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Introduction

It is becoming feasible to rapidly generate high-resolution brainwide images using light microscopy, 
and computational methods are being developed to extract knowledge from these data. The field of 
cytoarchitectonics is being modernized by the ability to acquire and analyze the locations of all cell 
bodies. It is also becoming feasible to reconstruct entire axonal and dendritic arbors; in turn, information 
about molecular identity can be overlaid on such reconstructions. Methods of transsynaptic tracing are 
becoming useful and practical for tackling important scientific questions. Computational techniques 
of brain atlasing are enabling the alignment of all data within a common coordinate system.

All these advances are driving a renaissance of anatomy at the light-microscopic level. This short 
course will survey emerging automated anatomical methods and their scientific applications as well as 
providing “how-to” tutorials.
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Introduction
The beginning of the 21st century has seen a 
renaissance in light microscopy and anatomical tract 
tracing that is rapidly advancing our understanding 
of the form and function of neuronal circuits. The 
introduction of instruments for automated imaging 
of whole mouse brains, new cell-type-specific and 
transsynaptic tracers, and computational methods 
for handling the whole-brain datasets has opened the 
door to neuroanatomical studies at an unprecedented 
scale. In this chapter, we present an overview of the 
state of play and future opportunities in charting 
long-range and local connectivity in the entire 
mouse brain and in linking brain circuits to function.

Since the pioneering work of Camillo Golgi in the 
latter 19th century and Santiago Ramón Y Cajal at 
the turn of the last century (Golgi, 1873; Ramón Y  
Cajal, 1904), advances in light microscopy (LM) 
and neurotracing methods have been central to 
the progress in our understanding of anatomical 
organization in the mammalian brain. The discovery 
of the Golgi silver-impregnation method allowed the 
visualization of neuron morphology, providing the 
first evidence for cell-type-based and connectivity-
based organization in the brain. The introduction of 
efficient neuroanatomical tracers in the second half 
of the 20th century greatly increased the throughput 
and versatility of neuronal projection mapping, 
which led to the identification of many anatomical 
pathways and circuits, and revealed the basic 
principles of hierarchical and laminar connectivity 
in sensory, motor, and other brain systems (Rockland 
and Pandya, 1979; Felleman and Van Essen, 1991).

The beginning of this century has seen a new period 
of method-driven renaissance in neuroanatomy, 
one that is distinguished by the focus on large-
scale projects generating unprecedented amounts of 
anatomical data. Instead of the traditional “cottage 
industry” approach of studying one anatomical 
pathway at a time, the new projects aim to generate 
complete datasets—so-called projectomes and 
connectomes—that can be used by the scientific 
community as resources for answering specific 
experimental questions. These efforts range in scale 
and resolution from the macroscopic—studies of 
the human brain by magnetic resonance imaging 
(MRI), to the microscopic—dense neural circuit 
reconstructions of small volumes of brain tissue by 
electron microscopy (EM) (Craddock et al., 2013; 
Helmstaedter, 2013).

Advancements in LM methods, the focus of our 
review, are being applied to the mapping of point-to-

point connectivity between all anatomical regions in 
the mouse brain by means of sparse reconstructions 
of anterograde and retrograde tracers (Bohland et 
al., 2009). Taking advantage of the automation of 
LM instruments, powerful data processing pipelines, 
and combinations of traditional and modern viral-
vector-based tracers, teams of scientists at Cold 
Spring Harbor Laboratory (CSHL), the Allen 
Institute for Brain Science (AIBS), and University 
of California, Los Angeles (UCLA), are racing to 
complete a connectivity map of the mouse brain—
dubbed the “mesoscopic connectome”—which will 
provide the scientific community with online atlases 
for viewing entire anatomical datasets (Bohland et 
al., 2009). This chapter describes the rationale for 
mapping connectivity in the whole mouse brain at 
the mesoscale level by LM. These efforts demonstrate 
the transformative nature of today’s LM-based 
neuroanatomy and the astonishing speed with 
which large amounts of data can be disseminated 
online and have an immediate impact on research in 
neuroscience laboratories around the world.

As the mouse mesoscopic connectomes are being 
completed, it is clear that LM methods will continue 
to impact the evolution of biological research and 
specifically neuroscience: New transsynaptic viral 
tracers are being engineered to circumvent the 
need to resolve synapses, which has constrained the 
interpretation of cell-to-cell connectivity in LM 
studies. Also, new assays combining anatomical and 
functional measurements are being applied to bridge 
the traditional structure–function divide in the 
study of the mammalian brain. This chapter aims to 
provide an overview of today’s state of the art in LM 
instrumentation and to highlight the opportunities 
for progress, as well as the challenges that need to 
be overcome, in order to transform neuronal tracing 
studies into a truly quantitative science yielding 
comprehensive descriptions of long-range and local 
projections and connectivity at the level of whole 
mouse brains. We also discuss current strategies for 
the integration of anatomy and function in the study 
of mouse brain circuits.

Automated Light Microscopes for 
Whole-Brain Imaging
The field of neuroanatomy has traditionally been 
associated with labor-intensive procedures that 
greatly limited the throughput of data collection. 
Recent efforts to automate LM instrumentation 
have standardized and dramatically increased the 
throughput of anatomical studies. The main challenge 
for these methods is to maintain the rigorous quality 
of traditional neuroanatomical studies, resulting 
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from detailed visual analysis, careful data collection, 
and expert data interpretation.

There are currently two alternative approaches  
to automation of LM for imaging three-dimensional 
(3D) whole-brain datasets: one based on the 
integration of block-face microscopy and tissue 
sectioning, and the other based on light-sheet 
fluorescence microscopy (LSFM) of chemically 
cleared tissue. The first approach has been developed 
for wide-field imaging, line-scan imaging, and 
confocal and two-photon microscopy (Odgaard 
et al., 1990; Ewald et al., 2002; Tsai et al., 2003; 
Sands et al., 2005; Ragan et al., 2007; Mayerich et 
al., 2008; Li et al., 2011; Ragan et al., 2012; Gong 
et al., 2013). Common to all these instruments is 
the motorized movement of the sample under the 
microscope objective for top-view mosaic imaging, 
followed by mechanical removal of the imaged 
tissue before the next cycle of interleaved imaging  
and sectioning steps (Figs. 1a, b). Because the 
objective is always near the tissue surface, it is 
possible to use high numerical aperture (NA) 
lenses to achieve submicron resolution close to the 
diffraction limits of LM.1  

Three instruments have been designed that combine 
two-photon microscopy (Denk et al., 1990) followed 
by tissue sectioning by either ultra-short laser pulses 
in all-optical histology (Tsai et al., 2003), milling 

machine in two-photon tissue cytometry (Ragan 
et al., 2007), or vibrating blade microtome in serial  
two-photon (STP) tomography (Ragan et al., 2012) 
(Fig. 1a). Whereas in both all-optical histology and 
two-photon tissue cytometry the sectioning obliterates 
the imaged tissue, the integration of vibratome-based 
sectioning in STP tomography allows the collection 
of the cut tissue for further analysis by, for example, 
immunohistochemistry (see Current Challenges 
and Opportunities for Whole-Brain LM Methods, 
below). In addition, the tissue preparation by simple 
formaldehyde fixation and agar embedding in STP 
tomography has minimal detrimental effects on 
fluorescence and brain morphology. This makes 
STP tomography applicable to a broad range of 
neuroanatomical projects utilizing genetically encoded 
fluorescent protein–based tracers, which are sensitive 
to fixation, dehydration, and tissue clearing conditions. 
This method is also versatile in terms of the mode and 
resolution of data collection. For example, imaging the 
mouse brain as a dataset of 280 serial coronal sections, 
evenly spaced at 50 μm and at xy resolution 1 μm, 
takes ~21 h and generates a brain atlas–like dataset 

1Tsai et al. pioneered the approach of serial imaging by two-
photon microscopy and tissue sectioning for ex vivo collection of 
neuronanatomical data. Ragan et al. (2012) introduced the method 
of STP tomography and demonstrated its use for anterograde 
and retrograde tracing in the mouse brain. Gong et al. (2013) 
demonstrated the first long-range tracing of individual axons in the 
mouse brain by the fluorescence-MOST (fMOST) method.

Figure 1. Whole-brain LM methods. a, STP tomography. Two-photon microscope is used to image the mouse brain in a coronal 
plane in a mosaic grid pattern and microtome sections off the imaged tissue. Piezo objective scanner can be used for z-stack 
imaging. Image adapted from Ragan et al. (2012), their Fig. 1a. b, fMOST. Confocal line-scan is used to image the brain as a  
1 μm thin section cut by diamond knife. Image adapted from Gong et al. (2013), their Fig. 1a. c, LSFM. The cleared brain is illumi-
nated from the side with the light sheet (blue) through an illumination objective (or cylinder lens [Dodt et al., 2007]) and imaged in 
a mosaic grid pattern from top. Image adapted from Niedworok et al. (2012), their Fig. 4g. In all instruments, the brain is moved 
under the objective on a motorized XYZ stage. PMT, photomultiplier tube.
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of ~70 gigabytes (GB). A complete visualization can 
be achieved by switching to 3D scanning of z-volume 
stacks between the mechanical sectioning steps, 
which allows the entire mouse brain to be imaged, for 
instance, at 1 μm xy and 2.5 μm z resolution in ~8 d,  
generating ~1.5 terabytes (TB) of data (Ragan et 
al., 2012). The instrument is commercially available  
from TissueVision (Cambridge, MA). The AIBS is 
using this methodology for its Mouse Connectivity 
project (see Mesoscopic Connectivity-Mapping 
Projects, below). 

Two instruments have been designed to combine 
bright-field line-scan imaging and ultra-microtome 
sectioning of resin-embedded tissue into methods 
named knife-edge scanning microscopy (KESM) 
(Mayerich et al., 2008) and micro-optical sectioning 
tomography (MOST) (Li et al., 2011) (Fig. 1b). The 
latter was used to image Golgi-stained mouse brain 
at 0.33 × 0.33 × 1.0 μm x-y-z resolution, generating 
>8 TB of data in ~10 d (Mayerich et al., 2008; Li 
et al., 2011). The MOST instrument design was 
also recently built for fluorescent imaging (fMOST) 
by confocal laser scanning microscopy, with the 
throughput of one mouse brain at 1.0 μm voxel 
resolution in ~19 d (Gong et al., 2013). KESM 
imaging is now also available as a commercial service 
from 3Scan (San Francisco, CA).

The second, alternative, approach for automated 
whole-brain imaging is based on LSFM, also known 
as selective-plane illumination microscopy or SPIM 
(Huisken et al., 2004) and ultramicroscopy (Dodt et 
al., 2007) (Fig. 1c). Dodt et al. (2007) was the first to 
demonstrate the use of LSFM for imaging the entire 
mouse brain. This approach allows fast imaging of 
chemically cleared “transparent” mouse brains without 
the need for mechanical sectioning (Dodt et al., 2007; 
Niedworok et al., 2012), but at least until now, with 
some trade-offs for anatomical tracing applications. 
The chemical clearing procedures reduce the signal 
of fluorescent proteins, but this problem appears to be 
solved by a new hydrogel-based tissue transformation 
and clearing method called CLARITY (Chung 
et al., 2013; Chung and Deisseroth, 2013) (See 
the Short Course chapters “Advanced CLARITY 
Methods for Rapid and High-Resolution Imaging of 
Intact Tissues” by R. Tomer and K. Deisseroth and 
“CLARITY and Beyond: Tools for Integrated Brain 
Mapping” by K. Chung.) The spatial resolution of 
LSFM for the mouse brain has also been limited by 
the requirement for large field-of-view objectives 
with low power and low NA that were used for the 

visualization of the whole brain (Dodt et al., 2007; 
Leischner et al., 2009). However, new objectives with 
long working distance (WD) and high NA, such as 8 
mm WD/0.9 NA objective from Olympus, promise to 
enable LSFM of the whole mouse brain at submicron 
resolution. If necessary, LSFM can also be combined 
with one of several forms of structured illumination 
(SI) to reduce out-of-focus background fluorescence 
and improve contrast (Kalchmair et al., 2010; Keller 
et al., 2010; Mertz and Kim, 2010). Taken together, 
these modifications are likely to enhance the 
applicability of LSFM to anterograde tracing of thin 
axons at high resolution in the whole mouse brain, 
as done by STP tomography in the AIBS Mouse 
Connectivity project (see Mesoscopic Connectivity-
Mapping Projects, below) and by fMOST in a recent 
report (Gong et al., 2013).

In addition, LSFM is well suited for retrograde 
tracing in the mouse brain, which relies on detection 
of retrogradely fluorescently labeled neuronal 
somas that are typically >10 μm in diameter. Such 
application was recently demonstrated for mapping 
retrograde connectivity of granule cells of the mouse 
olfactory bulb (Niedworok et al., 2012) using rabies 
viruses that achieve high levels of fluorescent protein 
labeling (Wickersham et al., 2007a, b). (Wickersham 
et al., 2007a, described a genetically modified rabies 
virus designed to specifically label direct presynaptic 
input onto a given cell population.)

Mesoscopic Connectivity-
Mapping Projects
The labeling of neurons and subsequent 
neuroanatomical tract tracing by LM methods has 
been used for more than a century to interrogate the 
anatomical substrate of information transmission 
in the brain. Throughout those years, the credo of 
neuroanatomy, “The gain in brain is mainly in the 
stain,” meant to signify that progress was made 
mainly through the development of new anatomical 
tracers. Yet despite the decades of neuroanatomical 
research, the laborious nature of tissue processing and 
data visualization kept the progress in our knowledge 
of brain circuitry at a disappointingly slow pace 
(Bohland et al., 2009). Today, neuroanatomy stands 
to greatly benefit from the application of high-
throughput automated LM instruments and powerful 
informatics tools for the analysis of mouse brain 
data (Ng et al., 2009; Jones et al., 2011). The high-
resolution capacity these LM methods afford, and 
the fact that an entire brain dataset can be captured, 
makes these systems well suited for systematic 
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charting of the spatial profile and connectivity of 
populations of neurons and even individual cells 
projecting over long distances.

The pioneering effort in the field of anatomical 
projects applied at the scale of whole animal brains 
was the Allen Mouse Brain Atlas of Gene Expression, 
which catalogued in situ hybridization maps of more 
than 20,000 genes in an online 3D digital mouse 
brain atlas (Lein et al., 2007; Dong, 2008; Ng et 
al., 2009). (Lein et al., 2007, pioneered large-scale 
LM-based whole-brain anatomy and introduced the 
Allen Mouse Brain Atlas and online data portal.)

The proposal by a consortium of scientists led by 
Partha Mitra (CSHL) to generate similar LM-based 
atlases of “brainwide neuroanatomical connectivity” 
in several animal models (Bohland et al., 2009) has in 
short time spurred three independent projects, each 
promising to trace all efferent and afferent anatomical 
pathways in the mouse brain. The Mitra team’s Mouse 
Brain Architecture Project (http://brainarchitecture.
org) at CSHL aims to image >1000 brains; the Allen 
Mouse Brain Connectivity Atlas project (http://
connectivity.brain-map.org), led by Hongkui Zeng 
at AIBS, plans for >2000 brains; and the Mouse 
Connectome Project (www.mouseconnectome.org), 
led by Hong-Wei Dong at UCLA, plans for 500 
brains, each brain injected with 4 tracers. While the 
CSHL and UCLA projects use automated wide-field 
fluorescence microscopy (Hamamatsu Nanozoomer 
2.0 [Hamamatsu Photonics, Hamamatsu City, Japan] 
and Olympus VS110) to image manually sectioned 
brains, the Mouse Connectivity project at the AIBS 
is being done entirely by STP tomography (Ragan et 
al., 2012).

The main complementary strength of these efforts, 
however, comes from the broad range of tracers 
used. Given that each tracer has its own advantages 
and problems (Lanciego and Wouterlood, 2011), 
the information derived from all three projects will 
ensure generalizable interpretation of the projection 
results throughout the brain. The CSHL group 
uses a combination of traditional anterograde and 
retrograde tracers, fluorophore-conjugated dextran 
amine (BDA) (Glover et al., 1986), and cholera 
toxin B (CTB) subunit (Llewellyn-Smith et al., 
2000), respectively, which are complemented by 
a combination of viral-vector-based tracers, green 
fluorescent protein (GFP)–expressing adeno-
associated virus (AAV) (Grinevich et al., 2005) for 
anterograde tracing (Fig. 2a), and modified rabies 
virus (Wickersham et al., 2007a) for retrograde 
tracing. Although the virus-based methods are 
less tested, they offer advantages in terms of the 

brightness of labeling and the possibility of cell-
type-specific targeting using Cre-dependent viral 
vectors (Atasoy et al., 2008) and transgenic lines 
expressing the Cre recombinase enzyme under the 
control of cell-type-specific promoters (Madisen et 
al., 2010, 2012; Taniguchi et al., 2011). The AIBS 
team uses solely anterograde tracing by AAV-GFP 
viruses (Harris et al., 2012) (Fig. 2b), in many cases 
taking advantage of Cre driver mouse lines for cell-
type-specific labeling. Finally, the team at UCLA 
is using a strategy of two injections per brain, each 
with a mix of anterograde and retrograde tracers 
(Thompson and Swanson, 2010), CTB together 
with Phaseolus vulgaris leucoagglutinin (PHA-L) 
(Gerfen and Sawchenko, 1984), and FluoroGold 
(FG) (Naumann et al., 2000) together with BDA 
(Reiner et al., 2000; Thompson and Swanson, 2010). 
This approach has an added advantage because it 
allows direct visualization of the convergence of 
inputs and outputs from across different areas in one 
brain (Conte et al., 2009; Thompson and Swanson, 
2010; Hintiryan et al., 2012).

The unprecedented amounts of data being collected 
by these projects means that the significant person-
hours historically spent performing microscopy have 
largely shifted toward data analysis. The first step 
of such data analysis comprises the compilation  
of the serial section images for viewing as whole- 
brain datasets at resolutions beyond the minimum 
geometric volume of the neuronal structures 
of interest: somas for retrograde and axons for  
anterograde tracing. All three projects offer a 
convenient way to browse the datasets online, 
including high-resolution zoom-in views that in most 
cases are sufficient for visual determination of labeled 
somas and axons. Importantly, all three projects use 
the Allen Mouse Brain Atlas for the registration of 
the coronal sections, which will provide significant 
help in the cross-validation of results obtained 
from the different tracers. The Allen Mouse Brain 
Connectivity Atlas website (http://connectivity.
brain-map.org/static/brainexplorer) also offers the 
option to view the data after projection segmentation, 
which selectively highlights labeled axons, as well as 
in 3D in the Brain Explorer registered to the Allen 
Mouse Brain Atlas (Sunkin et al., 2013) (Fig. 2b).

