 expression of the 
Sst-Cbln4 type, we propose that it likely corresponds 
to previously characterized Calb2-positive Martinotti 
cells that are enriched in the upper cortical layers 
(Xu et al., 2006) and are fluorescently labeled in 
transgenic GIN (GABAergic interneuron) mice 
(Oliva et al., 2000). Our analysis revealed only one 
additional Calb2-positive Sst type, which we refer 
to as Sst-Chodl. On the basis of the expression of 
tachykinin-receptor 1 (Tacr1), neuropeptide Y 
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Figure 2. Cell-type summary and relationships. a–c, Constellation diagrams showing core and intermediate cells for all cell types. 
Core cells (N = 1424; 664 GABAergic, 609 glutamatergic, and 151 non-neuronal) are represented by colored disks with areas 
corresponding to the number of core cells for each cluster. Linked tags include cell-type names based on marker genes and layers; 
unique markers are in red. Intermediate cells (N = 255; 97 GABAergic, 155 glutamatergic, and 3 non-neuronal) are represented 
by lines connecting disks; line thickness corresponds to the number of such cells. a, GABAergic types are grouped according to 
major classes and arranged by their preferential location (enrichment) in upper versus lower cortical layers. Up and down arrows 
in disks represent statistically significant enrichment determined by layer-enriching dissections. Locations for other clusters are 
estimates that combine marker gene expression or Cre-line expression based on RNA ISH. The position at the border of upper 
and lower layers represents lack of evidence for location preference. b, Glutamatergic types are arranged according to cortical 
layer. c, Non-neuronal types share few intermediate cells with one another. 96*Rik, 9630013A20Rik. d, Dendrogram depicting 
relatedness of the mean gene expression pattern for all cell types based on core cells (N = 1424) and genes (N = 13,878) with 
SD for expression >1 across all types. The distance metric is Pearson’s correlation coefficient over the genes in the log10(RPKM+1) 
space. The tree was generated using standard hierarchical clustering with average linkage. RPKM, reads per kilobase per million. 
Reprinted with permission from Tasic B et al. (2016), Adult mouse cortical cell taxonomy revealed by single cell transcriptomics, 
Nature Neuroscience 19:335–346, their Fig. 4. Copyright 2016, Nature Publishing Group.
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(Npy), high levels of nitric oxide synthase (Nos1), 
and the absence of Calb1 (Tasic et al., 2016), we 
concluded that this type most likely corresponds to 
Nos1 type I neurons (Seress et al., 2005). Nos1 type I  
neurons are enriched in L5 and 6 (Lee and Jeon, 
2005) and are likely long-range projecting (Tomioka 
et al., 2005), sleep-active neurons (Gerashchenko et 
al., 2008).

The Pvalb types are highly interconnected in 
the constellation diagrams (Fig. 2a). Using layer-
enriching dissections, we found that some types were 
preferentially present in upper (Pvalb-Tpbg, Pvalb-
Tacr3, Pvalb-Cpne5) or lower (Pvalb-Gpx3 and 
Pvalb-Rspo2) layers (Tasic et al., 2016). To relate our 
transcriptomic types to previously described Pvalb 
types, we isolated cells from the upper layers of the 
Nkx2 .1-CreERT2 line, which, when induced with 
tamoxifen perinatally, labels a subset of neocortical 
interneurons, including chandelier cells (Taniguchi 
et al., 2013). Our analysis classified cells from this 
line in all three upper layer–enriched Pvalb types 
(Tasic et al., 2016). We suggest that Pvalb-Cpne5 
corresponds to chandelier cells for several reasons: 
it was most transcriptionally distinct among Pvalb 
types, it was enriched in upper layers, and it did not 
express Etv1 (also known as Er81), as previously 
shown for chandelier cells (Dehorter et al., 2015).

The Vip major class can be divided into several 
transcriptomic cell types, all of which appeared to 
be enriched in upper cortical layers, except the Vip-
Gpc3 type (Fig. 2a). In accord with previous reports 
(von Engelhardt et al., 2007; Gonchar et al., 2008), 
our Vip-Chat transcriptomic type was located in 
upper cortical layers and displayed unique expression 
of choline acetyltransferase (Chat) in Vip-positive 
cells. These cells have been reported to either express 
(von Engelhardt et al., 2007) or not express Calb2 at 
the protein level (Gonchar et al., 2008); we found 
that they robustly expressed Calb2 mRNA.

For glutamatergic cells, we identified six major classes 
of transcriptomic types—L2/3, L4, L5a, L5b, L6a, and 
L6b—on the basis of the layer-specific expression of 
marker genes and layer-enriching dissections (Fig. 2b); 
this is consistent with many previous studies (Lein et 
al., 2007; Molyneaux et al., 2007; Greig et al., 2013; 
Sorensen et al., 2013). We discovered subdivisions 
among all of these layer-specific major types. In 
L2/3, we identified two major types, one of which 
(L2-Ngb) appeared to be located more superficially 
based on marker gene expression (for example, Ngb, 
Fst, Syt17, and Cdh13). In L4, we identified three 
types (L4-Ctxn3, L4-Scnn1a, and L4-Arf5) with 

high gene expression similarity (Fig. 2d) and a large 
number of intermediate cells (Fig. 2b). We identified 
eight different transcriptomic types in L5. Four of 
these types expressed the L5a marker Deptor (L5a-
Hsd11b1, L5a-Tcerg1l, L5a-Batf3, and L5a-Pde1c), 
whereas three expressed the L5b marker Bcl6 (L5b-
Cdh13, L5b-Tph2, and L5b-Chrna6). One of these 
L5b types (L5b-Chrna6), together with the L5-Ucma 
type, appeared most distinct among L5 types, on the 
basis of both gene expression and the small number of 
intermediate cells between them and other L5 types 
(Fig. 2b). We identified six transcriptomic cell types 
in L6: four L6a types and two L6b types. Among L6a 
types, two highly related types (L6a-Sla and L6a-
Mgp) expressed the marker Foxp2 (Molyneaux et 
al., 2007; Zeng et al., 2012; Sorensen et al., 2013) 
and were derived primarily from the Ntsr1-Cre line, 
whereas the other two (L6a-Syt17 and L6a-Car12) 
did not express Foxp2 and were isolated as tdT− cells 
from L6 of the same Cre line. For the latter two types, 
we discovered several new markers that can be used 
to identify them (Car12, Prss22, Syt17, and Penk). 
The two L6b types (L6b-Serpinb11 and L6b-Rgs12) 
expressed the known L6b marker Ctgf (Molyneaux 
et al., 2007; Zeng et al., 2012; Sorensen et al., 2013) 
and several other previously identified L6b markers 
(e.g., Trh, Tnmd, and Mup5) (Sorensen et al., 2013).

Despite the neuronal focus of this study, our sampling 
strategy captured enough cells to identify the major 
non-neuronal classes. We found seven non-neuronal 
types: astrocytes, microglia, oligodendrocyte 
precursor cells (OPCs), two types of oligodendrocytes, 
endothelial cells, and smooth muscle cells (SMCs). 
In accord with previous population-level studies 
(Cahoy et al., 2008; Zhang et al., 2014), these types 
could be distinguished by many combinatorial and 
unique markers (Figs. 1c and 2c).

Discussion and Outlook
The adult mouse visual cortex contains ~1,000,000 
cells, of which approximately half are neurons 
(Herculano-Houzel et al., 2013) that can be divided 
into glutamatergic (80%) and GABAergic cells 
(20%) (DeFelipe, 2002). Our description of the 49 
transcriptomic cortical cell types includes all the 
major types reported in the literature, some additional 
new types, as well as subdivisions among the major 
types. Our approach also provides an experimental 
and computational workflow to systematically catalog 
cell types in any region of the mouse brain and relate 
them to the tools used to examine those cell types 
(Cre lines and viruses). The discovery of new marker 
genes enables the generation of new specific Cre lines 
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and provides guidance for intersectional transgenic 
strategies (Tasic et al., 2016) to enable specific access 
to cortical cell types that do not express unique 
marker genes.