The second step of data analysis requires the 
development of informatics methods for quantitation 
of the datasets, which will facilitate the interpretation 
of the online available data. The Allen Mouse Brain 
Connectivity Atlas online tools allow the user to search 
the projections between injected regions and display 
the labeled pathways as tracks in 3D in the Brain 
Explorer. The CSHL and UCLA connectomes can 
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currently be viewed online as serial section datasets. 
The data from the Cre driver mouse lines in the AIBS 
project provide a unique feature of cell-type specificity 
for the interpretation of the anterograde projections. 
The main strength of the CSHL and UCLA efforts lies 
in the multiplicity of the anatomical tracers utilized. 
The use of multiple retrograde tracers in particular will 
yield useful information, since retrogradely labeled 
somas (>10 μm in diameter) are easier to quantitate 
than thin (<1 μm) axon fibers. These experiments will 
also provide an important comparison between the 
traditional CTB and FluoroGold tracers and the rabies-
virus tracer that is also being used in transsynaptic 
labeling (see below), but is less studied and may show 
some variation in transport affinity at different types 
of synapses.

In summary, the LM-based mesoscopic mapping 
projects are set to transform the study of the circuit 
wiring of the mouse brain by providing online access to 
whole-brain datasets from several thousand injections 
of anterograde and retrograde tracers. The informatics 

tools being developed to search the databases will 
greatly aid in parsing the large amounts of data and in 
accessing specific brain samples for detailed scholarly 
analyses by the neuroscience community.

Mapping Connectivity Using 
Transsynaptic Tracers
In contrast to EM methods, which provide a readout 
of neuronal connectivity with synapse resolution 
over small volumes of tissue, the whole-brain LM 
methods permit the assessment of projection-based 
connectivity between brain regions and, in some 
cases, between specific cell types in those regions, 
but without the option to visualize the underlying 
synaptic contacts. Transsynaptic viruses that cross 
either multiple or single synapses can help circumvent 
the requirement to confirm connectivity at the EM 
resolution, since such connectivity may be inferred 
from the known direction and mechanism of spread 
of the transsynaptic tracer. Transsynaptic tracers 
based on rabies (RV), pseudorabies (PRV), and 
herpes simplex (HSV) viruses, which repeatedly cross 

Figure 2. Primary motor cortex (MOp) 
projection maps. a, Mouse Brain 
Architecture (http://brainarchitecture.
org) data of AAV-GFP injected into 
the supragranular layers and AAV–red 
fluorescent protein (RFP) injected in 
the infragranular layers (F. Mechler and  
P. Mitra, CSHL, unpublished 
observations). Top panels, Frontal (left) 
and lateral (right) views of the volume-
rendered brain. Scale bars, 1000 µm. 
Bottom panels, High-zoom views of 
the regions highlighted in the central 
image. Left, Axonal fibers in the cerebral 
peduncle; Right, Projections to the 
midbrain reticular nucleus. Scale bars, 
20 µm. b, Mouse Connectivity (http://
connectivity.brain-map.org) data of a 
similar AAV-GFP injection show the MOp 
projectome reconstructed in the Allen 
Brain Explorer (Sunkin et al., 2013; H. 
Zeng, AIBS, unpublished observations). 
Lower left inset, High-zoom view and 
coronal section overview of projections in 
the ventral posteromedial nucleus of the 
thalamus (VPM).
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synaptic connections in a retrograde or anterograde 
direction, are powerful tools for elucidating multistep 
pathways both up and downstream from the starter 
cell population (Song et al., 2005; Ekstrand et 
al., 2008; Ugolini, 2010). Furthermore, modified 
transsynaptic RVs have been developed that are 
restricted in their spread to a single synaptic jump 
and thus can be used to identify monosynaptic 
connections onto and downstream of specific 
neuronal populations and even individual cells 
(Wickersham et al., 2007a; Callaway, 2008; Marshel 
et al., 2010; Arenkiel et al., 2011; Miyamichi et al., 
2011; Rancz et al., 2011; Wickersham and Feinberg, 
2012; Takatoh et al., 2013).

RV spreads from the initially infected cells in 
a transsynaptic retrograde manner (Finke and 
Conzelmann, 2005; Ugolini, 2010). RV infection 
does not occur via spurious spread or uptake by fibers 
of passage and, since it cannot cross via electrical 
synapses, it is an effective tool for unidirectional 
anatomical tracing (Ugolini, 1995). In the modified 
RV system, the infection can also be cell-type-
targeted by encapsulating the glycoprotein-deficient 
RV with an avian virus envelope protein (SAD-∆G-
EnvA). This restricts infection to only those cells 
that express an avian tumor virus receptor A gene 
(TVA), which is natively found in birds but not in 
mammals (Young et al., 1993; Federspiel et al., 1994). 
Thus, the delivery of vectors driving the expression 
of both TVA and RV-glycoprotein (RV-G) into 
a single cell (Wickersham et al., 2007b; Marshel 
et al., 2010; Rancz et al., 2011) (see Integrating 
Brain Anatomy and Function, below) or a specific 
population of cells (Wall et al., 2010; Miyamichi 
et al., 2011) ensures that only the targeted cell or 
cells will (1) be susceptible to initial infection and 
(2) provide the replication-incompetent virus 
with RV-G required for transsynaptic infection 
(Etessami et al., 2000). In this system, the virus can 
spread from the primarily infected cell(s) to the 
presynaptic input cells, which become labeled by the 
fluorescent protein expression. However, because the 
presynaptic cells do not express RV-G (Wickersham 
et al., 2007b), the virus cannot spread further. This 
approach thus allows the discovery of the identity 
and location of the upstream input network relative 
to a defined population of neurons (Arenkiel et al., 
2011; Takatoh et al., 2013).2 

Brain-region and cell-type specificity for mapping 
connectivity by the modified RV system can be 
achieved by using a Cre recombinase–dependent 
helper virus driving expression of TVA and RV-G 
and transgenic mouse lines that express Cre in 
specific cell types or cortical layers (Madisen et al., 

2010; Wall et al., 2010; Taniguchi et al., 2011). 
This strategy is particularly useful for brain regions 
comprising many different cell types that could 
not otherwise be selectively targeted. Moreover, 
the engineering of other neurotropic transsynaptic 
viruses is adding new tools for anatomical tracing, 
including Cre-dependent anterograde tracers 
based on a modified H129 strain of HSV (Lo and 
Anderson, 2011) and vesicular stomatitis virus 
(Beier et al., 2011), and retrograde tracers based on 
a modified PRV (H. Oyibo and A. Zador, CSHL, 
personal communication). The use of retrograde and 
anterograde transsynaptic viruses, in combination 
with whole-brain LM methods, thus promises to 
afford unprecedented access to the upstream and 
downstream connectivity of specific cell types in the 
mouse brain.

Current Challenges and 
Opportunities for Whole-Brain  
LM Methods
As highlighted above, LM instruments for whole-
brain imaging are expected to make a significant 
contribution in large-scale projects that focus on 
anatomical connectivity at the level of the whole 
mouse brain. It has also become clear that the use 
of these instruments will have an impact in many 
experimental applications in different neuroscience 
laboratories. It is therefore imperative that there 
exist broadly applicable image processing, warping, 
and analytical tools that will facilitate data sharing 
and across-laboratory collaboration and validation in 
future neuroscience studies focusing on, for example, 
mapping whole-brain anatomical changes during 
development and in response to experience.

One practical problem arising from the choice to 
scan entire mouse brains at high resolution relates 
to the handling of large datasets (up to several TB 
per brain), which necessitates automated analytical 
pipelining. STP tomography is currently the most 
broadly used method among the whole-brain 
LM instruments, and there are freely available 
informatics tools for compiling STP tomography 
image stacks and viewing them as 3D data, including 
algorithms that automate seamless stitching (Ragan 
et al., 2012). Another key challenge for charting the 
distribution of the labeled elements in the whole 
mouse brain is the process of accurate registration 

2 Rancz et al. (2011) were the first to combine intracellular neuronal 
recording with DNA delivery. The authors used this method to map 
the synaptic function of a single cell in vivo and then target RV-
based retrograde labeling of the cells’ synaptic input. Marshel et al. 
(2010) described an electroporation method for single-cell delivery 
of DNA for targeted infection of modified RV.
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of the individual brain datasets onto an anatomical 
reference atlas. To this end, scientists at AIBS have 
generated the open-source, segmented Allen Mouse 
Brain Atlas for the adult C57BL/6 mouse (Lein et 
al., 2007; Dong, 2008; Ng et al., 2009; Sunkin et 
al., 2013), which is also available for registration of 
datasets generated by STP tomography (Figs. 2b, 4). 
In addition, the so-called Waxholm space (WHS) 
for standardized digital atlasing (Hawrylycz et al., 
2011) allows comparisons of registered mouse brain 
data using multiple brain atlases, including the 
Allen Mouse Brain Atlas, the digital Paxinos and 
Franklin Mouse Brain Atlas (Paxinos and Franklin, 
2004), and several MRI reference mouse brains. The 
continuing development of the WHS and other 
online data analysis platforms (Moene et al., 2007; 
Swanson and Bota, 2010; Jones et al., 2011) will be 
essential for making standardized comparisons of 
mouse brain data collected by different laboratories 
using different instruments.

The completion of the three mesoscopic connectome 
projects in the next several years will yield a 
comprehensive map of point-to-point connectivity 
between anatomical regions in the mouse brain 
(Bohland et al., 2009). Determining the cell-type 
identity of the neurons sending and receiving the 
connections in the brain regions will be essential 
for interpreting the function of the brainwide neural 
circuits. Immunohistochemical analyses of labeled 
circuits have proven invaluable for ascertaining the 
identity of specific classes of neurons (Klausberger 
and Somogyi, 2008; O’Rourke et al., 2012; Defelipe 
et al., 2013) and synaptic connections (Callaway, 
2008; Emes and Grant, 2012). The combination of 
immunohistochemical analysis by array tomography 
(Micheva and Smith, 2007; Micheva et al., 2010) 
and anatomical tracing by the whole-brain LM 
instruments promises to be particularly powerful, 
since it will bring together two largely automated 
methodologies with complementary focus on 
synaptic and mesoscopic connectivity, respectively. 
STP tomography outputs sectioned tissue (typically, 
50-μm-thick sections [Ragan et al., 2012]), which 
can be further resectioned, processed and reimaged 
by array tomography for integrating cell-type-specific 
information into the whole-brain datasets. Industrial-
level automation of slice capture and immunostaining 
can be developed to minimize manual handling and 
enhance the integration of immunohistochemistry 
and STP tomography. In addition, sectioning and 
immunostaining can be applied to LSFM-imaged 
mouse brains (Niedworok et al., 2012).

A related, cell-type-focused application of whole-
brain LM imaging will be to quantitatively map the 

distribution (the cell counts) of different neuronal 
cell types in all anatomical regions in the mouse 
brain. Several such cell-count-based anatomical 
studies have been done previously at smaller 
scales, revealing, for example, cell densities with 
respect to cortical vasculature (Tsai et al., 2009) 
or the density of neuronal cell types per layers in a 
single cortical column (Meyer et al., 2010, 2011; 
Oberlaender et al., 2012). Using the whole-brain 
LM methods, a comprehensive anatomical atlas 
of different GABAergic inhibitory interneurons 
(Petilla Interneuron Nomenclature Group et al., 
2008) can now be generated by imaging cell-type-
specific Cre knock-in mouse lines (Madisen et al., 
2010; Taniguchi et al., 2011) crossed with Cre-
dependent reporter mice expressing nuclear GFP. 
These and similar datasets for other neuronal cell 
types will complement the mesoscopic brain region 
connectivity data and help the interpretation of the 
immunohistochemistry data by providing a reference 
for total numbers of specific cell types per anatomical 
brain region.

Integrating Brain Anatomy  
and Function
The anterograde, retrograde, and transsynaptic 
tracing approaches described above will yield the 
structural scaffold of anatomical projections and 
connections throughout the mouse brain. However, 
such data will not be sufficient to identify how 
specific brain regions connect to form functional 
circuits driving different behaviors. Bridging whole-
brain structure and function is the next frontier 
in systems neuroscience, and the development of 
new technologies and methods will be crucial in 
achieving progress.

The structure–function relationship of single 
neurons can be examined by in vivo intracellular 
delivery of the DNA vectors required for targeting 
and driving transsynaptic virus expression via 
patch pipettes in loose cell-attached mode for 
electroporation (Marshel et al., 2010) or via whole-
cell recording (Rancz et al., 2011) (Fig. 3). Used 
in combination with two-photon microscopy, this 
single-cell delivery technique may also be targeted 
at fluorescently labeled neurons of specific cell types 
(Margrie et al., 2003; Kitamura et al., 2008; Marshel 
et al., 2010). The whole-cell method is particularly 
informative, since its intracellular nature permits 
recording the intrinsic biophysical profile of the 
target cell, which, in turn, may reflect its functional 
connectivity status within the local network (Angelo 
et al., 2012). In addition, by recording sensory-
evoked inputs, it is possible to compare single-cell 
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synaptic receptive fields with anatomical local and 
long-range connectivity traced by LM methods 
(Rancz et al., 2011). This combinatorial approach, 
involving single-cell electrophysiology and genetic 
manipulation designed for connection mapping, 
makes it possible to test long-standing theories 
regarding the extent to which emergent features of 
sensory cortical function manifest via specific wiring 
motifs (Reid, 2012).

As has recently been achieved for serial EM–based 
reconstruction (Bock et al., 2011; Briggman et 
al., 2011), it will also be valuable to functionally 
characterize larger local neuronal populations 
for registration against LM-based connectivity 
data. In this sense, genetically encoded calcium 
indicators (GECIs), which permit physiological 
characterization of neuronal activity in specific 
cell types (Mank et al., 2008; Wallace et al., 2008; 
Akerboom et al., 2012), alongside viral vectors for 
transsynaptic labeling and LM-based tracing, will 
play critical complementary roles. Large-volume in 
vivo two-photon imaging of neuronal activity before 
ex vivo whole-brain imaging will establish the extent 
to which connectivity patterns relate to function 
(Ko et al., 2011) at the level of single cells and 
local and long-range circuits. Interpolation of such 
experiments will rely on the ability to cross-register 
in vivo functional imaging with complete ex vivo LM 

connectivity data. Preliminary experiments (already 
hinting at the spatial spread of monosynaptic 
connectivity of individual principal cortical cells) 
suggest that the combination of functional imaging 
with traditional anatomical circuit reconstruction 
may be feasible only at the local network level, where 
connection probability is the highest (Thomson et 
al., 2002; Holmgren et al., 2003; Song et al., 2005). 
Given the broad, sparse expanse of connectivity 
in most brain regions—and especially in cortical 
areas—high-throughput whole-brain LM methods 
will be imperative for complete anatomical circuit 
reconstruction of the functionally characterized local 
networks.

The amalgamation of whole-brain LM and 
physiological methods for single neurons and small 
networks offers a powerful means to study the mouse 
brain. A promising application of this approach 
will be to trace the synaptic circuits of neurons 
functionally characterized in head-fixed behaving 
animals engaged in tasks related to spatial navigation, 
sensorimotor integration, and other complex brain 
functions (Harvey et al., 2009, 2012; Huber et al., 
2012). (Harvey et al., 2009, introduced the method 
of physiological recording in head-restrained mice 
on a spherical treadmill performing spatial tasks 
in virtual environment.) This research will lead to 
the generation of whole-brain structure–function 

Figure 3. Mapping the function and connectivity of single cells in the mouse brain in vivo. a, Patch pipettes (with internal so-
lutions containing DNA vectors used to drive the expression of the TVA and RV-G proteins) are used to perform a whole-cell 
recording of the intrinsic and sensory-evoked synaptic properties of a single layer 5 neuron in primary visual cortex. b, Following 
the recording, the encapsulated modified RV is injected into the brain in proximity to the recorded neuron. c, After a period of ≤12 
d that ensures retrograde spread of the modified RV from the recorded neuron, the brain is removed and imaged for identifica-
tion of the local and long-range presynaptic inputs underlying the tuning of the recorded neuron to the direction of visual motion 
(polar plot). Top and bottom scale bars, 300 µm and 50 µm, respectively. Images modified from Rancz et al. (2011), their Fig. 4. 
AP, action potential; DLG, dorsal lateral geniculate.
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hypotheses for specific behaviors, which can then be 
tested for causality by optogenetic methods targeted 
to the identified cell types and brain regions (Fenno 
et al., 2011). Furthermore, the LM, physiological, and 
optogenetic methods can be applied to interrogate 
entire brain systems in large-scale projects, as is 
currently being done for the mouse visual cortex in 
an effort led by Christof Koch and R. Clay Reid at 
AIBS (Koch and Reid, 2012).

Finally, the neuroscience community has begun to 
discuss the feasibility of mapping activity at cellular 
resolution in whole brains and linking the identified 
activity patterns to brain anatomy (Alivisatos et 
al., 2013). Today, such experiments are possible in 
small, transparent organisms, as was demonstrated 
by two-photon microscopy and LSFM-based imaging 
of brain activity in larval zebrafish expressing the 
calcium indicator GCaMP (Ahrens et al., 2012; 
Akerboom et al., 2012; Ahrens and Keller, 2013). 
Understandably, however, LM-based approaches 
will not be useful for in vivo whole-brain imaging in 
larger, nontransparent animals; thus, the invention of 
new, disruptive technologies will likely be needed to 
achieve the goal of real-time brain activity mapping 
at cellular resolution in, for example, the mouse. On 
the other hand, LM methods can be used to map 
patterns of whole-brain activation indirectly, by post 
hoc visualization of activity-induced expression of 
immediate early genes (IEGs), such as c-fos, Arc, or 
Homer 1a (Herrera and Robertson, 1996). Transgenic 
fluorescent IEG-reporter mice, like c-fos-GFP or 
Arc-GFP mice (Barth et al., 2004; Reijmers et al., 
2007; Grinevich et al., 2009), can be trained in a 

specific behavior, their brains subsequently imaged 
ex vivo, and the exact distribution of GFP-positive 
neurons mapped and analyzed by computational 
methods (Fig. 4). In this approach, a statistical 
analysis of the counts of GFP-labeled neurons can 
be used to identify brain regions and cell types 
activated during behaviors, but without providing 
any information on the temporal sequence of 
brain region activation or the firing patterns of the 
activated cells. However, the development of more 
sensitive (e.g., fluorescent RNA-based) methods may 
allow calibration of the cellular signal with respect 
to the temporal window and the pattern of activity 
related to the IEG induction. Such calibration would 
significantly enhance the power of LM-based whole-
brain IEG mapping, which, in combination with 
the connectomic data, could then be used to begin 
to build cellular resolution models of function-based 
whole-brain circuits.