Our method relies on dissociation and FACS isolation 
of single cells, thereby exposing them to stress that 
might lead to changes in gene expression. However, 
in our dataset, the majority of marker genes showed 
excellent correspondence to RNA ISH data from the 
Allen Brain Atlas (Lein et al., 2007) (~72% of 228 
examined genes), suggesting that our procedure did 
not markedly alter the transcriptional signatures of 
cell types. Most of the other examined transcripts in 
this set, which appeared to be very specific markers 
based on RNA-seq and qRT-PCR (for example, 
Chodl), were not detected by the Allen Brain Atlas 
in VISp. This discrepancy is probably a consequence 
of low sensitivity for a subset of ISH probes.

To classify cells based on their transcriptomes, 
we used two iterative clustering methods and one 
machine learning–based validation method. The 
latter assessed the robustness of cluster membership 
for each cell and suggested the existence of cells with 
intermediate transcriptomic phenotypes. Previous 
studies either excluded intermediate cells explicitly 
(Macosko et al., 2015) or allowed cells to have only 
a single identity (Usoskin et al., 2014; Pollen et 
al., 2015; Zeisel et al., 2015). We chose to develop 
a data analysis approach that accommodates these 
intermediate cells, as they may be a reflection of actual 
phenotypic continua. However, as in any approach, 
both biological and technical aspects contributed 
to our datasets. For example, similarly to a previous 
single-cell transcriptomic study (Zeisel et al., 2015), 
we estimate that we detected only ~23% of mRNA 
molecules present in a cell (Tasic et al., 2016). Use 
of a highly efficient transcriptomic method that 
sampled the cells in their native environment and 
in proportion to their abundance would provide 
a more complete and accurate description of the 
transcriptomic cell-type landscapes. Inclusion of 
additional cells, even with the current method, is 
likely to segregate some of the types we defined here 
into additional subtypes. This subdivision is already 
apparent in our dataset, as we observed more subtypes 
if we decreased the threshold for the minimal number 
of core cells required to define a type (Tasic et al., 
2016). In contrast, additional cell sampling may also 
reveal previously undetected intermediate cells that 
would define new continua between discrete types. 
Finally, although we attempted to cover all major 

types by choosing a variety of Cre lines, including 
pan-glutamatergic and pan-GABAergic lines, it is 
still possible we did not sample some rare types.

We used substantially deeper sequencing per cell 
than several other studies did (Jaitin et al., 2014; 
Pollen et al., 2014; Macosko et al., 2015). One of 
the main advantages of low-depth sequencing is 
reduction of experimental cost. However, we note 
that when we downsampled our data from full depth 
to 1,000,000 or 100,000 mapped reads per cell, we 
lost the power to detect many types (Tasic et al., 
2016). Thus, when subsampling to 100,000 reads, 
we found only 35 types instead of 49. This decrease 
in resolution could be compensated for by sampling 
many more cells, but the appropriate balance 
between sequencing depth and cell number depends 
on a variety of factors, including the selected RNA-
seq method, informative transcript abundance, tissue 
and cell-type abundance/accessibility, and desired 
resolution between cell types.

Our results suggest many new directions for further 
investigation. At the forefront is the question of the 
correspondence and potential causal relationships 
between transcriptomic signatures and specific 
morphological, physiological, and functional 
properties. Are certain transcriptomic differences 
representative of cell state or activity, rather than 
cell type? In fact, is there a clear distinction between 
the state and the type? For example, recent evidence 
suggests that Pvalb basket cells acquire specific firing 
properties in an activity-dependent manner that 
may result in a continuum of basket-cell phenotypes 
(Dehorter et al., 2015), perhaps mirroring the 
large numbers of intermediate cells that we found 
for upper-layer Etv1(Er81)–positive Pvalb cells 
(Fig. 2a). Although these questions await further 
studies, our approach provides an overview of adult 
cell types in a well-defined cortical area based on a 
highly multidimensional dataset and is an essential 
step toward understanding the most complex animal 
organ—the mammalian brain.
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NOTESIntroduction
The cell and the genome represent two of the 
fundamental units in biology. The evolution of 
multicellular organisms relied on the ability of 
individual cells to adopt distinct morphologies, 
physiological properties, and functional states by 
utilizing the same genome in different ways through 
diverse transcriptional regulation mechanisms. 
However, until recently, technical limitations 
prevented large-scale analysis of gene expression 
signatures in individual cells. Instead, unbiased 
sampling of the transcriptome required combining 
thousands or millions of cells. The average landscape 
of gene expression from a mixture of cells may 
obscure the distinct molecular features of diverse cell 
types or states. Recent advances in microfluidics and 
molecular biology now enable routine transcriptional 
profiling from single cells using high-throughput 
sequencing. These advances support powerful 
strategies for decoding the mutations, genes, and 
pathways that distinguish diverse cell lineages and 
cell types. Here we discuss how we have applied 
single-cell RNA sequencing (scRNA-seq) to studying 
the development of the human nervous system.

Astonishing Diversity
More than 100 years ago, Ramon y Cajal appreciated 
the astonishing diversity of cells in the nervous 
system, using silver stains to visualize single 
cells (Cajal, 2002). Cajal likened himself to an 
entomologist searching for colorful butterflies, “whose 
beating of wings may one day reveal to us the secrets 
of the mind” (Garcia-Lopez, 2012). We now know 
that the human cerebral cortex contains more than  
16 billion neurons and even more non-neuronal cells 
(Herculano-Houzel, 2009) distributed across dozens 
of cortical areas, and that a single region of mouse 
cortex may contain more than 40 cell types (Petilla 
Interneuron Nomenclature Group et al., 2008; Zeisel 
et al., 2015; Tasic et al., 2016) distributed across six 
layers. These diverse neuronal cell types emerge from 
an initially homogenous neuroepithelium during 
embryonic development.

In human development, the primordial forebrain 
emerges at around gestational week 7 (GW7) after 
sequential waves of induction and patterning of the 
neural tube. Neuroepithelial stem cells undergo 
symmetric expansive divisions as the neural tube 
grows before giving rise to the founder neural stem cell 
population of radial glia along the ventricular zone 
(VZ) at ~GW11. These ventricular radial glia (vRG) 
can divide asymmetrically to generate intermediate 
progenitor cells (IPCs) that will subsequently give 

rise to postmitotic neurons (Fig. 1A). In early 
development, radial glia in the dorsal forebrain 
generate glutamatergic neurons that migrate to deep 
cortical layers and generally project to subcortical 
regions, whereas neurons born at later stages migrate 
to upper cortical layers and tend to project to neurons 
within the cortex. In contrast, inhibitory cortical 
interneurons are generated by radial glia in the ventral 
forebrain and migrate tangentially toward the cortical 
plate (Fig. 1B).

The human neocortex also contains a second 
population of radial glia cells concentrated in the 
outer subventricular zone (OSVZ) that emerge 
around GW14, and are rarely observed in mouse. 
These outer radial glia (oRG) cells differ from vRG 
cells with respect to position, morphology, and 
dynamic cell behavior during cell division (Hansen et 
al., 2010) (Fig. 1C). In the VZ, vRG cells are bipolar 
and possess apical processes that directly contact 
the lateral ventricle and transduce signals from the 
CSF. These signals are critical for their survival, 
proliferation, and neurogenic capacity (Lehtinen 
et al., 2011). In synchrony with the cell cycle, cell 
bodies of vRG cells undergo interkinetic nuclear 
migration (INM) (Fig. 1C). In contrast, oRG cells 
have unipolar morphology, lack apical junctions, 
and undergo a distinct dynamic behavior—mitotic 
somal translocation (MST)—that directly precedes 
cytokinesis (Hansen et al., 2010) (Fig. 1C). Thus, 
vRG and oRG cells reside in distinct niches defined 
by differences in anatomical location, provision 
of growth factors, and their ability to be further 
distinguished based on morphology and cell behavior 
(Fietz et al., 2010). Although oRG cells are able to 
generate the majority of cortical neurons (Smart et 
al., 2002), the molecular features sustaining neural 
stem cell properties of oRG cells in the OSVZ niche 
are largely unknown, and the long-term proliferative 
capacity of these cells has not been examined.