Conclusion
The advances in automated LM methods, anatomical 
tracers, physiological methods, and informatics 
tools have begun to transform our understanding 
of the circuit wiring in the mouse brain. The focus 
on the mouse as an animal model is, of course, not 
accidental. In addition to the generation of cell-type-
specific knock-in mouse lines (Madisen et al., 2010, 
2012; Taniguchi et al., 2011) that allow the study of 
specific neuronal populations in the normal brain, 
mouse genetics are used in hundreds of laboratories 
to model gene mutations linked to heritable human 
disorders, including complex cognitive disorders 
such as autism and schizophrenia. Without doubt, 

Figure 4. Imaging c-fos induction as a means to map whole-brain activation. a, 3D visualization of 367,378 c-fos-GFP cells 
detected in 280 coronal sections of an STP tomography dataset of a mouse brain after novelty exploration. b, Examples of ana-
tomical segmentation of the brain volume with the Allen Mouse Brain Reference Atlas labels (Sunkin, et al., 2013) modified for 
the 280-section STP tomography datasets: hippocampus (blue), prelimbic (aqua blue), infralimbic (orange), and piriform (green) 
cortex. c, Visualization of c-fos-GFP cells in the hippocampus (38,170 cells), prelimbic (3305 cells), infralimbic (3827 cells), and 
piriform (10,910 cells) cortex (P. Osten, Y. Kim, and K. Umadevi Venkataraju, CSHL, unpublished observations).
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understanding the relationships between brain 
structure and function in the genetic mouse models 
will be crucial to understanding the underlying brain 
circuit mechanisms of these disorders. The toolbox 
of LM methods described here, and the continuing 
development of new methods, promise to transform 
the study of brain circuits in animal models and 
to decipher the structure–function relationships 
essential to understanding complex brain functions 
and their deficits in human brain disorders.
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Introduction
A major challenge in biology remains obtaining 
detailed high-resolution information from a complex 
system while maintaining the global perspective 
needed to understand system function. Here we 
address this challenge using the CLARITY method 
for efficient transformation of intact tissue into a 
nanoporous hydrogel-hybridized form (cross-linked 
to a three-dimensional [3D] network of hydrophilic 
polymer chains) that is fully assembled but optically 
transparent and macromolecule-permeable. We 
demonstrate transformation of rodent brains using 
this method, which enables intact-tissue imaging 
of many elements: long-range circuit projections, 
local circuit wiring, cellular relationships, subcellular 
structures, protein complexes, nucleic acids, and 
neurotransmitters. We also show how CLARITY 
is compatible with both immunocytochemistry 
and in situ hybridization in nonsectioned tissue, 
enabling the delivery and retrieval of exogenous 
macromolecules throughout the intact mouse brain 
for molecular phenotyping and allowing sequential 
rounds of staining and destaining. Finally, we 
demonstrate that CLARITY enables fine-structural 
analysis of clinical samples, including nonsectioned 
human tissue banked for years in formalin from a 
psychiatric disease clinical setting. These capabilites 
open the door to transmuting human tissue into a 
physically stable, intact form suitable for probing 
the structural and molecular underpinnings of 
physiological function and disease.

Extracting detailed structural and molecular 
information from intact biological systems has 
long been a fundamental challenge across fields 
of investigation and has spurred considerable 
technological innovation (Denk et al., 1990; 
Helmchen and Denk, 2005; Dodt et al., 2007; Livet 
et al., 2007; Micheva and Smith, 2007; Li et al., 
2010; Susaki et al., 2014). In particular, the study of 
brain structure–function relationships may benefit 
from intact-system tools (Kasthrui and Lichtman, 
2007; Defelipe, 2010); in general, much valuable 
information on intrasystem relationships and joint 
statistics will become accessible from undertaking 
the full structural analysis of intact systems rather 
than piecemeal reconstruction across preparations. 
Yet even tissue structure in itself provides only a 
certain level of insight without detailed molecular 
phenotyping, which is difficult to achieve within 
intact tissue.

We have set the goal of rapidly transforming 
intact tissue into an optically transparent and 
macromolecule-permeable construct while preserving 

native molecular information and structure. We took 
note of the fact that packed lipid bilayers are implicated 
in rendering tissue poorly accessible both to molecular 
probes and to photons; these bilayers simultaneously 
create diffusion-barrier properties relevant to 
chemical penetration and light-scattering properties 
at the lipid-aqueous interface. Thus, we reasoned that 
if lipid bilayers could be removed nondestructively, 
light and macromolecules might penetrate deep into 
tissue, allowing 3D imaging and immunohistological 
analysis without disassembly. However, removing lipid 
membranes that provide structural integrity and retain 
biomolecules would inevitably damage tissue with 
profound loss of cellular and molecular information. 
Therefore, first providing a physical framework would 
be required to physically support the tissue and secure 
biological information.

Hydrogel–Electrophoretic Tissue 
Transmutation
We began providing a physical framework for 
the tissue by infusing hydrogel monomers (here, 
acrylamide and bisacrylamide), formaldehyde, and 
thermal initiators into tissue at 4°C (Fig. 1). In this 
step, formaldehyde not only cross-links the tissue 
but also covalently links the hydrogel monomers 
to biomolecules, including proteins, nucleic acids, 
and small molecules. Next, polymerization of 
the biomolecule-conjugated monomers into a 
hydrogel mesh is thermally initiated by incubating 
infused tissue at 37°C for 3 h, at which point tissue 
and hydrogel become a hybrid construct. This 
hydrogel–tissue hybridization physically supports 
tissue structure and chemically incorporates 
biomolecules into the hydrogel mesh. Importantly, 
lipids and biomolecules lacking functional groups 
for conjugation remain unbound and therefore can 
be removed from the hybrid. To efficiently extract 
lipids, we developed an active-transport organ 
electrophoresis approach, which we termed ETC 
(electrophoretic tissue clearing), capitalizing on the 
highly charged nature of ionic micelles. This method 
expedites lipid extraction by orders of magnitude.

Whole Adult Mouse Brain Imaging
To test anticipated features of the technology, we 
used CLARITY to process the brain of a 3-month-
old Thy1-EYFP line-H mouse, in which the cytosolic 
fluorescent protein enhanced yellow fluorescent 
protein (EYFP) is expressed in projection neurons 
(Feng et al., 2000). Within 8 d, the intact adult brain 
was transmuted into a lipid-extracted and structurally 
stable hydrogel–tissue hybrid. Scattering still occurs 
owing to heterogeneously distributed protein/
nucleic acid complexes in the hybrid. However, 
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Figure 1. CLARITY. Tissue is cross-linked with formaldehyde (red) in the presence of hydrogel monomers (blue), covalently linking 
tissue elements to monomers, which are then polymerized into a hydrogel mesh. Electric fields applied across the sample in ionic 
detergent actively transport micelles into (and lipids out of) the tissue, leaving fine structure and cross-linked biomolecules in place. 
Bottom left boxed region, ETC chamber. Reprinted with permission from Chung et al. (2013), their Fig. 1.



© 2014 Chung

29

after immersion in refractive index (RI)–specified 
solutions matching the CLARITY hybrid (e.g., 85% 
glycerol or FocusClear, both RI ~1.45), the intact 
brain becomes uniformly transparent (Figs. 2a–c).

Imaging depth in clarified tissue appeared to be limited 
only by working distance (WD) of the objective (here 
3.6 mm, though 8 mm WD/0.9 NA objectives are 
available). Therefore, to image the 5- to 6-mm-thick 

adult mouse brain, we next imaged the dorsal half of 
the brain followed by inversion and imaging of the 
ventral half (Fig. 2d, e). Figure 2f shows a volume of 
unsectioned mouse brain with visualization through 
cortex, hippocampus, alveus, and thalamus (Fig. 2g–l). 
We observed that tissue expanded slightly with ETC 
and returned to original size after RI matching. This 
transient change did not cause net tissue deformation, 
and fine structural details such as membrane-localized 

CLARITY and Beyond: Tools for Integrated Brain Mapping

Figure 2. Intact adult mouse brain imaging. a–d, Whole mouse brains (3 months old): a, before CLARITY (quote from Ramón 
Y Cajal, 1904); b, after CLARITY. Thy1–eYFP line-H mouse brain after hydrogel–tissue hybridization, ETC, and refractive-index 
matching. c, Fluorescence image of brain in b. d, Dorsal aspect is imaged using single-photon (1p) microscopy, then the brain is 
inverted and ventral aspect imaged. e, 3D rendering of clarified mouse brain. Left, dorsal half; Right, ventral half. Scale bar, 1 mm. 
f, Nonsectioned mouse brain tissue showing cortex, hippocampus, and thalamus. Scale bar, 400 μm. (g–l). Optical sections from f 
showing negligible resolution loss even at ~3400 µm depth. g, h, z = 446 µm; i, j, z = 1683 µm; k, l, z = 3384 µm. h, j, and l, Boxed 
regions in g, i, and k. Scale bars, 100 μm. m, Cross-section of axons in clarified striatum of Thy1-ChR2-EYFP line: membrane-
localized ChR2-EYFP. Scale bar, 5 μm. n, Dendrites and spines of neurons in clarified Thy1-EYFP line-H cortex. Scale bar, 5 μm. 
Reprinted with permission from Chung et al. (2013), their Fig. 2. 
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Figure 3. Molecular phenotyping in intact tissue. a, Protein loss percentages in clarified mouse brain compared with  
conventional methods; n = 4 for each condition. b, Rendering of 1-mm-thick, nonsectioned coronal block of Thy1-EYFP mouse  
immunostained for GFP. Scale bar, 500 μm. c, 3D rendering of boxed region in cortex in b shows EYFP fluorescence (left) and anti-
GFP staining (right). d, Left, Colocalization of GFP staining. Right, Optical sections at different depths in 3D rendering. Scale bar, 
100 μm. e–f, 500-µm-thick block of line-H brain immunostained for synapsin-I (red)/PSD-95 (blue) for 3 d. e, Left, Optical sections. 
Right, enlarged images of boxed regions on left. Individual synaptic puncta resolved throughout depth. EYFP: white. f, Average 
immunofluorescence cross-section of PSD-95 puncta. g, Full width at half maximum (FWHM) of average immunofluorescence 
cross-section of PSD-95 puncta versus depth. Insets: average puncta at z = 20 µm, z = 200 µm. h, Staining in hippocampus. Left, 
GABA; middle, PV; right, overlay. Scale bar, 20 μm. i, In situ hybridization in clarified 500 µm mouse brain block showing dopamine 
receptor D2 (Drd2) mRNA in striatum. LV, lateral ventricle. Blue, DAPI. Scale bars: Left, 100 μm; Right, 20 μm. j, k, Axonal fibers 
of TH-positive neurons in NAc and CPu. j, 3D rendering of 1-mm-thick clarified mouse brain block stained for TH (red) and DAPI 
(green). aca, anterior commissure. Scale bar, 500 µm. k, Maximum projection, NAc/aca volume in j. Scale bar, 50 μm. Reprinted 
with permission from Chung et al. (2013), their Fig. 3. 
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proteins (Fig. 2m), dendritic spines (Fig. 2n), and 
synaptic puncta (Fig. 3e–g) remained securely in place.

Molecular Phenotyping of Intact 
Tissue Volumes
Interrogating molecular features at subcellular 
resolution in an intact brain with known global 
wiring properties may be of value; however, 
conventional labeling techniques involve (1) loss of 
native molecules after permeabilization required for 
access to intracellular targets, (2) time-intensive thin 
sectioning and reconstruction, or (3) when multiple 
rounds of labeling are attempted, damage due to 
harsh probe removal processes. We hypothesized 
that CLARITY could overcome these three major 
difficulties by enabling intact-tissue and multiple-
round molecular phenotyping.

First, CLARITY may preserve native antigens 
with unusual completeness owing to the hydrogel-
hybridization process. To quantify molecular 
preservation associated with tissue–hydrogel fusion, 
we compared protein loss in clarified mouse brain 
to loss from conventional methods (Fig. 3a). Of 
total protein, ~65% was solubilized (lost) when 
conventionally PFA-fixed tissue blocks were cleared 
by 4% SDS for one week. Scale, a tissue-clearing 
method using 4M urea, allowed ~41% protein loss 
over the same interval. Even PFA-fixed tissue treated 
only with 0.1% Triton X-100/PBS, a mild detergent–
based permeabilization buffer used in conventional 
histology, allowed significant loss of ~24% protein. 
However, when hydrogel-hybridized tissue was cleared 
with the stringent 4% SDS solution of CLARITY, only 
~8% protein loss was seen, indicating that chemical 
tethering of biomolecules into hydrogel mesh can 
enhance the preservation of molecular components.

Second, we found that CLARITY, which increases 
tissue permeability by replacing lipid bilayers with 
nanoporous hydrogel, enables rapid diffusion of 
molecular probes deep into intact tissue, and thereby 
allows access to preserved biomolecules without 
sectioning. In a 1-mm-thick clarified coronal block 
of mouse brain, uniformly antibody-stained over 
3 d (Fig. 3b), quantitative colocalization analysis 
revealed that EYFP fluorescence and anti–green 
fluorescent protein (GFP) staining overlapped 
throughout the block (Figs. 3c, d).

Third, CLARITY was found to enable multiround 
molecular phenotyping (Fig. 4); the stable framework 
allowed effective removal of antibodies without 
fine-structural damage or degraded antigenicity. We 
performed three consecutive rounds of staining in 

1-mm-thick coronal blocks from a Thy1-EYFP H-line 
mouse brain, observing effective antibody removal 
and preserved EYFP-positive neuronal morphology 
as well as restaining capability. Although extensive 
validation would be required to fully map the extent 
to which CLARITY secures molecular information, 
this result demonstrates that elution largely preserves 
integrity of tissue structure, cellular architecture, 
fluorescence signals (Figs. 3d–f), and diamino-phenyl-
indol (DAPI) DNA staining (Fig. 3g). Moreover, 
repeated TH staining in the first and third rounds 
revealed identical staining patterns and signal 
intensity, confirming that antigenicity is retained 
throughout multiple rounds of staining/elution. 
To investigate axonal projections of the tyrosine 
hydroxylase (TH) neurons further, we clarified 1-mm-
thick coronal blocks of mouse brain that were stained 
and imaged using tyrosine hydroxylase. As shown in 
Figures 3j and k, projections of tyrosine hydroxylase–
positive fibers were readily visualized in the neocortex, 
nucleus accumbens, caudate putamen, and amygdala. 
We also found that the CLARITY hydrogel-
conjugation process preserves small molecules, such 
as the neurotransmitter GABA (Fig. 3h).

Human Tissue Imaging and 
Molecular Phenotyping
We found that CLARITY functioned in long-
banked human brain, enabling immunohistological 
visualization and identification of neurons and 
projections over large volumes (Figs. 5a–g). In 
0.5-mm-thick blocks of frontal lobe from an autistic 
patient, stored in formalin for >6 years, we were 
able to stain for axons with neurofilament protein 
(NP) and myelin basic protein (MBP) and to trace 
individual fibers (Fig. 5e). In addition, by staining for 
parvalbumin (PV), we could visualize the distribution 
of PV-positive interneurons in neocortex over large 
volumes (6.7 × 4.7 × 0.5 mm) and trace individual 
PV-labeled processes (Figs. 5g–n).

Unlike mechanical sectioning methods, which 
may involve deformation of tissue and uncertainty 
in registration across sections, CLARITY preserves 
continuity of structure, which not only allows tracing 
of neurites over distances but also provides a class of 
distinct information about the morphology of traced 
neurons. As one example, we found that many 
PV-positive interneurons in this human sample, 
selectively in deep layers, displayed isoneuronal 
and heteroneuronal dendritic bridges (Figs. 5g–m). 
These ladder-like connections (not typical of control 
brain) instead resemble abnormalities observed with 
mutations in the Down syndrome cell-adhesion 
molecule (Dscam) protein or protocadherins 
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(Pcdhs); mutations in the latter family are associated 
with autism-spectrum disorder (Morrow et al., 2008). 
Although extensive work would be required to define 
the incidence and implications of abnormal PV 
neurons, the observation illustrates the structural 
and molecular capability that clarified tissue provides 
by virtue of volumetric continuity, which may 
help shed light on the structural underpinnings of 
neuropsychiatric disease (de Anda et al., 2012).

Discussion
Using this hydrogel–tissue fusion and ETC 
technology, intact tissue can be rapidly transformed 
into optically and chemically accessible form while 
retaining structural and molecular information, 
thereby enabling the imaging of entire adult 
vertebrate brains as well as multiple-round molecular 
phenotyping without thin sectioning. CLARITY-
optimized long-WD objectives will improve imaging 

NOTES

Figure 4. Multiround molecular phenotyping of intact tissue. a, First round. Volume rendering of 1-mm-thick block of Thy1-EYFP 
mouse immunostained for TH in nonsectioned form. Scale bar, 500 μm. b, Antibodies eluted from block in a. c, Second round. 3D 
rendering of same block now immunostained for PV (red)/GFAP (blue)/DAPI (white). d–f, Maximum projections of 100 µm volume 
of yellow-boxed region in a, b, and c, respectively. Scale bar, 100 μm. g, Optical section of white/dotted-box region in c showing 
DAPI. CA, cornu ammonis; DG, dentate gyrus. Scale bar, 100 μm. h–i, TH channel of white-box region in a (h) and j (i). TH antige-
nicity preserved through multiple elutions. Scale bar, 100 μm. j, Third round. Block in a–c immunostained for TH (red) and choline 
acetyltransferase (ChAT) (blue). k, 3D view of hippocampus in c showing EYFP-expressing neurons (green)/PV-positive neurons 
(red)/GFAP (blue). Scale bar, 200 μm. Alv, alveus. Reprinted with permission from Chung et al. (2013), their Fig. 4.
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Figure 5. Human brain structural/molecular phenotyping. Human BA10 500-µm-thick intact blocks. a, Optical section: myelin 
basic protein (MBP)/PV staining. White arrowheads indicate membrane-localized MBP around PV-positive projections. Scale 
bar, 10 μm. b, TH and PV staining. Scale bar, 50 μm. c, Optical section: NP and GFAP. Scale bar, 20 μm. d, Somatostatin 
and PV staining. Scale bar, 20 μm. e, Rendering of NP-positive axonal fibers. Red, traced axon across volume. Scale bar,  
500 μm. Inset: boxed region. Scale bar, 20 μm. f, Visualization of PV-positive neurons in neocortex of autism case (Morrow et al., 
2008). Scale bar, 500 μm. g, Yellow-boxed region in f showing PV-positive cell bodies and fibers in layers IV, V, and VI. Scale bar,  
100 μm. h, 3D rendering of abnormal neurons in g. Yellow arrowheads (1, 2) indicate ladder-shaped structures shown below in i 
and k. Scale bar, 80 μm. i, Zoomed-in maximum projection of 8 µm volume showing morphology of ladder-shaped structure formed 
by neurites from a single neuron. Scale bar, 10 μm. j, Tracing of structure in i. k, Maximum projection of 18 µm volume showing 
ladder-shaped structure formed by neurites from 2 different neurons. Scale bar, 10 μm. l, Tracing of structure in k. m, Isoneuronal 
and heteroneuronal dendritic bridges per neuron. **p<0.05; error bars indicate SEM; n = 6 neurons for both superficial and deep 
layers of autism case; n = 4 neurons for both superficial and deep layers of control case. n, 3D reconstruction of a neuron in layer 2 
(superficial) of the autism case. Scale bar, 10 μm. Reprinted with permission from Chung et al. (2013), their Fig. 5.