Applying Single-Cell RNA 
Sequencing to Developmental 
Heterogeneity
We sought to identify genes and pathways 
distinguishing vRG and oRG cells during cortical 
development (Pollen et al., 2015). Previous studies 
attempted to find markers for oRG cells by comparing 
gene expression between microdissected samples 
(Fietz et al., 2012; Miller et al., 2014) or between cell 
populations expressing particular surface proteins 
(Florio et al., 2015; Johnson et al., 2015). However, 
inferring the oRG signature in heterogeneous tissue 
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Figure 1. Single-cell mRNA-seq reveals molecular heterogeneity among cells in the developing human brain. A, B, Schemat-
ics show major modes of neurogenesis of cortical neurons. C, Comparison of the closely related radial glia subpopulations. D, 
Strategy for unbiased sampling of single cells from the germinal zone. E, Unbiased clustering of 393 single cells highlights major 
cell populations distinguished by nonoverlapping patterns of marker gene expression. F, Overlapping patterns of radial glia and 
neuronal marker gene expression highlight IPCs as the intermediate step during neurogenesis. G, H, Iterative analysis of the mo-
lecular variation within classically defined radial glia reveals cell cycle as the dominant source of transcriptional variation. I, CRYAB 
is a candidate G1 marker in vRG cells expressed in cells that do not express M-phase marker pHH3 or incorporate S-phase-specific 
BrdU tracer. J, K, Stem cell niche contributed to transcriptional variation within radial glia and highlights candidate vRG and oRG 
marker genes. TPM, transcripts per million. L–N, Ideal vector correlation analysis identifies radial glia subtype–specific genes. CP, 
cortical plate; IZ, intermediate zone; MZ, marginal zone; SG, subpial granular layer; SP, subplate. Adapted with permission from 
Pollen AA et al. (2015) Molecular identity of human outer radial glia during cortical development, Cell 163:55–67, their Figs. 1, 
2, and 3. Copyright 2015, Elsevier.
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expression in single cells captured from the VZ 
and OSVZ without additional enrichment steps for 
specific cell types. We then isolated radial glia from 
other cell types in silico by analyzing thousands of 
genes that vary across cell types (Zeisel et al., 2015) 
and examined the major sources of variation among 
radial glia. In contrast to this approach of capturing 
diverse cell types without enrichment, another 
elegant study used flow cytometry to enrich for cells 
in the G1 phase of the cell cycle that expressed radial 
glia markers; the study then analyzed single-cell gene 
expression specifically among radial glia to identify 
a similar set of oRG marker genes (Thomsen et al., 
2016).

To capture single cells, we used the Fluidigm C1 
system (Fluidigm, South San Francisco, CA) and 
analyzed single cells from paired regions of VZ and 
OSVZ microdissected from three samples (Fig. 1D). 
After sequencing, we further analyzed 393 nonoutlier 
cells based on the number of genes detected, a metric 
that largely overlapped with several outlier removal 
approaches. To determine cell-type identity, we 
performed principal component (PC) analysis and 
used expectation-maximization clustering to group 
cells based on their position in PC space. Major 
clusters of cells were visualized using t-distributed 
stochastic neighbor embedding. Based on the 
expression of known marker genes, we interpreted 
groups to represent cells along the cortical excitatory 
lineage and inhibitory interneurons (Fig. 1E).

Among the excitatory lineage cells (Fig. 1F), we 
identified groups of cells that robustly expressed 
markers of human radial glia (SLC1A3, PAX6, 
SOX2, HES1, and GLI3; yellow bar, Fig. 1F) and 
groups of cells that expressed markers of postmitotic 
neurons (RBFOX1, NEUROD2, and STMN2). 
In addition, we identified groups of cells that 
retained a reduced level of some radial glia markers 
but also expressed early neuronal markers such as 
STMN2 and NEUROD6. These cells were defined 
by a gene expression module that included known 
and novel markers for intermediate progenitor 
cells, including EOMES (TBR2), ELAVL4, 
NEUROG1, NEUROD1, NEUROD4, PPP1R17, 
and PENK (magenta bar, Fig. 1F) (Hevner et 
al., 2006; Kawaguchi et al., 2008). This analysis 
demonstrated that scRNA-seq successfully recovers 
the major sources of molecular variation expected 
to distinguish cells at different stages of projection 
neuron differentiation.

Major Sources of Transcriptional 
Variation Among Radial Glia Relate 
to Cell Cycle and Stem Cell Niche
We next analyzed variation in gene expression across 
107 cells that robustly expressed canonical markers 
of radial glia but not markers of other major cell 
populations (Fig. 1G). Given the high proliferative 
capacity of neural progenitors, we anticipated that 
cell cycle would be a major source of transcriptional 
variation across single cells we profiled. Indeed, genes 
involved in cell-cycle regulation, mitosis, and DNA 
replication explained most variation along PC1, PC2, 
and PC4. Clustering radial glia based on variation 
along these axes revealed cell groups representing 
G1, G1/S checkpoint, and G2/M checkpoint  
(Fig. 1H), and we confirmed that select markers were 
specific for stages of the radial glia cell cycle (Fig. 1I). 
Thus, differentiation and cell cycle are major sources 
of transcriptional heterogeneity among cells in the 
germinal zone, and single-cell analysis reveals novel 
molecular features of these states.

Given the distinct morphologies and mitotic 
behaviors of vRG and oRG cells, we hypothesized 
that niche occupancy would also contribute to 
variation among radial glia. Indeed, we found that 
the spatial source of radial glia was significantly 
associated with the position of cells along PC3  
(Fig. 1J). By clustering radial glia based on the 1% of 
genes most strongly loading PC3, we identified two 
transcriptionally distinct groups: one almost purely 
composed of cells from the VZ, which we interpreted 
as vRG cells, and another composed of cells from 
both the VZ and the subventricular zone (SVZ), 
which we interpreted as oRG cells (Fig. 1K).

Predicted Markers Relate to 
Position, Morphology, and 
Behavior of oRG Cells
To relate these distinct transcriptional states to the 
stem cell niches of the developing neocortex, we first 
searched for genes likely to distinguish predicted radial 
glia subtypes. We measured the specificity of genes by 
their correlation with an ideal marker gene uniformly 
expressed in only one putative radial glia subpopulation 
across all 393 cells. We identified 67 candidate marker 
genes strongly correlated with the oRG population, 
33 candidate genes strongly correlated with the vRG 
population, and 31 genes strongly correlated with 
both radial glia populations (Fig. 1L, orange, green, 
and yellow boxes, respectively). In support of these 
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predictions, we observed that candidate vRG markers 
showed higher expression in the VZ, whereas candidate 
oRG markers showed higher expression in the SVZ 
across human cortical tissue samples profiled by the 
Allen Brain Institute using microarray technology  
(Fig. 1M) (Miller et al., 2014). In addition, the 
expression levels of predicted oRG and vRG markers 
were inversely correlated across radial glia cells  
(Fig. 1N).

To further investigate candidate marker genes, we 
performed in situ hybridization in primary tissue 
samples. We found that expression of vRG candidates 
CRYAB, PDGFD, TAGLN2, FBXO32, and PALLD 
was strongest in the VZ, while expression of oRG 
candidates HOPX, PTPRZ1, TNC, FAM107A, and 
MOXD1 was strongest in the OSVZ (Fig. 2A). We 
confirmed specificity by co-immunolabeling stained 
tissue samples with antibodies against the classical 
radial glia marker SOX2 (SRY [sex-determining 
region-Y]-box2) and intermediate progenitor marker 
EOMES (eomesodermin) (Fig. 2B). In contrast to 
the radial-glia-specific expression of these transcripts, 
expression of the predicted novel marker of IPCs, 
PPP1R17, correlated strongly with classical marker 
EOMES (Fig. 2C). Immunostaining for HOPX 
(HOP homeobox), PTPRZ1 (protein phosphatase 
zeta-1), and TNC (tenascin C) proteins revealed 
their expression in cells with basal fibers that lacked 
EOMES expression, linking this molecular identity 
to the typical morphology of oRG cells (Fig. 2D). 
To next relate this molecular identity to distinctive 
oRG behaviors, we performed time-lapse imaging 
of organotypic cortical slices (between GW15 and 
GW19.5) infected with green fluorescent protein 
(GFP)–expressing adenovirus, and then examined 
the expression of the most specific oRG marker, 
HOPX (representative example shown in Fig. 2E). 
We observed that cells undergoing mitotic somal 
translocation behavior of oRG cells can generate 
SOX2/HOPX double-positive daughter cells with 
long basal processes characteristic throughout 
neurogenesis. Together, these results link the 
molecular identity determined from scRNA-seq to 
the anatomical location, morphology, and behavior 
of oRG cells.