34

NOTES depth and resolution, further enhancing the 
acquisition of integrated structural and molecular 
information from intact systems.

Turning immense datasets into useful insights remains 
a key challenge. Computational approaches to image 
segmentation, 3D registration, and automated 
tracing require further development. Although 
much remains to be refined, new approaches to 
intact-systems biology may dovetail with existing 
optogenetic-control or activity-imaging methods. 
Moreover, efficient molecular phenotyping (as 
with c-Fos) may help map populations with altered 
activity downstream of the directly modulated 
population, across the same intact brain. Together 
with its capability for intersectional definition of 
cells via sequential rounds of labeling, and broad 
application domain (including mouse, zebrafish, and 
human), these data suggest that CLARITY provides 
access to structural and molecular information that 
may help support a newly integrative understanding 
of large-scale intact biological systems.
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Introduction
CLARITY is a method for chemical transformation 
of intact biological tissues into a hydrogel-tissue 
hybrid, which becomes amenable to interrogation 
with light and macromolecular labels while retaining 
fine structure and native biological molecules. This 
emerging accessibility of information from large 
intact samples has created both new opportunities 
and new challenges. In this chapter, we describe next-
generation methods spanning multiple dimensions of 
the CLARITY workflow. These methods range from a 
novel approach to simple, reliable, and efficient lipid 
removal without electrophoretic instrumentation 
(passive CLARITY), to optimized objectives and 
integration with light-sheet optics (CLARITY-
optimized light-sheet microscopy, or COLM) for 
accelerating data collection from clarified samples 
by several orders of magnitude while maintaining 
or increasing quality and resolution. These methods 
may find application in the structural and molecular 
analysis of large assembled biological systems such as 
the intact mammalian brain.

One goal of modern neuroscience is to map the 
architecture of neural circuits with both high (wiring-
level) resolution and broad (brainwide) perspective. 
This challenge has drawn the attention of generations 
of scientists, beginning with Ramón Y Cajal’s detailed 
representations of neurons visualized at high resolution 
with the Golgi staining technique while embedded 
within semi-intact brain tissue (Ramón Y Cajal, 
1904). Principles fundamental to the understanding 
of neural systems can result from such an integrative 
approach, but although progress has been made, many 
challenges and opportunities remain.

Over the last few decades, electron microscopy (EM) 
has emerged as a foundational method for deciphering 
details of neuronal circuit structure (Bock et al., 
2011; Briggman et al., 2011; Kim et al., 2014). The 
key advantage of EM in this regard (relative to light 
microscopy) is the identification of presynaptic active 
zones containing neurotransmitter vesicles apposed 
to postsynaptic structures. In addition, EM facilitates 
visualization of some of the very finest branches 
of axons. However, EM tissue mapping requires 
relatively slow steps involving ultrathin sectioning/
ablation and reconstruction; most importantly, the 
sample contrast preparation is largely incompatible 
with rich molecular phenotyping that could provide 
critical information on cell and synapse type. Ideally, 
datasets resulting from intact-brain mapping should 
be linkable to molecular information on the types of 
cells and synapses that are imaged structurally, and 
even to dynamical information on natural activity 
pattern history (in these same circuits) known to be 

causally relevant to animal behavior. Suitable light-
based imaging approaches, combined with specific 
genetic or histochemical molecular labeling methods, 
have emerged as important tools for visualizing the 
structural, molecular, and functional architecture of 
biological tissues, with a particularly vital role to play 
in emerging brainwide, high-resolution neuroanatomy.

Confocal methods revolutionized light microscopy 
by enabling optical sectioning in thick (tens of 
micrometers) fluorescently labeled samples, thereby 
allowing three-dimensional (3D) reconstruction 
without the need for ultrathin physical sectioning. 
(Conchello and Lichtman, 2005). Two-photon 
microscopy further increased the accessible imaging 
depth (to hundreds of micrometers) even in living 
tissue samples (Helmchen and Denk, 2005), and 
adaptive-optics approaches have improved imaging 
depth further (Tang et al., 2012). However, light 
microscopy remains limited for imaging throughout 
intact vertebrate nervous systems. (For example, 
mouse brains span many millimeters even in the 
shortest spatial dimension, and are opaque on this 
scale owing chiefly to light scattering.)

As a step in this direction, new methods have 
emerged to increase tissue transparency (Dodt et 
al., 2007; Hama et al., 2011; Ke et al., 2013) by 
chemically reducing the scattering of light traveling 
through the tissue sample. Although intriguing 
and effective, these approaches are not generally 
suitable for detailed molecular phenotyping, since 
most tissues (e.g., the intact mature brain) remain 
largely impenetrable to macromolecular antibody or 
oligonucleotide labels. These limitations motivated 
the recent development of CLARITY (Chung et 
al., 2013; Tomer et al., 2014), which involves the 
removal of lipids in a stable hydrophilic chemical 
environment to achieve transparency of intact tissue, 
preservation of ultrastructure and fluorescence, and 
accessibility of native biomolecular content to 
antibody and nucleic acid probes.

Clarifying Large Tissue Volumes
CLARITY builds on chemical principles to grow 
hydrogel polymers from inside the tissue in order 
to provide a support framework for structural and 
biomolecular content (Fig. 1). This is achieved first by 
infusing a cold (4°C) cocktail of hydrogel monomers 
(for example, acrylamide with bisacrylamide), 
formaldehyde, and thermally triggered initiators into 
the tissue, followed by polymerization of the hydrogel 
at 37°C. Formaldehyde serves the dual purposes of 
cross-linking amine-containing tissue components to 
each other, as well as covalently binding the hydrogel 
monomers to these native biomolecules, which include 
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proteins, nucleic acids, and other small molecules  
(Fig. 1), but not the vast majority of cellular membrane 
phospholipids. After the hydrogel polymerization is 
triggered, lipids (responsible for preventing access of 
both photons and molecular labels to deep structures) 
can then be readily removed without destroying or 
losing native tissue components using strong ionic 
detergent-based clearing solution (borate-buffered 4% 
sodium-dodecyl-sulfate) at 37°C, either passively with 
gentle recirculation or with active electrophoretic 
forcing (the latter greatly accelerates clearing but 
introduces some experimental complexity and risk). 
The resulting lipid-extracted and structurally stable 
tissue–hydrogel hybrid is immersed in a refractive 
index (RI) homogenization solution (e.g., 87% glycerol 
or FocusClear; RI ~1.454) to render the intact brain 
transparent to light. By allowing multiple rounds of 
histochemical labeling and elution in the same tissue, 
CLARITY provides unusually rich access to molecular 
and structural information.

Imaging Large Clarified  
Tissue Volumes
The next major challenge after achieving access to 
clarified large tissues is to develop optimized and 
high-resolution deep-imaging approaches. One of the 

most important components of any light microscopy 
system is the detection objective (Fig. 2a), which 
sets the resolution that can be achieved and the 
maximum sample size that can be imaged. We have 
accordingly advised objective manufacturers to 
facilitate development for CLARITY samples, and 
these new objectives are becoming available.

In addition to optimized detection optics, the 
nature of the microscopy system is important for 
achieving high imaging speed and minimizing 
photo-bleaching. While confocal and two-photon 
microscopes have been the workhorse systems in 
volumetric imaging for the reasons described above, 
over the past 20 years, light-sheet fluorescence 
microscopy has emerged as a powerful approach for 
high-speed volumetric imaging. Figure 2b compares 
the mechanistic foundations of these three imaging 
modalities. Confocal and two-photon are point-
scanning techniques, detecting optical signals 
point by point to construct an image. Light-sheet 
microscopy, in contrast, builds on a hundred-year-
old idea to illuminate the sample from the side 
with a thin sheet of light, and detect the emitted 
fluorescence signal with an in-focus, orthogonally 
arranged objective (Siedentopf and Zsigmondy, 1903; 
Huisken and Stainier, 2009). The optical sectioning 

NOTES

Figure 1. CLARITY pipeline overview. The tissue sample, e.g., an intact mouse brain, is perfused with cold hydrogel mono-
mer solution that contains a cocktail of acrylamide, bisacrylamide, formaldehyde, and thermal initiator. Formaldehyde mediates 
cross-linking of biomolecules to acrylamide monomers via amine groups; presumptive chemistry of this process is shown. 
Hydrogel polymerization is initiated by incubating the perfused tissue at 37°C, resulting in a meshwork of fibers that preserves 
biomolecules and structural integrity of the tissue. Lipid membranes are removed by passive thermal clearing in SBC solution 
at 37°C or by electrophoretic tissue clearing (ETC). The resulting intact tissue–hydrogel hybrid can undergo multiple rounds of 
molecular and structural interrogation using immunohistochemistry and light microscopy. A dedicated computational infrastruc-
ture is needed to analyze and store the data. All animal experiments were carried out with Stanford University institutional review 
board approval.
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is achieved by confining illumination to a selective 
plane, which enables the use of fast charge-coupled 
device (CCD) or scientific complementary metal-
oxide semiconductor (sCMOS) cameras to capture 
the whole image simultaneously, and results in an 
increase of 2–3 orders of magnitude in imaging speed 

compared with confocal and two-photon microscopy. 
Moreover, light-sheet microscopy minimizes photo-
bleaching (Fig. 2b) by confining illumination to the 
plane of interest. Taken together, these properties of 
light-sheet microscopy may be well suited for imaging 
large clarified samples.

Advanced CLARITY Methods for Rapid and High-Resolution Imaging of Intact Tissues

Figure 2. Imaging clarified samples. a, Key microscope objective parameters relevant to CLARITY are WD, NA, RI (n), and 
multicolor correction. WD is the distance between the objective lens and the focal plane. NA relates to the fraction of total 
emitted signal collected by an objective, and higher NA enables higher resolution. The graphs plot diffraction-limited lateral 
and axial resolution parameters as a function of NA, assuming λ = 500 nm. b, Comparison of confocal, two-photon, and 
light-sheet microscopy. Confocal microscopy achieves optical sectioning by employing a pinhole in front of the photomul-
tiplier tubes (PMTs). Two-photon microscopy utilizes the fact that only simultaneous absorption of two photons (of longer 
wavelengths) results in fluorescence signal emission, an event more likely to occur at the point of highest light intensity in the 
sample, i.e., the focal plane. Light-sheet fluorescence microscopy achieves optical sectioning by selectively confining the  
illumination to the plane of interest. Confocal and two-photon microscopy use point scanning and hence are inherently slow, 
whereas light-sheet microscopy uses fast sCMOS/CCD cameras to image the selectively illuminated focal plane, resulting in 
2–3 orders of magnitude faster imaging speed and minimal photo-bleaching.
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CLARITY-optimized light-sheet 
microscopy
A light-sheet microscope consists of a standard 
wide-field detection optical arm, which includes the 
detection objective, the tube lens, and a camera, and 
the orthogonally arranged, independent illumination 
arm consisting of a low–numerical aperture (NA) 
objective, tube lens, and either a cylindrical lens to 
generate a static light sheet or galvanometer-scanners/
f-theta lens for creating dynamic light sheets with a 
Gaussian or Bessel beams (Weber and Huisken, 2011). 
Conventional light-sheet microscopy suffers from 
image quality degradation due to out-of-focus scattered 
light. Thus, several methods have been developed to 
help reject out-of-focus light in light-sheet microscopy 
(at some cost in imaging speed, increased photo-
bleaching, and instrumentation complexity), such as 
structured illumination.

We developed CLARITY-optimized light-sheet 
microscopy (COLM) to maximize the compatibility 
of clarified samples with light-sheet microscopy, 
using CLARITY objectives (25× and 10×, Olympus), 
a fast sCMOS camera, two-axis galvonometer 
scanners along with the f-theta lens, a low-NA 
objective to generate dynamic light sheets using a 
Gaussian beam, an optically homogeneous sample 
manipulation system (see below, Sample mounting 
apparatus for COLM), and an xyz-theta sample mount 
stage that provides a long travel range of 45 mm in 
each dimension to enable imaging of large samples  
(Fig. 3). COLM employs synchronized illumination 
detection to improve imaging quality, especially at 
higher depths (Fig. 3c), exploiting the unidirectional 
(as opposed to standard bidirectional) readout mode 
available in next-generation sCMOS cameras. The 
scanning beam (which creates the dynamic light 
sheet) is synchronized with the unidirectional single-
line readout of the emitted signal, resulting in a 
virtual slit arrangement that rejects out-of-focal-plane 
signal caused by scattering deeper in the sample. 
Automated-alignment parameter calibration (using 
linear adaptation) in COLM corrects for misalignment 
artifacts across the whole sample space (Fig. 3d).

Sample mounting apparatus for COLM
The final component of COLM is a CLARITY-
optimized sample mounting strategy that minimizes 
optical inhomogeneity along the detection path  
(Fig. 3b). Clarified whole mouse brain (or any large 
clarified intact tissue, such as a spinal cord) is mounted 
in a cuvette made of fused quartz glass (standard 
cuvettes used for spectrophotometer measurements) 
filled with FocusClear; note that the RI of fused quartz 
(~1.458) is nearly identical to that of FocusClear. 

Using a bottom adapter (Fig. 3b), the sample cuvette 
is mounted onto the xyz-theta stage, inside the sample 
chamber (Fig. 3b). The much larger chamber is then 
filled with a relatively economically priced custom RI 
matching liquid (RI 1.454), resulting in an optically 
homogeneous sample manipulation system.

Figure 3b compares the images taken using standard 
light-sheet microscopy or COLM. We performed 
imaging of whole-brain samples using 10× or 25× 
magnification objectives (Figs. 4, 5).

Discussion
CLARITY allows molecular and structural 
interrogation of tissue by allowing deep imaging 
of transgenic and/or biochemically labeled tissue 
samples. To achieve the best imaging quality, 
careful preparation of the sample and optical 
setup is crucial. First, as demonstrated in Figure 2, 
key relevant properties of the objective must be 
considered, including NA, working distance (WD), 
color correction, and RI correction. We explored 
the emerging commercially available and custom 
solutions, and found that it is indeed possible to 
achieve deep high-resolution and overall high-quality 
imaging in clarified samples (Figs. 4, 5). Other water 
immersion, oil immersion, or air objectives may also 
prove useful for quality imaging deep in tissue.

The major limitations of confocal and two-photon 
microscopes are as follows: (1) slow speed owing to 
point scanning mechanisms (Fig. 2) and (2) damage 
to tissues and fluorophores caused by redundant 
illumination of the whole sample for every optical 
plane imaged, limiting the sample size that can be 
imaged in a reasonable timeframe before the sample 
is completely photo-bleached (particularly in the 
case of confocal microscopy). Light-sheet microscopy 
now emerges as an alternative for fast 3D imaging of 
large clarified samples, as described above.

We assessed the compatibility of clarified samples 
with light-sheet microscopy, observing 2–3 orders of 
magnitude faster imaging speed with minimal photo-
bleaching. For example, it was possible to image an 
entire mouse brain in ~4 h using a 10× magnification 
objective and in ~1.5 d using a 25× objective, as 
opposed to many days and months, respectively, 
with a confocal microscope. COLM is especially well 
suited for interrogation of large tissue samples labeled 
with transgenic or histochemical techniques. The 
increased speed of acquisition and higher quality of 
data generated via CLARITY using new microscopy 
methods, combined with high-speed CLARITY 
processing itself enabled by parallelized and efficient 

NOTES
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Figure 3. COLM for large intact samples. a, Optical layout of the COLM microscope. Two light sheets are created from op-
posite sides; shown are galvanometer scanners, scan lens, tube lens, and illumination objectives. The emitted fluorescence is 
imaged with an in-focus detection objective, tube lens, and sCMOS camera. Illumination and emission filter wheels (motorized) 
are used to generate well-defined excitation light and emission signal bands, respectively. The innovations required for COLM are 
discussed in b–d, and the schematic is shown in Supplemental Figure 2 (http://clarityresourcecenter.com/COLM.html). b, Opti-
cally homogeneous sample mounting framework for large intact samples. Clarified samples, such as intact adult mouse brain, 
are mounted in a quartz cuvette filled with RI matching solution such as FocusClear. Note that the RI of quartz glass (~1.458) 
is nearly identical to that of FocusClear (~1.454). A bottom adapter is used to attach the cuvette to the xyz-theta stage in the 
sample chamber, which is then filled with a matching RI liquid (~1.454). This results in an optically homogenous sample manipu-
lation system with minimal RI transition boundaries. c, Synchronized illumination and detection are achieved by synchronizing the 
scanning beam with the unidirectional readout of a sCMOS camera chip, resulting in a virtual-slit effect that enables substantially 
improved imaging quality, as illustrated by the images shown acquired from the same plane with COLM and with conventional 
light-sheet microscopy. The graph at right compares the signal intensity profile of a field acquired with COLM (red) with one ac-
quired by conventional light-sheet microscopy (blue). d, Large clarified samples can have significant RI inhomogeneity, resulting 
in the need for correction of misalignment of illumination with the focal plane of the detection objective. We achieved this with a 
linear adaptive calibration procedure before starting the imaging experiment. Scale bars, a–d, 100 μm.
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tissue transformation protocols described here, 
together define a versatile and efficient platform for 
structural and molecular interrogation of large and 
fully assembled tissues.
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NOTES

Figure 4. Ultrafast imaging of whole mouse brain using COLM. a, Volume rendering of whole mouse brain dataset acquired 
from an intact clarified Thy1-EYFP mouse brain using COLM. b, c, and d illustrate internal details of the intact mouse brain vol-
ume visualized by successive removal of occluding dorsal-side images. The brain was perfused with 0.5% (wt/vol) acrylamide 
monomer solution and clarified passively at 37°C with gentle shaking. Camera exposure time of 20 ms was used, and the RI 
liquid 1.454 was used as immersion media. The entire dataset was acquired in ~4 h using a 10×, 0.6 NA objective.
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Figure 5. Fast high-resolution imaging of clarified brain using COLM. 3.15 × 3.15 × 5.3 mm volume acquired from an intact clarified 
Thy1-EYFP mouse brain using COLM with 25× magnification; the brain had been perfused with 0.5% (wt/vol) acrylamide monomer 
solution. The complete image dataset was acquired in ~1.5 h; for optimal contrast, the lookup table (LUT) of zoomed-in images 
was linearly adjusted between panels. a and b show magnified views from panel c regions defined by yellow squares. d–i show 
maximum-intensity projections over a 50 μm thick volume, as shown by the progression of cyan and yellow boxes and arrows. 
Camera exposure time of 20 ms was used; RI liquid 1.454 was used as the immersion medium. Scale bars, a–d, 100 μm.
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Introduction
The Allen Mouse Brain Connectivity Atlas is a 
comprehensive database of high-resolution images 
of axonal projections targeting different anatomical 
regions or various cell types using Cre-dependent 
specimens (Oh et al., 2014). Each specimen was 
injected with an enhanced green fluorescent protein 
(EGFP)–expressing adeno-associated anterograde 
viral tracer. EGFP-labeled axonal projections were 
systematically imaged using the TissueCyte 1000 serial 
two-photon (STP) tomography system (TissueVision, 
Cambridge, MA), which couples high-speed two-
photon microscopy with automated vibratome 
sectioning (Ragan et al., 2012). By imaging the 
block-face, STP tomography essentially eliminates 
tissue distortions that occur in conventional section-
based histological methods, yielding a series of highly 
conformed, inherently prealigned images amenable 
to precise three-dimensional (3D) spatial mapping 
(Fig. 1).

For each brain, 140 coronal plane high-resolution 
(0.35 µm) images were obtained at a z-sampling 
interval of 100 µm to span the entire brain during 
a continuous 18.5 h scanning period, resulting in 
an approximately 750 gigabyte dataset per brain. 
Background fluorescence in the red channel illustrated 
basic anatomy and brain structures. The injection site 
and axonal projection information were collected in 
the green channel. Each image series was processed 
through an informatics data pipeline (IDP) to obtain 
spatially mapped, quantified projection information. 
Key algorithms were developed to reliably extract 
labeled axons from the digitized images and to 
bring data from different sections and animals into 
registration to allow computational comparison  
(Fig. 2). Output of the pipeline supported the creation 
of whole-brain connectivity matrices and analysis of 

connectional strength distribution, symmetry, and 
other network properties (Oh et al., 2014). On the 
Web application (http://connectivity.brain-map.
org), informatics results support key features, such 
as an interactive projection summary graph for each 
specimen, an image synchronization feature to browse 
images from multiple injections and reference data 
and atlases in a coordinated manner, and an on-the-
fly search service to identify specimens with specific 
projection profiles.

Annotated 3D Reference Space
The backbone of the automated informatics pipeline 
is an annotated 3D reference space based on the 
same brain specimen used for the coronal Allen 
Reference Atlas (Dong, 2008). The reference brain 
was sectioned to span a nearly complete specimen 
resulting in 528 Nissl-stained sections, each 25 µm 
thick. A brain volume was reconstructed from the 
images using a combination of high-frequency section-
to-section histology registration with low-frequency 
histology to (ex cranio) MRI registration (Yushkevich 
et al., 2006). This first-stage reconstruction was then 
aligned with a reconstructed sagittally sectioned 
specimen. Once a straight midsagittal plane was 
achieved, a synthetic symmetric space was created 
by reflecting one hemisphere to the other side of the 
volume. More than 800 structures were extracted 
from the 2D coronal reference plates (132 plates,  
100 µm apart) and interpolated to create symmetric 
3D annotations.

Image Registration
The two-photon tomography imaging platform 
generated images that are inherently prealigned, 
allowing the stacking of images together to form a 
coherent 3D reconstructed volume. This stacking 

Figure 1. High-resolution images of a 
single specimen from the Allen Mouse 
Brain Connectivity Atlas shown as an 
example (injection into the primary 
visual area). The injection site and 
major targets can easily be seen. 
Block-face imaging generates inher-
ently prealigned images amenable to 
precise 3D mapping.
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NOTES eliminates the 3D reconstruction step typically 
required if images were generated with conventional 
section-based histology.

Mapping a 3D specimen brain directly to the Nissl-
based reference space is a multimodality registration 
problem because the intensity profile of background 
fluorescence does not have a straightforward 
relationship with the intensity profile of the Nissl 
volume. It is difficult to make multimodality 
registration methods robust through thousands of 
specimens because processing each specimen requires 
a large parameter optimization to “learn” both 
deformation as well as complex intensity relationships.

One strategy to reduce complexity is to introduce 
an intermediary registration template with the 
same intensity profile as the specimen brains. A 
simple option could be to select a single specimen 
as a template; however, careful selection is needed 
because any damage or abnormality will introduce 
biases as each brain is forced to match the 
abnormalities of the selected specimen. Instead, 
we created an unbiased template by averaging over 
many specimen brains (similar to Fonov et al., 2011; 
Ullmann et al., 2013). The creation of an averaged 
template and registration of specimen brains to the 
template are two iterative, intertwined processes.

The iterative process was bootstrapped by globally 
aligning the initial set of 41 specimen brains 
generated at the time to the Nissl-based reference 
space (Fig. 3a). A global alignment process 
consisted of three steps: first, a coarse registration 
was initialized by matching the image moments of 
the specimen brain and the target. The second step 

was a rigid (rotation and translation) registration, 
and the third step consisted of a 12-parameter 
affine (linear) registration. Each step was based on 
maximizing normalized mutual information between 
the specimen and target intensity. A multiresolution 
scheme was used where the optimization was first 
solved on smoothed and downsampled versions of 
the image stack. Smoothing out the details reduced 
complexity, driving the algorithm to match on large-
scale shape features. The results from one resolution 
was then used to initialize the optimization at the 
next resolution, allowing finer details to be matched. 
After global alignment, the 41 specimens were 
averaged to create the first iteration of the template. 
All specimen brains were then globally aligned to 
the template, and then averaged to create the next 
iteration of the template (Fig. 3b).

A local alignment stage was then introduced to 
increase alignment accuracy by modeling local 
deformations. Similar to the global alignment 
stage, B-spline-based deformable registration was 
also conducted sequentially, from coarse to fine, in 
four resolution levels. In this method, deformation 
between specimen and template was parameterized 
as 3D B-splines where the knots are placed on a 
regularly spaced 3D grid. A coarse grid implicitly 
allows only smooth or stiff deformations, whereas 
a finer grid allows more elastic transformations. 
Deformable registration can easily become trapped in 
a local minimum, especially when there is specimen 
damage, and hence a coarse-to-fine approach is 
essential. The initial coarse-level alignments allow 
large-scale anatomy to be matched, which is used 
to initialize finer levels of alignment, allowing local 
neighborhoods to be more accurately matched.

Figure 2. Key algorithms were 
developed to extract labeled  
axons from the digitized images 
(detection) and to bring all data 
into the common coordinates of 
a 3D reference space. Scale bars, 
1 mm.
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All specimen brains were locally aligned to the 
template, then averaged to create the next iteration 
of the template. This process continues for multiple 
rounds until the algorithm converges and the template 
change is below threshold. The final average template 
(averaged from 1231 brains) shows remarkably clear 
anatomical features and boundaries (Fig. 3c). The last 
step consisted of deformable registration of the average 
template with the original annotated reference space 
by maximizing mutual information of large-structure 
annotation and template intensity.

Because meaningful information data quantification 
is highly dependent on mapping precision, 
registration variability was investigated in two ways 
(Oh et al., 2014). First, three independent raters 
selected and identified 10 widely distributed 3D 
anatomical fiducial points in the Nissl reference space, 
registration template, and 30 experimental brains. 
They found a high degree of concordance among 
individual brains, with median variation <49 µm  
in each dimension between each brain and the 
average template brain, which is comparable with 
the median interrater variation of <39 µm. The 
median difference was <71 µm between each brain 
and the annotated reference space. Second, manual 
and informatics annotation of the injection sites 
was compared for approximately 500 specimens. 
Informatics-derived assignment of injection-site 
structures had >75% voxel-level concordance with 
manual expert annotation for almost all injection 
sites. These analyses confirmed the relatively high 

fidelity in the registration method, in which a large 
contribution of error was derived from imperfect 
alignment between the average template brain and 
the Nissl reference space.

Signal Detection
The signal detection algorithm was applied to 
each image to segment positive fluorescent signal 
from background. Owing to scanner, biological, 
and specimen variations, image intensity was first 
rescaled by square-root transform to remove second-
order effects, followed by histogram matching at the 
midpoint to a template profile. Fitting all specimens 
to a standard profile enabled uniform selection of 
thresholds and other parameters. Median filtering 
and a large-kernel low-pass filter were then applied 
to remove noise.

Signal detection on the processed images was based 
on combining adaptive edge/line detection with 
morphological processing. Edge detection kernels of 
different sizes and orientations were used to identify 
edge-like features in the image. Next, high-threshold 
“strong” edges and low-threshold “weak” edges were 
joined if they were spatially close to form candidate 
signal object sets. Candidate objects were then 
filtered based on their morphological attributes, 
such as length and area, using connected component 
labeling. Separately, clumped signals (e.g., near 
the injection site or at strong target locations) 
were detected using adaptive thresholding. In 
a postsegmentation step, objects detected near 
hyperintense artifacts occurring in multiple channels 
were removed. It should be noted that passing 
fibers and terminals were not distinguished by these 
methods. The resulting output was a full-resolution 
“segmentation mask” that classified each 0.35 µm 
pixel as either signal or background.

Data Voxelization
An isotropic 3D summary of each specimen brain was 
constructed by dividing each image into a 100 × 100 µm  
grid. Total signal was computed for each division or 
voxel by summing the number of signal-positive pixels 
in that voxel. The deformation field computed by the 
registration algorithm was then used to resample the 
voxelized data within the common coordinates of the 
3D reference space. Total signal for each structure was 
obtained by combining voxels from the same structure 
in the 3D reference model (Fig. 4).

Computational Paths
The ability to reconstruct projection trajectories would 
be particularly useful for investigating the relationship 
between projection fields and pathways, understanding 

Figure 3. Evolution of the averaged registration template. a, 
Average of 41 brains globally aligned to the Nissl-based 3D 
reference space. b, Average of ~700 globally aligned brains. 
c, Average of ~1200 locally aligned brains after four iterations 
of average template generation.
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NOTES the impact of white-matter lesions, or helping to 
explain brain model dynamics. In this experiment, for 
each specimen, computational paths were created by 
using the fast marching algorithm (Sethian, 1999) to 
generate a time-of-arrival map. This map represents 
the arrival of a front propagating out from the injection 
site. The speed of the front is defined by projection 
density (proportion of signal-positive pixels in a 
voxel). The higher the density, the lower the viscosity 
and the faster moving the front; the lower the density, 
the higher the viscosity and the slower moving the 
front. Fast marching methods also result in a vector 
at each voxel pointing back toward the injection site. 
Computational paths are then generated by tracing 
back through this vector field. Generally speaking, 
computational paths represent the minimum cost 
paths through the highest projection-density areas.

Search Services
An on-the-fly search service within the Allen Mouse 
Brain Connectivity Atlas allows users to instantly 

search the whole dataset to find experiments with 
specific projection profiles:

•	The Source Search function retrieves specimens 
by anatomical location of the injection site.

•	The Target Search function returns a ranked list 
of specimens by signal volume in the user-specified 
target structure(s).

•	The Spatial Search function returns a ranked 
list of specimens by density of signal in the user-
specified target voxel location.

•	The Injection Coordinate Search function returns 
a ranked list of specimens by distance from their 
injection site to a user-specified seed location.

•	The Correlation Search function enables the 
user to find specimens that have a similar spatial 
projection profile to a seed specimen when 
compared over a user-specified domain.

In order to perform these computations quickly over 
the entire dataset, all 489,393 nonbackground voxels 

Figure 4. The voxelized data search services enable the creation of on-the-fly “virtual retrograde projection” maps at any spatial 
location in the brain by finding injections that project to the targeted position. Two examples are shown with different seeds 
in the thalamus. A tightly integrated browser enables interactive exploration of topology while conferring instant access to the 
primary image data.
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from every experiment have been loaded into the 
server memory as a matrix. Each user search request 
is computed on demand.

Discussion
Connectivity defines function, so the lack of full 
comprehensive knowledge of connectivity impedes 
the understanding of the brain (Van Essen, 2013). 
Availability of a comprehensive map would help with 
experimental design in electrophysiology, provide 
constraints on neural network models, and advance 
comparative and evolutionary studies, among other 
benefits. The Allen Mouse Brain Connectivity Atlas 
is a mesoscale connectome that can begin to fill in 
some of these knowledge gaps.

The Allen Mouse Brain Connectivity Atlas has 
all the desired features summarized in a mesoscale 
connectome position essay by Bohland et al. 
(2009): brainwide coverage, validated and versatile 
experimental techniques, a single standardized data 
format, a quantifiable and integrated neuroinformatics 
resource, and an open-access public online database.

Moreover, systematically generating data and 
methodically mapping the data to the common 
coordinates of reference space allow connectomics 
to go beyond mere 2D structure-to-structure analysis 
using predefined anatomical parcellations. Spatially 
mapped data allow projection topography to be 
explored. Projection data, like gene expression, 
can then be used to define spatial relationships and 
neuroanatomical organizations.
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Introduction
Stereological techniques that estimate cell numbers 
require specific training and elaborate sampling 
strategies to infer total numbers of cells in well-
defined structures of measurable volume. The 
isotropic fractionator is a fast and inexpensive method 
that requires little specific training and few materials 
before it can be used to quantify total numbers of 
neuronal and nonneuronal cells in the whole brain 
or any dissectable regions thereof. It transforms 
highly anisotropic (paraformaldehyde-fixed and 
dissected) brain structures into homogeneous, 
isotropic suspensions of cell nuclei, which can 
be counted and identified morphologically and 
immunocytochemically as neuronal or nonneuronal. 
Estimates of total cell, neuronal, and nonneuronal 
numbers can be obtained within 24 h and vary by less 
than 10% among samples of the same structure. And, 
because the estimates obtained are independent of 
brain volume, they can be used in comparative 
studies of brain volume variation among species 
and in studies of phylogenesis, development, adult 
neurogenesis, and pathology.

Traditionally, stereological methods such as the 
optical disector and fractionator have been the 
gold standard for estimating numbers of cells in 
discrete brain regions and determining how they 
compare across structures, species, ages, conditions, 
or experimental manipulations (West, 1999). These 
methods, however, are very time-consuming. They 
require familiarity with stereological techniques, 
depend on accurate measurement of structure 
volume, and either must be restricted to well-defined 
structures of isotropic architecture and measurable 
volume, or require elaborate sampling strategies to 
ensure that the counted samples are representative.

To circumvent these drawbacks, we created an 
alternative method: the isotropic fractionator 
(Herculano-Houzel and Lent, 2005), which estimates 
the total number of neuronal and nonneuronal cells 
independently from tissue volume and anisotropy, 
and can be applied to the whole brain or any 
dissectable structure. It does not require familiarity 
with stereological techniques and yields reproducible 
estimates of total numbers of cells and neurons 
within a single day. The isotropic fractionator has 
recently been compared with stereology by two 
independent groups and was found to yield similar 
results in far less time (Bahney and von Bartheld, 
2014; Miller et al., 2014). We have already used 
this method in comparative studies of the cellular 
composition of the brain of different mammalian 
species (Herculano-Houzel et al., 2006, 2007, 2011, 

2014; Sarko et al., 2009; Gabi et al., 2010; Neves et 
al., 2014). These include studies of the entire human 
brain (Azevedo et al., 2009), of the distribution of 
neurons across functional areas of the mouse cerebral 
cortex (Herculano-Houzel et al., 2013), across the 
human cerebral cortex (Ribeiro et al., 2013), and 
of the changes in the cellular composition of the 
developing rat brain (Bandeira et al., 2009). Other 
possible uses of the isotropic fractionator include the 
analysis of pathological alterations in the cellular 
composition of the brain and of experimental 
manipulations expected to affect it.

The isotropic fractionator relies on the single 
assumption that every cell in the brain contains 
one and only one nucleus. This method consists of 
processing fixed brains, either as a whole or dissected 
into subregions, into an isotropic suspension 
of isolated nuclei in which cytoarchitectural 
heterogeneities have been literally dissolved. Because 
this suspension has a known, defined volume and can 
be made homogeneous by agitation, the total number 
of nuclei therein (and, therefore, the total number 
of cells in the original tissue) can be estimated by 
determining the density of nuclei in small aliquots 
of the suspension. Once the total cell number is 
known, the proportion of neurons is determined by 
immunocytochemical detection of neuronal nuclear 
antigen (NeuN), which is expressed in all nuclei 
of most neuronal cell types (notable exceptions are 
Purkinje cells, inferior olive neurons, mitral cells, 
and photoreceptors) but not in nonneuronal cells 
(Mullen et al., 1992; Gittins and Harrison, 2004). 
Then, the number of nonneuronal cells can be 
derived by subtraction. Alternatively, morphological 
criteria can be used to determine the numbers of 
readily identifiable nuclear types, such as those of 
Purkinje cells.

The single most important limitation of the isotropic 
fractionator is that it relies on nuclear labels to 
identify specific subpopulations of cell nuclei. This 
eliminates several useful neuronal and glial cell 
markers, which are restricted to the cytoplasm, such 
as MAP2 (microtubule-associated protein-2) and 
GFAP (glial fibrillary acidic protein). On the other 
hand, more and more cell-type-specific transcription 
factors are being discovered, thereby expanding the 
applications of the method.

Isotropic Fractionator Steps
The isotropic fractionator is a simple, fast, and 
reliable method for counting cells in brain (and 
other) tissue that consists of only a few steps.
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NOTES 1. Tissue fixation
The tissue to be analyzed is ideally perfusion-fixed, and 
postfixation by immersion in 4% paraformaldehyde 
is required. Good fixation is mandatory for the 
technique to work; two weeks of postfixation suffice 
to render the cell nuclei extremely resistant to 
mechanical friction.

2. Tissue dissection
This step limits how reliable individual counts are, 
so the technique is best applied to easily dissectable 
structures. Whole brain can also be used, which 
requires little dissection.

3. Tissue dissociation
The dissected structures are homogenized by 
mechanical friction in a saline detergent solution, 
which dissolves the cell membranes while 
maintaining the nuclear membranes intact, thus 
turning the tissue into a suspension of free nuclei.

4. Counting total cell numbers
Samples of the diamino-phenyl-indol (DAPI)–
stained nuclei suspension (made homogeneous 
by agitation) are counted in a hemocytometer. 
Typically, this step takes 15–20 min per structure to 
be counted.

5. Heat-induced epitope retrieval
This is a necessary step when tissue has been 
overfixed, that is, when it has been postfixed for 
more than 2 months.

6. Immunocytochemical identification 
of specific nuclear types
Neuronal nuclei in most structures can be 
identified by the expression of the NeuN antigen. 
Alternatively, morphological criteria can be used. 
Immunocytochemical processing takes 5–6 h, 
after which it takes ~30 min to determine the 
proportion of specific nuclear types in each structure. 
Alternatively, flow cytometry can be used in this 
step to speed up the determination of the proportion 
of immunolabeled nuclei (Collins et al. 2009). 
However, visual identification of immunolabeled 
nuclei has several advantages: (1) It ensures quality 
control over the samples, since stained debris is 
easily discernible from labeled nuclei under the 
microscope; (2) it allows the identification of specific 
cell types by their nuclear morphology; and (3) it is 
readily accessible to any laboratory equipped with an 
upright fluorescence microscope.