Beyond simply marking oRG cells, the genes we 
identified belong to common pathways that suggest 
mechanisms by which human oRG cells actively 
maintain the OSVZ as a neural stem cell niche  
(Fig. 2F). Many of these genes promote growth factor 
signaling, including TNC, PTPRZ1, ITGB5, SDC3, 
HS6ST1, IL6ST, and LIFR (Wiese et al., 2012). 
For example, TNC potentiates fibroblast growth 

factor (FGF) signaling to support the maturation 
of neural stem cells (Garcion et al., 2004), whereas 
integrin signaling along the basal fiber promotes 
radial glia identity (Fietz et al., 2010). Interestingly, 
TNC contains epidermal growth factor (EGF)–like 
repeats and multiple binding domains for PTPRZ1, 
syndecans, integrins, and other cell-surface receptors 
(von Holst, 2008). Thus, TNC expression in 
oRG cells is able to couple key protein networks 
regulating growth factor signaling, migration, and 
self-renewal in the massively expanded human 
OSVZ (Fig. 2G). In addition, LIFR/STAT3 signaling 
is known to maintain radial glia neural stem cell 
identity (Bonaguidi et al., 2005), and we found that 
p-Y705-STAT3 signaling is necessary for normal 
cell-cycle progression in oRG cells but is surprisingly 
absent in vRG cells. Finally, we directly examined 
the neural stem cell properties of oRG cells using 
single-cell clonal lineage analysis. We found that 
single oRG cells could generate clones of nearly 
1000 daughter cells of neuron and glial cell types, 
highlighting the remarkable proliferative capacity of 
human oRG cells compared with mouse radial glia, 
which typically generate only 10–100 daughter cells 
throughout the neurogenic period (Qian et al., 2000; 
Gao et al., 2014).

Conclusion
Our study identified neuronal differentiation, cell-
cycle progression, and anatomical position as major 
sources of transcriptional variation across single cells 
sampled from germinal niches of the developing 
human cortex. Using in situ hybridization and 
immunostaining, we connected gene expression 
signatures predicted by scRNA-seq to the position, 
morphology, and dynamic behavior of cells in 
tissue. Together, this multimodal characterization 
establishes an integrative identity for oRG cells. 
These neural stem cells are characterized by the 
expression of markers that also appear in astrocytes, 
but not in vRG cells, including HOPX, TNC, and 
ITGB5, as well as pan-radial glia markers such as 
VIM, HES1, and ATP1A2; the presence of a basal, 
but not apical fiber; mitotic–somal translocation 
behavior; and extensive proliferative and neurogenic 
capacity. The oRG subtype is most abundant in the 
OSVZ stem cell niche, for which it was named, 
but also resides in the inner SVZ and VZ, and the 
transcriptional state first emerges in the VZ during 
early cortical neurogenesis. The oRG marker genes 
potentially enable the construction of molecular 
tools for selectively visualizing, manipulating, or 
purifying oRG cells in tissue and for evaluating the 
identity of human cortical progenitor cells generated 
from pluripotent stem cells (Qian et al., 2016). In 
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Figure 2. oRG-specific genes relate to functional properties. A–C, In situ hybridization validation of key vRG, oRG, and IPC tran-
scripts combined with immunohistochemical detection of classical protein markers. Scale bars: A, 250 μm; B, 25 μm; C, 50 μm. D, 
E, Candidate oRG cell markers related to morphology and dynamic cell behavior characteristic for oRG cells. Scale bars: D, 10 μm;  
E, 50 and 25 μm. F, Many of the candidate oRG cell markers relate to known functional properties. G, Schematic highlighting of 
oRG-specific local production of growth factors may contribute to neural stem cell niche maintenance in the expanded human 
OSVZ. H, scRNA-seq–based characterization of oRG-enriched transcripts related to signaling pathway activation. GZ, germinal 
zone. Adapted with permission from Pollen AA et al. (2015) Molecular identity of human outer radial glia during cortical develop-
ment, Cell 163:55–67, their Figs. 3, 4, and 7. Copyright 2015, Elsevier.