7. Storage of free nuclei
Since the immunocytochemical identification of 
specific nuclear types requires only a small aliquot of 
the nuclear suspension, the remaining volume can be 
stored in antifreezing solution for later reanalysis, for 
instance, when other antibodies become available, 
or for photographical documentation.

Materials 
1. Tissue fixation
•	Saline (NaCl, 0.9%)
•	Paraformaldehyde (4% solution in 0.1M phosphate 

buffer)
•	Peristaltic pump

2. Tissue dissection
•	Surgical instruments
•	Stereoscopic microscope
•	Analytic balance

3. Tissue dissociation
•	Tenbroeck tissue grinder (glass homogenizer,  

2, 7, or 40 ml capacity, depending on the size of the 
tissue of interest)

•	Dissociation solution: 1 l of 1% Triton X-100 in  
40 mM sodium citrate

•	Pasteur pipettes
•	Centrifuge tubes (15 or 50 ml)
•	PBS
•	Clinical centrifuge

4. Counting total cell numbers
•	DAPI (Molecular Probes, Life Technologies, 

Grand Island, NY), 10 mg/l
•	Neubauer chamber (hemocytometer), improved to 

allow simultaneous visualization of DAPI-stained 
nuclei and the counting grid

•	Micropipette, 10 μl
•	Fluorescence microscope, upright (inverted 

microscopes will not do)

5. Heat-induced epitope retrieval
•	0.2 M boric acid, pH 9.0 (adjusted with lentils  

of NaOH)
•	PBS
•	1.5 ml Eppendorf tubes (Eppendorf, Hauppauge, NY)
•	Microcentrifuge
•	Heating bath or oven at 70°C

6. Immunocytochemical identification of specific 
nuclear types
•	Anti-NeuN mouse IgG (MAB377), or Cy3-

conjugated polyclonal rabbit anti-NeuN IgG 
(in which case a secondary antibody will not be 
necessary; EMD Millipore, Billerica, MA)
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•	Normal goat serum
•	Fluorescent antimouse secondary antibody
•	DAPI (Molecular Probes, Life Technologies), 10 mg/l

7. Storage of free nuclei
•	Sucrose, 30% in PBS
•	Antifreezing solution (30% glycerol and 30% 

ethylene glycol in 0.024M phosphate buffer; use 
10× dilution of 0.24M phosphate buffer, which 
is 30.8 g NaOH and 117.12 g NaH2PO4 in 4 l of 
distilled water)

Methods
Tissue fixation
1.	 Perfuse the animal of interest with saline 

followed by 4% paraformaldehyde. This step can 
be skipped for small tissues, such as embryonic 
mouse brains or invertebrate ganglia, which can 
be immersion-fixed.

2.	 Remove the brain from the skull; remove the 
dura mater and major superficial blood vessels 
from the fixed brain (for other body structures, 
remove any connective tissue and blood vessels).

3.	 Allow the tissue to postfixate by immersion in 
4% paraformaldehyde. The ideal postfixation 
time is 2–4 weeks.

Tissue dissection
4.	 Under a stereoscope, dissect the regions of 

interest (ROIs).

5.	 Weigh the dissociated ROIs to be counted so 
that cell densities can be determined later.

6.	 Store the dissected ROIs in 4% paraformaldehyde 
if further postfixation is required (that is, if 
the tissue is not yet well fixed or has not been 
immersion-fixed for ≥2 weeks). Store them 
in PBS for immediate use, or in antifreezing 
solution for long-term storage until dissociation 
(see step 45, below).

Tissue dissociation
7.	 Place the dissociated tissue inside the 

homogenizer tube. Small tissues (approximately 
≤50 mg, or 2 mm diameter) can be dissociated 
directly. Large tissues, such as whole cortical 
areas (≤1 g of tissue), need to be diced in a petri 
dish before homogenizing. Wash any leftovers in 
the dish and in your scalpel into the homogenizer 
tube using the dissociation solution. Note: It is 
fundamental that all tissue be homogenized. 
Much larger tissues (e.g., very large cortical 

areas, whole cerebella, spinal cords, or whole 
brains) must be divided into smaller portions of 
~1 g to be dissociated separately and combined 
in a graduated cylinder.

8.	 Add dissociation solution to the homogenizer 
to a final volume that is approximately 10 times 
larger than the tissue to be dissociated, and 
large enough for the glass tube to be filled with 
fluid when the piston is fully inserted into the 
homogenizer. Use this volume to wash down 
into the tube any tissue fragments that stick to 
the walls of the homogenizer.

9.	 Insert the piston, and homogenize the tissue by 
making simultaneous up-and-down and rotating 
movements with the piston. Hold the tube 
upright at all times to avoid any spills. Use care 
not to let air into the tube, or foam will result.

10.	 Homogenization is over when no more 
tissue fragments are visible; this should take  
10–30 min of grinding. To check for remaining 
tissue fragments, raise the homogenizer against 
the light, with the piston fully inserted, and look 
for small specks of tissue while gently rotating 
the piston. When no more specks are visible, 
proceed to the next step.

11.	 Wash the walls of the homogenizer. First, place 
the tube in a stand, remove the piston carefully, 
and use a fresh volume of dissociation solution 
to wash the walls of the piston into the tube. 
Once no material is left on the piston, place it 
on the bench and use another fresh volume of 
dissociation solution to wash the material left on 
the walls of the homogenizer into the tube. This 
collects into the main suspension any nuclei left 
behind on the glass walls.

12.	 Collect the nuclei suspension into a 15 ml or  
50 ml graduated centrifuge tube. To do this, do 
not pour the contents of the homogenizer into the 
graduated tube. Rather, use a long Pasteur pipette 
to pick up the suspension (starting from the 
bottom of the tube, where the nuclei are densest) 
and transfer it to the graduated tube. Once all 
the suspension is transferred, use a fresh volume 
of dissociation solution to wash the walls of  
the homogenizer, collecting into the bottom of the 
tube any nuclei left on the glass walls. Transfer this 
volume to the same graduated tube. Repeat the 
wash approximately two more times or as needed, 
using small volumes in each wash, until the fluid 
in the transfer pipette is perfectly clear.
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NOTES

13.	 Now that the entire suspension containing 
all cell nuclei in the original structure is in 
the graduated tube, add DAPI to it, diluting 
it 20–50 times from a 10 mg/l stock solution. 
The dilution required depends on how dense 
the nuclei suspension is; for a same-suspension 
volume, denser structures such as the cerebellum 
will require more DAPI (for instance, a 20× 
dilution only) to achieve sufficient labeling that 
is stable under UV illumination.

14.	 Use PBS to complete the suspension volume to a 
defined value in the graduated tube. The precise 
value is not important, as long as it can be read 
with precision on the tube.

Counting total cell numbers
15.	 Make the nuclei suspension homogeneous 

by inverting the graduated tube 10–20 times, 
taking care to avoid forming foam.

16.	 Immediately after making the suspension 
homogeneous, collect four 10 μl samples 
and place them in different chambers of  
two hemocytometers. Allow 1–2 min for nuclei 
to sink.

17.	 Under low magnification in the fluorescence 
microscope, verify the quality of the preparation. 
Check to see whether the nuclei are free and well 
distributed, without clumps (Fig. 1, left). Under 
high magnification (400×), verify that the nuclei 
are well labeled with DAPI, appearing brightly 
blue under UV illumination, and that the vast 
majority are intact, with preserved contours.

18.	� Count the number of nuclei in a same, known 
volume for each chamber. For instance, if nuclei 
in all 25 fields of the center grid are counted, that 
amounts to the number of cell nuclei in a volume 
of 0.0001 ml of the suspension. If there are ≥50–
60 nuclei in the ensemble of the 25 central fields, 
then proceed to step 19. If not, then go to step 
18A.

18A.	�Increase the density of nuclei in the suspension to 
be counted. This step is necessary to ensure that 
the counts will be reproducible and not subject 
to Poisson variation. To do this, spin down the 
graduated tube with the nuclei suspension in 
a clinical centrifuge (the exact time required 
depends on the diameter of the rotor; typically, 
8 min at 3200 rpm suffice to ascertain that all 
nuclei are collected in a pellet). Remove the 
supernatant with a Pasteur pipette without 
disturbing the pellet; then add PBS to a precise 
final volume that is small enough to ensure that 
there will be >60 nuclei per 0.0001 ml of the 
suspension. Repeat step 18.

19.	 Average the number of nuclei counted in the same 
volume across the four samples, and verify whether 
the coefficient of variation (CV), which amounts 
to the SD of the values divided by the average 
value, is <0.15. Typically, the CV is <0.10. If it 
is not, make the suspension more homegeneous 
by agitation and count new samples. Additional 
samples can also be counted until CV <0.15. 

20.	 Calculate the total number of nuclei in the 
suspension by simply multiplying the number of 
nuclei per ml by the total suspension volume. If 
you determined the average number of nuclei in 

Figure 1. Appearance of isolated, DAPI-stained, and NeuN-stained nuclei. Left, Isolated nuclei have clearly delimited contours, 
indicating that the nuclear membrane is intact, and are brightly stained with DAPI. Notice that the nuclear morphology is preserved 
by the fixation. Right, Nuclei that are also stained by labeling with anti-NeuN antibody are readily identifiable against a dark back-
ground of virtually nonexistent, nonespecific staining. Filled arrows, examples of NeuN-positive nuclei; open arrows, examples of 
NeuN-negative nuclei. Scale bar, 50 μm.
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a volume of 0.0001 ml (that is, the 25 central 
fields of the chamber), then multiply that 
average by 10,000 to find the number of nuclei 
per ml of the suspension. Next, multiply that 
value by the total volume of the suspension.

21.	 Make the suspension homogeneous again by 
inverting the graduated tube and collecting 1 ml 
into an Eppendorf tube.

22.	 Spin down nuclei for 5 min in a microcentrifuge. 
Remove supernatant with a micropipette 
without disturbing the pellet.

23.	 If the tissue of interest has been in fixative for <6 
weeks, then proceed to step 28. If not, proceed 
to step 24.

Heat-induced epitope retrieval
24.	 Add 1 ml of PBS to the pellet and dissolve it 

completely, using the micropipette if necessary. 
Do not vortex. Spin down nuclei again and 
remove supernatant.

25.	 Repeat step 24 a total of 3 times (that is, wash 
nuclei 3 times in PBS).

26.	 Add 1  ml of 0.2 M boric acid, pH 9.0, to the 
pellet (to break down the excess of aldehydes and 
the autofluorescence they cause), and dissolve 
the pellet completely, using the micropipette if 
necessary. Do not vortex.

27.	 Incubate at 70°C for 45 min, then spin down 
nuclei to remove supernatant.

Immunocytochemical identification of 
specific nuclear types
28.	 Add 1 ml of PBS to the pellet and dissolve it 

completely, using the micropipette if necessary. 
Do not vortex. Spin down nuclei again and 
remove supernatant.

29.	 Repeat step 28 a total of 3 times (that is, wash 
nuclei 3 times in PBS).

30.	 Add 199 μl of PBS to the pellet and 1 μl of 
anti-NeuN primary antibody (1:200 dilution). 
Alternatively, use the appropriate dilution of the 
desired antibody. Dissolve the pellet completely, 
using the micropipette. Do not vortex.

31.	 Incubate at room temperature for 2 h, preferably 

under agitation.

32.	 Spin down the nuclei for 5 min in a 
microcentrifuge. Remove supernatant with a 
micropipette without disturbing the pellet.

33.	 Add 1 ml of PBS to the pellet and dissolve it 
completely, using the micropipette if necessary. 
Do not vortex. Spin down nuclei again and 
remove supernatant.

34.	 Repeat step 33 a total of 3 times (that is, wash 
nuclei 3 times in PBS).

35.	 Add the secondary antibody in the required 
dilution in the presence of 10% normal goat serum 
and 10% DAPI. Dissolve the pellet completely, 
using the micropipette. Do not vortex.

36.	 Incubate at room temperature for 2 h, preferably 
under agitation.

37.	 Spin down the nuclei for 5 min in a 
microcentrifuge. Remove supernatant with a 
micropipette without disturbing the pellet.

38. 	Add 1 ml of PBS to the pellet and dissolve it 
completely, using the micropipette if necessary. 
Do not vortex. Spin down nuclei again and 
remove supernatant.

39.	 Repeat step 38 a total of 3 times (that is, wash 
nuclei 3 times in PBS).

40.	 Add 1 ml of PBS to the pellet and dissolve it 
completely, using the micropipette if necessary. 
Do not vortex.

41.	 After agitating the tube, remove a 4 μl sample 
and place it in the Neubauer chamber. Allow 
1–2 min for the nuclei to set.

42.	 Under 400× magnification, determine the 
percentage of DAPI-labeled nuclei that also 
show labeling with the antibody (Fig. 1). The 
total number of nuclei that needs to be counted 
depends on the frequency of antibody-stained 
nuclei; the smaller the percentage of stained 
nuclei, the larger the total number of nuclei that 
must be counted. Given that usually 30%–90% of 
nuclei in any brain structure are NeuN-positive, 
a minimum of 500 nuclei should be counted.
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NOTES 43.	 Determine the total number of neurons (that 
is, NeuN-positive nuclei) in the structure using 
the formula (% NeuN+ nuclei × total number of 
nuclei)/100.

44.	 Determine the total number of nonneuronal cells 
(that is, NeuN-negative nuclei) in the structure 
as (total number of cells – NeuN+ cells).

Storage of free nuclei
45.	 For later reanalysis of nuclei (e.g., with another 

antibody or morphological criterion), collect 
the remaining nuclei for storage by spinning 
them down in a centrifuge.

46.	 Discard the supernatant and resuspend the 
nuclei in 30% sucrose in PBS. Allow ≥2 h for 
the nuclei to equilibrate and start to descend in 
the tube.

47.	 Spin down the nuclei, discard the supernatant, 
and resuspend the nuclei in antifreezing solution. 
Allow ≥2 h for the nuclei to equilibrate and start 
to descend in the tube.

48.	 Store at –20°C until the next use. Frozen 
nuclear suspensions can be utilized for 
immunocytochemistry. In that case, agitate the 
frozen suspension before taking a 1 ml sample for 
processing, spin down the nuclei, and proceed 
either to step 24 (if epitope retrieval is required) 
or to step 28.
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Introduction
Neuroanatomical analysis, such as classification 
of cell types, depends on reliable reconstruction of 
large numbers of complete three-dimensional (3D) 
dendrite and axon morphologies. At present, the 
majority of neuron reconstructions are obtained from 
preparations in a single tissue slice in vitro, suffering 
from cutoff dendrites and, more dramatically, 
cutoff axons. In general, axons can innervate 
volumes of several cubic millimeters and may reach 
path lengths of tens of centimeters. Thus, their 
complete reconstruction requires in vivo labeling, 
histological sectioning, and imaging large fields 
of view. Unfortunately, anisotropic background 
conditions across such large tissue volumes, as well 
as faintly labeled thin neurites, result in incomplete 
or erroneous automated tracings and even lead 
experts to make annotation errors during manual 
reconstructions. Consequently, unreliable tracing 
comprises the major bottleneck for reconstructing 
complete 3D neuron morphologies. 

During the past 20 years, many technical barriers for 
reconstructing single neurons have been overcome. 
Labeling neurons using intracellular or cell-attached 
pipettes has allowed reconstructing large parts of 
individual neurons, thereby linking their structure 
with activity patterns in vitro and in vivo. In addition 
to such conventional techniques, genetic labeling 
methods based on fluorescent proteins have started 
the identification and reconstruction of relatively 
uniform, molecularly identified cell populations. 
Further, digital imaging has advanced rapidly. New 
imaging methods, such as high-speed mosaic/optical-
sectioning wide-field and confocal systems, as well as 
block-face two-photon (Ragan et al., 2012) and light-
sheet (Dodt et al., 2007) microscopes, promise high-
resolution imaging of large brain regions. Finally, 
the limitations on archiving terabyte datasets have 
disappeared with the falling costs of hard disk drives. 
As a result of these developments, various manual, 
semiautomated, and fully automated approaches for 
reconstructing single neuron morphologies have 
been reported (Meijering, 2010; Donohue and 
Ascoli, 2011).

The vast majority of single neuron tracings has so 
far been obtained from in vitro preparations, i.e., 
individual neurons are labeled within a tissue slice 
usually of 300 µm thickness. However, reconstructing 
the complete 3D dendrite and axon morphology 
of individual neurons requires in vivo labeling in 
combination with histological sectioning of the 
brain (i.e., due to penetration limits of staining 
and imaging methods) and subsequent imaging 

of large tissue volumes. Tracing of faintly labeled, 
long-range projecting thin neurites and recovering 
across-section continuity of neuronal branches thus 
make reconstructions of in vivo labeled neurons a 
major challenge in neuroscience research (Svoboda, 
2011). Nevertheless, for sparsely labeled tissue, 
reconstruction results are usually assumed to be 
highly reliable, although little validation of this 
reliability has been reported (Helmstaedter et al., 
2011).

Here, we present the Filament Editor (FE), a novel 
set of tools integrated into a software environment 
specifically designed to reliably reconstruct and 
validate single neuron tracings from sparsely labeled 
in vivo preparations. The FE comprises tools for 
visualizing and interactively correcting 3D neuron 
tracings, alignment, and across-section continuity, 
allowing for efficient proof-editing within and across 
brain sections. In addition, the FE incorporates 
advanced annotation and morphometric analysis 
functionalities. We illustrate the applicability of the 
FE on frequently occurring use cases and demonstrate 
that the proof-editing routines can result in 
unambiguous tracings of in vivo labeled axons.

Methods
Data structure
The FE has been developed based on Amira 
software (FEI Visualization Sciences Group, 
2013a), a visualization framework frequently used 
in neuroscience research. Neuron morphology 
is represented in the FE by the SpatialGraph data 
structure (Fig. 1). The topological skeleton of the 
graph is defined by a set of nodes, connected by a 
set of (unbranched) edges. The edge direction is 
defined by specification of the source and target 
node. The graph is embedded in space by associating 
3D coordinates with each node. The edge trajectory 
is defined by a sequence of 3D points (vertices). 
The first and last point of each edge coincides with 
the source and target node, respectively. The data 
structure was designed to allow interactive editing 
and rendering of large 3D tracings (e.g., >10 k edges, 
>1 M points). For traversing the graph, an adjacency 
list is maintained for each node. Points are stored 
as coordinate arrays per edge for efficient rendering 
as line strips. Labels are used to associate semantic 
information with substructures of the graph, e.g., 
“Dendrite,” “Axon,” and “Soma” (Figs. 1a, d). 
Additionally, numerical attributes can be defined, 
e.g., a floating-point value representing the radius at 
each edge point. Multiple attributes can be defined 
on nodes, edges, and points simultaneously. Tracings 
can be imported into the FE using the SWC (Cannon 
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et al., 1998), hoc (Carnevale and Hines, 2006), or 
the AmiraMesh file format. These formats, as well 
as MorphML (Crook et al., 2007), can be used to 
export the tracings.

Visualization
The FE provides a two-dimensional (2D) and 3D 
viewer for proof-editing a tracing. The 3D viewer 
displays the graph using spheres for the nodes, squares 
for the points, and polylines for the edges. The user 
can inspect the spatial structure of the tracing in 
3D by camera rotation, zooming, and panning using 
the mouse and edit each of the graphs’ components. 
Nodes, edges, and points can be colored according 
to one of the label attributes. The 3D viewer can 
display additional data using any available Amira 
display module (FEI Visualization Sciences Group, 
2013b). For example, the neuron morphology can be 
jointly visualized with the image data using volume 
rendering, 2D slices, or intensity projections. The 
SpatialGraph can be visualized as tubes by mapping 
a radius attribute defined on edge points to cylinder 
thickness. The 2D viewer displays a slice of user-defined 
thickness of the graph, superimposed on a maximum 
intensity projection (MIP) of the corresponding 3D 
image region. Hiding the remaining image and tracing 
regions provides an unobstructed view to locally verify 
the tracing with respect to the image stack. By varying 
the slice depth and/or orientation, the user navigates 
through the volume.

Selection tools
Modification of the traced morphology is achieved 
by selecting one or more elements (nodes, edges, 
points), followed by the invocation of an operation 
(e.g., deletion). To provide a selection system that 
is “powerful” (i.e., allowing efficient selection of 
any subset of elements) and “forgiving” (i.e., the 
selection itself can easily be modified), the following 
tools are available in the FE:

1.	 Single-Element Selection: selects single nodes, 
edges, or points that have been clicked on with 
the mouse;

2.	 Connected-Component Selection: selects the 
entire subgraph connected to the element that 
has been clicked on with the mouse;

3.	 Lasso Selection: selects all nodes and edges within 
a user-drawn polygon. Using a modifier key, only 
connected components that are completely 
contained within the Lasso polygon are selected;

4.	 Select-All, Clear and Invert Selection: selects 
the entire SpatialGraph, deselects, and inverts 
the current selection, respectively; and

5.	 Label Selection: selects graph elements with a 
particular attribute by clicking on the respective 
label in the Label Viewer (Fig. 1d). Holding down 

NOTES

Figure 1. The SpatialGraph data structure. a, Dendritic tree of a layer 5 pyramidal neuron, colored according to the anatomical 
labels defined in d. b, Magnification of the encircled region of a. The nodes (gray spheres) are connected by edges, represented 
and displayed as polygonal lines defined by edge points (or points, for short; displayed as squares). c, Schematic representation 
of the SpatialGraph object in b. The object consists of three directed edges (E0, E1, E2), which interconnect the nodes N0, N1, 
N2 (the source node of E0 is not displayed). At branching nodes, the last point of the incoming edge (P8

(0) on edge E0) coincides 
with the first point of the outgoing edges (P0

(1) and P0
(2) on E1 and E2, respectively). d, Semantic information can be associated 

with the morphology using labels. The Label Viewer is used for editing label hierarchies, assigning labels to graph elements, and 
selecting these elements for editing, visualization, and analysis.
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a modifier key adds to the current selection. 
Selected items are highlighted in the viewers.

Editing operations
The following operations are available to manipulate 
the data structure:

1.	 Deletion of selected nodes and edges;

2.	 Splicing (connecting) edges. Splicing is 
achieved by selecting either two nodes, two 
points, or one point and one node, followed 
by the invocation of the connect operation. 
Nodes are connected by a new straight edge. 
Selected points are converted to nodes, as they 
will be branching points; the new nodes are 
subsequently connected by adding an edge with 
the smallest Euclidean distance;

3.	 Point-to-Node Conversion converts a selected 
point into a node, resulting in an edge split. The 
inverse Node-to-Point operation concatenates 
two edges while removing the intermediate 
node. The latter can be run for all intermediate 
nodes at once. Together with the Remove-
Isolated-Nodes operation, all nodes that are 
neither branching nor terminal nodes can be 
purged from the graph;

4.	 Edge-Smoothing. Edges are smoothed by 
repositioning their edge points as follows: the 
user specifies the neighborhood size N, which 
must be odd. The position of each point pi on 
the edge is replaced by the average of its own 
position and the M = (N –1)/2 points along both 
directions: 

�'i = 1
N∑k = i – M 

i + M
 �k. 

	 The first and last M points on the edge are not 
moved, effectively leaving all nodes in place; and

5.	 Transformation. An affine transformation can 
be applied to tracings, images, or any other 3D 
dataset. For example, a linear scaling could be 
applied, independently for all dimensions, to 
compensate for tissue shrinkage. All editing 
operations can be undone/redone.

Semantic labels
Semantic information can be associated with nodes, 
edges, and points by assigning labels. A label is a name 
(i.e., a string), uniquely identified by an integer value 
and associated with a color. Labels are organized in 

a hierarchical fashion, i.e., in a tree data structure, 
providing access to graph substructures at different 
levels of detail. Upon creation of a node (or edge/
point) label attribute, each node (or edge/point) is 
assigned a label from the tree. The Label Viewer (Fig. 1d)  
is part of the FE user interface allowing the user to 
define and edit custom label trees, assign labels to 
selected substructures of the graph, and select these 
substructures for editing, visualization, and analysis. For 
example, one could define a hierarchical label tree with 
the root label “Neuron” having child labels “Axon” 
and “Dendrite” and assign these to the respective edges 
and nodes. Alternatively, the Label Viewer supports 
flat label hierarchies. For example, the “identify loops” 
functionality automatically assigns all edges comprising 
a loop the same label, pinpointing potential autapses 
(i.e., an intersecting dendrite and axon from the same 
cell) or falsely connected branches.

Section alignment
The FE incorporates an automated method 
(Dercksen et al., 2009) for rigid alignment of 
tracings obtained from adjacent image stacks, e.g., 
from consecutive brain sections. The automated 
algorithm is complemented by a user interface 
for interactive manual alignment (Fig. 2a). First, 
tracings from adjacent image stacks are merged 
using the CreateSpatialGraphStack module. This 
module generates a new SpatialGraph by positioning 
tracings from image stacks obtained from adjacent 
brain sections at either fixed distances along the 
z-axis (i.e., perpendicular to the cutting plane) or 
such that the bounding boxes adjoin. Tracings from 
image stacks obtained from the same brain section 
can be merged without (z-)translation for subsequent 
manual alignment. The nodes and edges are assigned 
identifier labels that refer to the corresponding 
image stack. Transformations can thus be applied to 
tracings of each individual stack by transforming all 
nodes and edges with a particular label. The stack 
of tracings is aligned by repeated pairwise alignment 
of neighboring sections. The automated method 
(Dercksen et al., 2009) uses a 2D point-matching 
approach to compute the optimal transform, i.e., a 
rotation angle around the z-axis and a 2D translation 
parallel to the xy-plane. The points to be matched 
are the terminal nodes in the top and bottom region 
of each section, e.g., within the upper and lower 
25% (Fig. 2b). The algorithm is sufficiently fast to be 
used in an interactive workflow, with response times 
ranging from a fraction of a second for a small number 
of end points (~30) to several seconds for a larger 
set (~100). Sections can be aligned simultaneously 
or pairwise. The resultant alignments appear in the 
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3D viewer, allowing visual validation (Fig. 2c). In 
cases where the automated alignment result is not 
satisfactory, the user can interactively translate and 
rotate each section with respect to its predecessor 
section in the 3D viewer using handles. All other 
sections can be hidden so as not to obscure the view.

Interactive manual tracing
The interactive tracing functionality available in the 
2D viewer can be used to manually add filamentous 
and/or anatomical reference structures. The user 
adds new nodes by clicking on the desired location 
in the image. The node is added at the mouse cursor 
position at the depth of the image plane (for 2D 
images) or the depth with highest image intensity (3D 
image). The node is automatically connected to the 
latest created node by a new edge. This feature can 
be used to augment automatically generated tracings, 
for example, with contours representing anatomical 
landmarks, such as pia, white matter, or blood vessel 
outlines (Fig. 3a), as well as with 2D outlines of the 
soma in different optical or histological sections.

Visual and quantitative morphometric 
analysis
The FE includes the following functionalities for visual 
and quantitative morphometric analysis (Fig. 3):

1.	 Branch length and node statistics for the entire 
graph or for a selected subgraph, grouped by 
semantic labels;

2.	 Quantitative measurement and visualization 
of branches within or outside a reference 
volume (Fig. 3a). The length contained within 
a volume is computed by intersecting all edge 
segments with the triangles comprising the 
bounding surface, performing a point location 
test, and accumulating the length of the 
confined branches. The parts of the morphology 
contained within a volume can be visualized 
further by labeling the edge points by the name 
of the respective structure and coloring the 
graph according to these labels (Fig. 3a);

3.	 3D density of morphological properties. A 3D 
grid of user-defined voxel size is superimposed 
onto the morphology, and morphological 
properties of the tracing within each voxel 
(Fig. 3b) are computed. Branch length within 
a voxel is computed by clipping each segment 
between adjacent edge points against the voxel’s 
bounding box and accumulating the resulting 
lengths; and

4. 1D profile of morphological properties. By 
accumulating the values in voxels in each plane 
of the 3D voxel grid described above, a 1D 
profile of the property of interest along an axis 
can be extracted (Fig. 3c).

NOTES

Figure 2. Section alignment. a, The Align toolbox provides access to both automated and interactive manual alignment. The 
section list allows one to (1) select a section to align, (2) toggle section visibility, and (3) manually adjust the z-position of a sec-
tion. b, XY-view after alignment of eight sections. Edges are colored by section, alternating red, blue, and black. Nodes are 
colored by matching result. Matching nodes in different sections are assigned the same label, and thus the same color. Black 
nodes could not be matched; white nodes were not used for alignment. c, Interactive manual alignment using a handle. Only 
the section that is currently transformed (red, highlighted in the table in a) and its predecessor (blue) are visible; other sections 
are hidden to not obscure the view.
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Visual and quantitative comparison  
of tracings
Comparison of tracings obtained from the same 
image data requires defining their correspondence. 
We implemented such a comparison metric 
based on Helmstaedter et al., 2011: Given a set of 
reconstructions R1…RN (N being the number of 
users), first, edge points are inserted on all edges 
(without modifying the trajectory) such that the 
distance between any two consecutive edge points 
is smaller than a maximum sampling distance D. 
Second, the reconstruction R1 is compared with the 
reconstructions of all other users R2…RN, respectively. 
For each edge point p on R1, the number of 
reconstructions that have a point p̂ that corresponds 
to p is counted. p̂ corresponds to p if they are no 
further than a maximum correspondence distance R 
apart, i.e., |p̂ – p|≤ R. This results in the number of 
corresponding reconstructions C(p) ∈ [1,N] ; C(p) = 1  
if there is no other reconstruction with a matching 
point (R1 agrees only with itself in p); C(p) = N if all 
other reconstructions have a matching point. Third, 
the total length of all edges of R1 is divided among 
N bins L1…LN. A bin Li represents the length of R1 
that was agreed on by i reconstructions. To this end, 
all straight segments between pairs of successive edge 
points p and q are regarded. If C(p) = i, and C(q) = j, 
then half the length of segment pq is added to Li, and 
half to Lj. The length bins are computed separately for 
all other reconstructions R2…RN. The length per bin 
is presented to the user in a spreadsheet. To visualize 

the correspondences, an integer attribute is defined 
on the edge points, storing the value of C(p) for 
each point. Displaying one or more reconstructions 
colored according to this value effectively pinpoints 
interuser differences.

Results
Application example: 3D reconstruction 
of individual axons labeled in vivo
We illustrate a potential workflow using the tools of 
the FE to generate complete 3D morphologies for the 
example of in vivo labeled axons, reconstructed by a 
previously reported automated imaging and tracing 
pipeline (Oberlaender et al., 2007).

Preprocessing: sample preparation, imaging  
and tracing
Briefly, individual neurons in rat vibrissal thalamus 
(Oberlaender et al., 2012a) were filled with 
biocytin using whole-cell patch–clamp recordings 
in vivo. After perfusion, brains were fixed and cut 
into 50-μm-thick consecutive vibratome sections. 
Using a custom-designed mosaic/optical-sectioning 
bright-field microscope (Oberlaender et al., 2007, 
2009), 3D image stacks of typically 2 × 2 × 0.05 mm  
volumes were acquired in vibrissal cortex at a 
resolution of 0.184 × 0.184 × 0.5 μm per voxel. 
Neuronal structures were automatically extracted 
from eight consecutive image stacks using previously 
reported and validated automated tracing software 

The Filament Editor: An Interactive Software Environment

Figure 3. Morphometric analysis. a, Manual drawing of anatomical landmark contours. Contours outlining “barrel columns” in 
rat vibrissal cortex (S1) are created by clicking on the MIP image. A new node (red) is automatically connected to the previously 
created node by an edge (green). b, Visual and quantitative analysis of semantically labeled neuronal branches with respect to 
anatomical reference structures. Here, axonal length of a layer 5 slender-tufted pyramidal neuron is evaluated with respect to the 
barrel columns in S1 (Oberlaender et al., 2011). The axon length within and outside each column was automatically computed, 
exported to a spreadsheet, and visualized by labeling all edge points as either inside (red) or outside (black) any cortical column. 
c, Branch density visualization and quantification. A grid of 50 μm voxels is superimposed onto a reconstructed axon labeled in 
rat vibrissal thalamus in vivo (Oberlaender et al., 2012a). For each voxel, the total axon length is computed and visualized in 3D 
or as 1D density profile by accumulating length densities across each x/y plane.
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named “NeuroMorph” (Oberlaender et al., 2007). 
Projection images of each image stack, as well as 3D 
skeletons of neuronal branches (i.e., SpatialGraph 
files), represent the final results of the automated 
pipeline for each brain section. A position label is 
assigned to all edges. The labels indicate whether 
the connected component containing the edge  
(1) touches the top of the section (blue), (2) touches 
the bottom (green), (3) passes through (i.e., touches 
top and bottom) (red), or (4) touches neither top nor 
bottom (yellow).

Proof-editing of tracings from individual image 
stacks
The FE is used to interactively splice (connect) 
fragmented edges and to delete falsely traced edges 
from the automated tracing in each individual 
section. The tracing data are superimposed on the 
MIP of the respective image stack. Four typical 
proof-editing situations can occur:

•	Case 1: Splicing. The tracing algorithm may 
generate a fragmented result, for example, because 
of poorly stained regions in the axial direction. 
In such cases, the MIP and position label colors 
facilitate identification of potentially contiguous 
parts. By 3D rotation of the camera, human 
pattern recognition can quickly resolve this. Using 
the selection and splicing tools, gaps between 
identified fragments can be closed.

•	Case 2: Creating new branching points. A new 
branching connection is created by selecting a 
terminal node and a point on a different edge. 
The latter will be converted into a branching node 
when applying the splice operation. The most 
likely location of the new branching node can 
easily be resolved by human pattern recognition, 
using the position-dependent coloring and 3D 
camera rotation of the tracing and MIP.

•	Case 3: Removal of false segmentations. The 
NeuroMorph algorithms are designed to accept 
oversegmentation to ensure that no faintly 
stained axons are falsely discarded. The Lasso 
tool provides a dedicated mode to select only 
connected subgraphs that are entirely contained 
within a user-drawn polygon. This allows one to 
select all small artifacts in the neighborhood of 
a reconstructed neuronal process at once and to 
delete them, without affecting the larger structure.

•	Case 4: Removal of false connections. Occasionally, 
nearby branches may have been falsely connected 
by the tracing algorithm. The NeuroMorph 
algorithms may have created tracings whose 
spatial structure is difficult to verify from the 2D 
MIP image. For example, the 3D view may reveal 

that the structure consists of two parallel axonal 
branches connected by a “bridge.” To correct the 
false connection, the user selects the bridging edge 
and removes it.

Alignment and proof-editing across multiple  
image stacks
An important aspect of reconstructing complete 
3D neuron morphologies is the merging of 
tracings obtained from multiple image stacks 
(e.g., consecutive brain sections). Here, tracings 
containing axonal branches from thalamocortical 
axons in eight consecutive brain sections were 
proof-edited as described above and then merged 
into a single SpatialGraph (see Methods). The 
tracings obtained from each image stack were 
translated in the z-direction, i.e., perpendicular to 
the cutting plane, such that their bounding boxes 
adjoin. The Align toolbox was then used to rigidly 
align the subgraphs corresponding to each section 
tracing. The automated algorithm determined the 
correct transformation for all tracings in the eight-
section dataset. After alignment, the branches were 
connected across the section boundaries using the 
Splicing operation. The alignment and splicing 
process is regarded as the final quality control, as 
tracings of branches passing through multiple brain 
sections can be checked for continuity. The final 
tracing result is scaled in the z-direction to match the 
vibratome-defined thickness of the brain sections, 
compensating for potential tissue shrinkage. Further, 
smoothing along the z-direction is applied to remove 
staircase artifacts in the skeletons resulting from 
anisotropic voxel sizes. As a result, axonal branches 
of >1 cm path length, including 31 branching points, 
were extracted from this example dataset.

Interuser variability of proof-editing  
in vivo labeled neurons
The proof-editing of tracings obtained from 
individual image stacks, as well as the alignment 
and interconnection of tracings across image stacks, 
may introduce interuser variability to the final 3D 
neuron reconstructions. We validated the above-
described tasks involving the FE by investigating the 
reproducibility of the final tracing result. To do so, 5 
users proof-edited, merged, and aligned the 8 tracings 
of the example dataset. The users had varying degrees 
of experience. In brief, comparison of the proof-
editing results produced by 5 different users indicated 
a high degree of accuracy of the final morphology. 
First, coarse comparison yielded only small differences 
in the number of branches (~1 error per 20 branches), 
branching nodes (~1 error per 31 branching nodes), 
and total length (~19 μm error per 1 mm axon). 
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Second, agreement in trajectories (see Methods) 
after proof-editing varied between 85.7% and 94.5% 
across individual image stacks. Third, differences in 
alignment were small, ~4 μm. Consequently, the 
trajectories of the final reconstructions across multiple 
image stacks were very similar: On average, 98.8% of 
the reconstructed trajectories were identical across 
users, using a correspondence radius of 5 μm. No 
significant differences were measured between expert 
and novice users. Specifically, the consensus length 
was computed for 2 groups consisting of the 3 most and 
3 least experienced users, respectively. The average 
consensus length (i.e., at least 2 of 3 users agreed) as 
a percentage of the total length was 98.7% for the 
less experienced and 98.8% for the more experienced 
group (using the correspondence distance of  
R = 5 µm). The amount of manual labor required 
for proof-editing automated tracings decreased with 
experience from ~6.5 h to ~2 h per centimeter axon.