addition, these genes may provide insights into the 
cell types affected in neurodevelopmental disorders 
and infectious disease (Nowakowski et al., 2016).

Sequencing single-cell mRNA while retaining cell 
position information provides a general method for 
identifying distinct subpopulations whose molecular 
identity possibly relates to microenvironment and 
functional properties. Here, we explored variation 
in radial glia gene expression while considering stem 
cell niche as a covariate. Our results reveal novel 
molecular features of neural stem cell populations 
previously distinguished only by cell behavior, 

morphology, and position. Together with recent 
findings (Fietz et al., 2012; Lui et al., 2014), these 
results highlight three mechanisms that may maintain 
the “stemness” of the expanded oRG population in 
the OSVZ stem cell niche: local production of trophic 
factors such as PTN (pleiotrophin) and BMP7 (bone 
morphogenetic protein-7) by radial glia, expression 
of extracellular matrix proteins that potentiate 
growth factor signaling, and activation of the LIFR/p-
STAT3 signaling pathway (Figs. 2G, H). Because the 
oRG population is thought to be responsible for the 
majority of human cortical neurogenesis, and OSVZ 
size correlates with the evolutionary expansion of 
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the brain, future studies could investigate the role 
of these genes in neurodevelopmental disorders and 
cortical evolution.

Future Directions
Cell capture is no longer the bottleneck for 
surveying cell diversity in heterogeneous tissue. New 
technologies allow massively parallel single-cell 
capture (Klein et al., 2015; Macosko et al., 2015), 
and the low dimensionality of gene expression 
data permits exploration of cells in heterogeneous 
tissue at extremely low sequencing depths (Jaitin 
et al., 2014; Pollen et al., 2014; Heimberg et al., 
2016). Meanwhile, advances in data analysis and 
interpretation have resulted in new methods for 
clustering cell types, thereby predicting patterns of 
sequential gene expression during signaling pathway 
activation and lineage progression (Trapnell, 2015). 
In addition, new techniques have enabled analysis 
of additional molecular features, including genome 
sequence and chromatin state (Buenrostro et al., 
2015).

One promising area of future work is to use sequencing 
to also survey cellular phenotypes in a similarly high-
throughput manner. In our study, we combined gene 
expression data with separate low-throughput studies 
of spatial position, morphology, cell behavior, and 
developmental lineage potential. Ideally, we could 
measure these cellular phenotypes and community 
properties alongside gene expression. In situ 
sequencing (Lee et al., 2014) and other techniques 
for spatial transcriptomics and proteomics have the 
potential to help capture the spatial enrichments and 
neighborhoods of cell types. Similarly, studies using 
barcoded viruses that cross synapses may be able to 
label the connections between cell types (Pollock 
et al., 2014; Kebschull et al., 2016). Finally, the 
activity, behavior, and lineage relationships between 
cells may be recorded either through direct imaging 
of isolated cells prior to capture or through genome 
modification in response to processes such as cell 
division or activity (McKenna et al., 2016; Shipman 
et al., 2016). Together, these emerging technologies 
may someday enable integrated high-throughput 
analysis of single-cell gene expression patterns 
combined with single-cell phenotypes, as well as 
the connections and interactions between cells in 
nervous system tissue.
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