Discussion
The FE combines visualization, selection, and 
operation functionalities that allow interactive 
proof-editing and analysis of 3D neuronal tracings 
within an easy-to-use and intuitive graphical user 
interface. Using an example dataset of in vivo labeled 
thalamocortical axons from eight consecutive large, 
high-resolution image stacks, we illustrated four 
general situations that may occur during proof-
editing any sparsely labeled morphology data. The 
relative abundance of each of the four use cases will, 
however, strongly depend on the image and labeling 
quality, as well as on the accuracy of the automated 
or manual tracing methods.

The example dataset used here can be regarded as 
one of the most challenging cases for reconstructing 
complete and accurate 3D neuron morphologies. 
First, the neuron was labeled in rat thalamus in vivo, 
whereas its axonal branches were imaged within 
vibrissal cortex, ~3 mm away from the recording 
site. Thus, in addition to faint staining caused by 
thin axonal diameters, diffusion of the tracer (i.e., 
biocytin) along centimeters of axon may have 
further decreased signal-to-noise ratios of terminal 
branches. Second, owing to the large axonal 
innervation volume (here 2 × 2 × 1 mm), the tissue 
was imaged using a bright-field microscope (at the 
diffraction limit of light) at the cost of contrast and 
axial resolution. Any fluorescent microscope system 
of superior contrast and resolution would require 
impractically long imaging times compared with the 
~24 h required using the present system (Oberlaender 
et al., 2007, 2009). Third, because of the faint 
labeling and limited contrast, the automated tracing 

algorithms accept oversegmentation to guarantee 
that all axonal fragments are reconstructed, at the 
cost of picking up background structures.

The completeness of detecting and tracing all axonal 
fragments by the NeuroMorph system has been 
validated against manual results previously generated 
by human expert users (Oberlaender et al., 2007). 
Consequently, because the FE allows unambiguous 
proof-editing of the thalamocortical axons presented, 
datasets of higher contrast, higher resolution, or less 
background will certainly allow for an even faster 
and equally reliable proof-editing of complete 3D 
morphologies. Using a challenging dataset, we have 
illustrated that the combination of 3D image data 
(e.g., as a 2D MIP) with (1) 3D tracings (edges are 
rendered as polylines, nodes as spheres, points as 
squares); (2) semantic labeling; (3) 3D viewing (i.e., 
camera rotation, translation, and zoom); as well as 
(4) 3D selecting, hiding, and editing is a convenient, 
intuitive, and fast approach to extract reliable 3D 
morphologies from large, sparsely labeled images. 
Here, ~0.5 terabytes of image data, containing >1 cm  
of axonal fragments, could be proof-edited with 
98.8% accuracy within 2–6 h.

In summary, we have presented the FE, a software 
toolbox integrating components for proof-editing 
neuron tracings in 3D, a cross-section alignment, 
and morphometric analysis. The FE addresses a 
clear need for efficient and effective proof-editing, 
advancing the possibilities for high-throughput 
reconstruction of accurate and complete 3D neuron 
morphology, as previously illustrated by the examples 
of determining cell types (Oberlaender et al., 
2012b), axon projection patterns (Oberlaender et 
al., 2011), and plasticity during sensory deprivation 
(Oberlaender et al., 2012a).
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Introduction
State-of-the-art light and electron microscopes 
are capable of acquiring large image datasets, but 
quantitatively evaluating the data often involves 
manually annotating structures of interest. For 
example, to measure the average size of mitochondria 
in an electron microscopy image stack, each 
mitochondrion has to be outlined by a human 
annotator. This process is time-consuming and is 
becoming the main bottleneck in the evaluation 
pipeline. To overcome this problem, we have 
introduced the Trainable Weka Segmentation 
(TWS), a machine learning tool that leverages a 
limited number of manual annotations in order to 
train a classifier and segment the remaining data 
automatically. The tool works interactively, allowing 
the user to guide the training by providing corrections 
to the classifier output. In addition, TWS can 
provide unsupervised segmentation learning schemes 
(clustering) for image data and can be customized to 
employ user-designed feature maps or classifiers.

The usefulness of the TWS tool has already been 
demonstrated by its utilization in a wide range of 
imaging pipelines that involve disparate segmentation 
tasks: analyzing wing photomicrographs (Dobens and 
Dobens, 2013), visualizing myocardial blood flow 
(Krueger et al., 2013), monitoring nests of bees (Hart 
and Huang, 2012), and other applications. TWS has 
proven useful for performing segmentation using many 
different image modalities. These include magnetic 
resonance imaging (Kulinowski et al., 2011), two-
photon microscopy (Villa et al., 2013), serial-section 
transmission electron microscopy (Laptev et al., 
2012), confocal fluorescence microscopy (Felcht et 
al., 2012; Frank et al., 2012; Crepaldi et al., 2013), 
micro- and computerized tomography (Maiora and 
Graña, 2012; Macdonald and Shefelbine, 2013), 
transmission scanning (Mathew et al., 2012), and 
angiography (Favazza et al., 2013).

Background
Traditional image processing methods
Image segmentation is generally defined as the process 
of partitioning a digital image into nonintersecting 
regions. These regions or segments comprise sets of 
pixels that share certain visual characteristics and 
are assigned a specific label. For instance, in the 
microscopic image of a cell, one could segment the 
different organelles and label pixels belonging to 
the nucleus, the mitochondria, and other structures. 
Similarly, in an image from a security camera, 
one might want to identify suspicious objects and 
separate them from the rest of the pixels. In the same 
example, a face recognition system may attempt to 

label the person or persons appearing in the image. 
Therefore, image segmentation can be regarded 
as an ill-defined problem since, depending on the 
final application, different ways of partitioning the 
same image can be considered correct. Hundreds 
of automatic and semiautomatic segmentation 
algorithms have been presented since the appearance 
of the digital image. However, no single method can 
be considered appropriate for all types of images. 
Moreover, methods that have been designed for a 
particular type of image might not be applicable to 
other types.

Most traditional methods are based only on the 
intensity information of pixels. Nonetheless, humans 
use much more knowledge when performing manual 
segmentation. For that reason, in recent years, 
trainable methods have emerged as powerful tools to 
include part of that knowledge in the segmentation 
process and improve the accuracy of the labeled 
regions. Algorithms to perform this task have been 
developed principally for natural and medical images 
but can be adapted for other types of image data 
and transferred to platforms that are accessible to 
both experienced and inexperienced users. Such 
software should provide a user-friendly and intuitive 
framework for prototyping and applying machine 
learning algorithms to image data and visualizing 
their results.

Platforms that build in machine  
learning tools
Just a few software platforms partially provide both 
machine learning and image processing tools. These 
include commercial platforms (e.g., MATLAB, 
MathWorks, Natick, MA) and open-source plaforms, 
e.g., the Konstanz Information Miner (KNIME) by 
Berthold et al. (2007), RapidMiner (http://rapid-i.
com), Vision with Generic Algorithms (VIGRA) 
by Köthe (1999), and CellProfiler by Kamentsky 
et al. (2011). Commercial platforms usually target 
inexperienced users and a wide range of image types. 
However, the details of the algorithms are hidden, 
which is undesirable for use in scientific research. 
Conversely, those details are available in open-source 
platforms such as KNIME and RapidMiner, which is 
becoming the world-leading open-source system for 
data and text mining. Nevertheless, RapidMiner 
is developed primarily by the machine learning 
community for the machine learning community, 
and its image processing extension by Burget et al. 
(2010) provides only a minimal set of image tools. 
This makes the platform less attractive for computer 
scientists to use it to develop image segmentation 
solutions. Other projects like VIGRA offer powerful 
computer vision libraries with a focus on algorithms 
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and data structures but no visualization tools or user-
friendly interfaces. And only a development version 
of CellProfiler integrates VIGRA learning methods 
into custom segmentation pipelines.

To address these deficiencies in the field, we started 
the new open-source software project TWS. The 
project combines the image processing toolkit Fiji 
(Fiji Is Just ImageJ) by Schindelin et al. (2012), a 
popular distribution of ImageJ by Rasband (1997–
2009), with the state-of-the-art machine learning 
algorithms provided in the latest version of the 
data mining and machine learning toolkit Waikato 
Environment for Knowledge Analysis (WEKA) by 
Hall et al. (2009). TWS provides a set of library 
methods for extracting statistical properties of an 
image from user-provided pixel samples and uses that 
information to segment the rest of the pixels in that 
image or a similar image. These methods are then 
implemented in a modular and transparent way and 
can be called up from any Fiji plugin, script, or macro. 
TWS also provides a friendly graphical user interface 
(GUI) for loading a two-dimensional (2D) image or 
image stack and performing automatic segmentation 
by interactive learning.

TWS came about through the perceived need of 
a general purpose workbench that would allow 
researchers from the imaging world to access state-
of-the-art techniques in machine learning to 
improve their image segmentation results. This 
need was observed by Burget et al. (2010), who 
created an image processing extension for the 
popular data mining software RapidMiner. Following 
that innovation, Sommer et al. (2011) presented 
ilastik, an interactive, user-friendly tool for image 
classification and segmentation based on training a 
random forest classifier on precomputed nonlinear 
features. TWS provides both a set of library functions 
to design experiments and algorithms, based on the 
WEKA and Fiji platforms, and a complete GUI for 
performing interactive and noninteractive learning.

Enhancing Fiji and WEKA
In the past four years, Fiji has become the software 
of reference for many scientists to meet their image 
analysis needs, especially in the field of biomedical 
imaging. Fiji provides its users with powerful tools to 
generate sophisticated image processing pipelines and 
algorithms, via scripting languages and library methods 
that can handle many types and sizes of images. At 
the same time, WEKA is nowadays recognized as 
a landmark system in data mining and machine 
learning. It has achieved widespread acceptance 
within academia and business circles, and has become 
a widely used tool for data mining research.

However, little (if any) of the success of both 
toolboxes would have been possible if they had not 
been released as open-source software. Giving users 
free access to the source code has enabled a thriving 
community to develop and facilitated the creation 
of many projects that incorporate or extend WEKA’s 
existing functionalities. One of the best examples 
of these projects is TWS, which combines both 
toolboxes to enlarge their capabilities and increase 
their impact and range of application. For WEKA 
users and developers, TWS offers transparent access 
to a whole new set of supervised and unsupervised 
learning problems based on an arbitrarily large 
number of image features. For Fiji users and 
developers, respectively, TWS provides a new and 
user-friendly way of performing image segmentation 
and facilitates access to learning tools that can be 
used to either enhance existing image processing 
algorithms and pipelines or create new ones.

Implementation
Computing environment
TWS has been developed using the developing (but 
stable) versions of Fiji and WEKA (version 3.7.6). 
The only requirement to use TWS is to have Fiji 
installed and up to date. In fact, given the cross-
platform nature of Fiji, it can be run with any Unix, 
Macintosh, or Windows environment. The software 
is distributed as open-source software with a detailed 
user manual and multiple tutorials published in the 
Fiji wiki (http://fiji.sc).

For basic users, TWS requires only basic experience 
and knowledge of Fiji. The user should be familiar 
with the simple interface of Fiji and its plugin system. 
The TWS plugin can be run from the plugin menu 
under the segmentation submenu. The user can then 
interact with the GUI without the need for any 
other Fiji commands (a detailed explanation is given 
in the user manual). For more experienced users and 
developers, the TWS library methods are accessible 
from the scripting interpreters available in Fiji as 
well as from any third-party script or plugin.

Data input/output
When the plugin is called up from the Fiji menu, 
TWS runs on the current 2D (gray-scale or color) 
image or stack of images. If no image data are 
open, the plugin will ask for a file to load in any of 
the multiple image formats compatible with Fiji. 
The image feature information produced in the 
interactive learning procedure can be saved and 
loaded in the Attribute-Relation File Format (ARFF) 
(Witten and Frank, 2005), which can also be loaded 
and manipulated in the WEKA suite. The trained 
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models (classifiers and clusterers) can also be saved 
and loaded in a WEKA-compatible format (.model). 
This separation between feature data and models 
enables full compatibility with the WEKA tools and 
library methods. For instance, a user can save the 
feature data of an experiment using the plugin’s GUI, 
then load it into the WEKA experimenter to find the 
most suitable classifier, and finally load the classifier 
back into the GUI to use it in an arbitrary number 
of images.

Image features
In computer vision, a feature is usually defined as 
the part of an image of special interest, and image 
features are used frequently as the starting point for 
many algorithms. Therefore, the overall algorithm 
will often only be as good as its feature detector. For 
that reason, TWS includes a wide range of image 
features, most of which are extracted using common 
filters or plugins available in the Fiji core. By default, 
more than 70 features are computed using generic 
parameters and spherical filters with radii varying 
from 1 to 16 pixels. The user has complete freedom 
to select features and tune their scales and optional 
parameters using either the settings dialog in the 
GUI or the specific library methods.

Based on their purpose, the features available in 
TWS can be grouped into the following types:

•	Edge detectors, which aim at indicating 
boundaries of objects in an image. TWS includes, 
among other edge detectors, Laplacian and Sobel 
filters, difference of Gaussians, Hessian matrix 
eigenvalues, and Gabor filters.

•	Texture filters, to extract texture information. 
Among others, TWS provides a set of filters 
including minimum, maximum, median, mean, 
variance, entropy, structure tensor, etc.

•	Noise reduction filters, such as Gaussian blur, 
bilateral filter, Anisotropic diffusion, Kuwahara, 
and Lipschitz.

•	Membrane detectors, which localize membrane-
like structures of a certain size and thickness.

In addition to providing filters, TWS allows the user 
to customize features. As described in the wiki, a 
very simple script is needed to include user-defined 
features in the segmentation process. As long as they 
contain unique identifiers, an arbitrary number of new 
features can be used either alone or in combination 
with the existing filters. This opens the door to all 
kinds of linear and nonlinear features that users can 
externally create, including 3D features.

Segmentation by pixel classification
To segment the input image data, TWS transforms 
the segmentation problem into a pixel classification 
problem in which each pixel can be classified as 
belonging to a specific segment or class. A set of input 
pixels that has been labeled is represented in the feature 
space and then used as the training set for a selected 
classifier. Once the classifier is trained, it can be used to 
classify either the rest of the input pixels or completely 
new image data. The number and names of the 
classes, together with the desired learning algorithm, 
are defined by the user. All methods available in 
WEKA can be used. These include a large variety 
of supervised classification and regression algorithms 
and clusterers. For a complete list, visit http://
wiki.pentaho.com/display/DATAMINING/Data+ 
Mining+Algorithms+and+Tools+in+Weka . Figure 1  
describes the pixel classification scheme of TWS.

One of the strengths of the TWS toolbox is that 
it allows different options to perform training and 
testing. One possibility is to use the GUI following 
an active learning approach. In a similar way to 
ilastik (the image classification and segmentation 
tool developed by Sommer et al., 2011), the user 
is allowed to interactively provide training samples 
while navigating the data, obtain on-the-fly test 
results on the loaded input image, and retrain the 
classifier as many times as needed. In this way, the 
user can fine-tune the parameters of the classifier 
and select labels until achieving satisfactory results. 
More classical (not interactive) approaches are also 
available via the library methods, allowing training 
on arbitrarily large labeled data.

Creating your own algorithms
The segmentation of image data typically requires 
applying a sequence of algorithms to many images 
in a so-called pipeline. In Fiji, fast prototyping of 
segmentation pipelines is facilitated via scripting, 
which uses simple programming commands (or 
scripts) to define sequences of operations that can be 
applied to sets of images.

Scripting became popular among inexperienced 
users thanks to the simple and friendly ImageJ 
macro language, which allows users to record GUI 
commands and rapidly construct basic programs. 
TWS is not an exception, and all the user actions 
in its GUI can be recorded and reproduced later in 
a macro. Additionally, Fiji supports a broad range 
of scripting languages, which can be used without 
knowledge of Java (the native language of Fiji and 
WEKA), and offers more advanced programming 
capabilities than the macro language while keeping 
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relative simplicity for the occasional programmer. 
TWS makes extensive use of this functionality to 
provide an ideal framework to rapidly prototype and 
implement new algorithms. Individual commands 
can be interactively tested on the current images 
using the corresponding scripting language 
interpreter. In addition, the script editor enables 
writing, debugging, testing, and running arbitrarily 
complex scripts in all the supported languages, 
including Java itself. For example, it takes only  
10 lines of code to load an image and its binary  
labels to train a classifier on how to identify cells, 
apply the trained classifier to a second image, and 
extract each individual cell in the image by running 
a watershed algorithm implementation (Tsukahara 
et al., 2008) on the cell probability map (Fig. 2).

The details of the code or the chosen scripting 
language are not relevant (TWS scripting tutorials 
are available at http://fiji.sc/Scripting_the_Trainable_
Segmentation). All scripting languages in Fiji allow 
users to access advanced image processing libraries 
and now, thanks to TWS, to interact with the WEKA 
machine learning algorithms without mastering Java 
programming. Moreover, it is also possible to integrate 
this functionality through the Fiji interfaces in other 
image platforms such as MATLAB or ITK (Ibanez et 
al., 2003).

Conclusion
We have presented TWS, a versatile tool for image 
segmentation based on pixel classification. The 
software has a library of methods and a GUI that 
makes it easy to use without any programming 
experience. This toolbox is an important addition 
to the growing arsenal of segmentation plugins in 
Fiji (fiji.sc/Category:Segmentation) for analyzing 
biological and nonbiological image data. TWS is 
designed to facilitate the integration of machine 
learning schemes with image processing modules 
into a pipeline. Researchers can easily prototype 
segmentation algorithms using TWS methods with 
any of the scripting languages available in Fiji. 
Scripts are indeed vehicles of execution, but also act 
as mechanisms for disseminating the new algorithm 
or pipeline that are easily accessible by others.

TWS is intended to work as a bridge between the 
machine learning and the biomedical imaging 
communities, facilitating a framework to develop, 
test, and apply novel solutions to the existing 
segmentation challenges. The project is completely 
open source, and we invite users and developers to 
contribute to its growth.

NOTES

Figure 1. TWS pipeline for pixel classification. Image features are extracted from an input image using Fiji-native methods. Next, 
a set of pixel samples is defined and represented as feature vectors, and a WEKA learning scheme is trained on those samples 
and finally applied to classify the remaining image data. The input image in this example pipeline is a serial section from a trans-
mission electron microscopy dataset from the Drosophila first instar larva ventral nerve cord; its pixels are divided into three 
classes: membrane, mitochondria, and cytoplasm.
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Figure 2. Scripting your own algorithm. a, Example of BeanShell script that trains on a cell colony image (b) from the Broad Bioim-
age Benchmark Collection (Ljosa et al., 2012) and its corresponding binary labels (c) and then applies the trained classifier to a test 
image (d) to obtain its in/out probability map (e). The algorithm finally runs watershed segmentation to extract the boundaries of the 
cells (f) and labels the individual objects (g).
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