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Introduction

Modern methods for imaging and recording brain activity allow us to collect massive amounts of data 
across a wide range of spatial and temporal scales. Researchers now routinely record spike trains from 
hundreds of neurons across multiple brain regions, continuous fields from numerous brain sites over 
days at a time, and imaging data containing hundreds of gigabytes of information. In order to make 
use of the exciting opportunities afforded by this explosion of data, it is imperative for researchers to 
understand and be able to apply principled statistical methods. These methods should take advantage 
of the structure present in diverse neural data sets.

A fundamental challenge for understanding brain function has always been that neural processing 
for even the simplest tasks requires the interaction of thousands to millions of neurons distributed 
across multiple brain regions. In the past, many studies had been limited to either mapping out 
simple input–output relationships for individual neurons or local fields or identifying activity patterns 
in imaging data associated with specific tasks. Now, answers to many of the most intriguing open 
questions about brain function are within our reach for the first time, thanks to improvements in 
recording technologies and new data collection efforts. For example, recent initiatives have focused 
on characterizing connections, both anatomical and statistical, among neurons, neural populations, 
and large brain regions.

This short course will provide an overview of classic and modern data analysis methods. We will cover 
general principles of signal processing and statistical data analysis methods, with a focus on three 
common classes of signals: spike trains, electromagnetic fields at multiple spatial scales, and functional 
MRI (fMRI) data. For each type of signal, we will discuss distinct features of the data, basic methods to 
describe and visualize associations within those data, and modeling approaches that allow us to make 
statistical inferences about neural function.
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Introduction: Spiking Patterns in 
Parkinson’s Disease and in Health
The placement of deep-brain stimulating electrodes 
in the subthalamic nucleus (STN) to treat 
Parkinson’s disease (PD) also allows the recording 
of single neuron spiking activity. Analyses of these 
unique data offer an important opportunity to better 
understand the pathophysiology of PD. However, 
despite the point-process nature of PD neural spiking 
activity, point-process methods are rarely used to 
analyze these recordings.

We developed a point-process representation of PD 
neural spiking activity using a generalized linear 
model (GLM) to describe long- and short-term 
temporal dependencies in the spiking activity of 28 
STN neurons from seven PD patients, and 35 neurons 
from one healthy primate (surrogate control), 
recorded while the subjects executed a directed hand-
movement task. We used the point-process model to 
characterize each neuron’s bursting, oscillatory, and 
directional tuning properties during key periods in 
the task trial. Relative to the control neurons, the 
PD neurons showed increased bursting, increased 
10–30 Hz oscillations, and increased fluctuations 
in directional tuning. These features, which 
traditional methods failed to capture accurately, were 
efficiently summarized in a single model in the point-
process analysis of each neuron. The point-process 
framework suggests a useful approach for developing 
quantitative neural correlates that may be related 
directly to the movement and behavioral disorders 
characteristic of PD.

The GLM lecture described how one can model 
neural responses to stimuli with a generalized notion 
of linear regression. This supplementary document 
shows a published case study (Sarma et al., 2010) 
on how GLMs can be used to both model neuronal 
spiking data in response to a motor behavioral 
stimulus and make inferences about spiking patterns 
from model parameters.

Behavioral task
Once microelectrodes were placed in the STN, the 
subjects viewed a computer monitor and performed 
a behavioral task by moving a joystick with the 
contralateral hand. The joystick was mounted such 
that movements were in a horizontal orientation 
with the elbow flexed at approximately 45°. The 
behavioral task began with the presentation of a 
small central fixation point. After a 500 ms delay, 
four small gray targets appeared arrayed in a circular 
fashion around the fixation point (up, right, down, 
and left). After a 500–1,000 ms delay, a randomly 

selected target turned green (target cue [TC]) to 
indicate where the subject was to move. Then, after 
another 500–1,000 ms delay, the central fixation 
point turned green (go cue [GC]), cueing the subject 
to move. At this point, the subject used the joystick 
to guide a cursor from the center of the monitor 
toward the green target. Once the target was reached, 
either a juice reward was given (in the primate case) 
or a tone sounded, indicating that the subject had 
successfully completed the task (human case) and 
the stimuli were erased. Subjects were required to 
return the joystick to the center position before the 
next trial started. A schematic representation of a 
single trial is shown in Figure 1.

Point-process model of STN dynamics
We formulated a point-process model to relate the 
spiking propensity of each STN neuron to factors 
associated with movement direction and features 
of the neuron’s spiking history. We used the model 
parameters to analyze oscillations, bursting, and 
directional tuning modulations across the entire 
trial and to make comparisons between two subject 
groups. A point process is a series of 01 random 
events that occur in continuous time. For a neural 
spike train, the 1s are individual spike times and the 
0s are the times at which no spikes occur. To define a 
point-process model of neural spiking activity, in this 
analysis we considered an observation interval (0, 
T] and let N(t) be the number of spikes counted in 
interval (0, t] for t ϵ (0, T]. A point-process model of 
a neural spike train can be completely characterized 
by its cumulative intensity function (CIF), λ(t|Ht), 
defined as follows:

λ(t│Ht)= limΔ→0 Pr(N(t+Δ) – N(t) = 1| Ht)/Δ (1)

where Ht denotes the history of spikes up to time 
t. It follows from equation (2) that the probability 
of a single spike in a small interval (t, t + Δ] is 
approximately

Pr(spike in (t, t + Δ] | Ht) = λ (t|Ht) Δ (2)

Figure 1. Schematic of a behavioral task trial. U, R, D, L = Up, 
Right, Down, Left.
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(Details can be found in Snyder and Miller, 1991, and 
Cox and Isham, 2000.) When Δ is small, equation 
(2) approximates the spiking propensity at time t.

The CIF generalizes the rate function of a Poisson 
process to a rate function that is history dependent. 
Because the conditional intensity function 
completely characterizes a spike train, defining a 
model for the CIF defines a model for the spike train 
(Brown et al., 2003; Brown, 2005). For our analyses, 
we used the GLM to define our CIF models by 
expressing, for each neuron, the log of its CIF in terms 
of the neuron’s spike history and relevant movement 
covariates (Truccollo et al., 2005). The GLM is an 
extension of the multiple linear regression model in 
which the variable being predicted (in this case, spike 
times) need not be Gaussian (McCullagh and Nelder, 
1989). GLM also provides an efficient computational 
scheme for estimating model parameters and a 
likelihood framework for conducting statistical 
inferences (Brown et al., 2003).

We expressed the CIF for each neuron as a function of 
movement direction, which corresponds to up, right, 
left, and down, and the neuron’s spiking history in 
the preceding 150 ms. Instead of estimating the CIF 
continuously throughout the entire trial, we estimated 
it over 350 ms time windows around key epochs and 
at discrete time intervals, each 1 ms in duration. 
Specifically, we estimated the CIF over 350 ms  
windows centered at the gray array (GA) onset, TC 
onset, GC onset, and movement (MV) onset. We 
do not label each CIF with the corresponding epoch 
going forward for a simpler read and express the CIF 
as follows:

λ (t|Ht, θ) = λS (t|θ) λH (t|Ht, θ) (3)

where λS (t|θ) describes the effect of the movement 
direction stimulus on the neural response and  λH 

(t|Ht, θ) describes the effect of spiking history on the 
neural response. θ is a parameter vector to be estimated 
from data. The units of λS (t|θ) are spikes per second, 
and λH (t|Ht, θ) is dimensionless. The idea to express 
the CIF as a product of a stimulus component and 
a temporal or spike history component was first 
suggested by Kass and Ventura (2001). This idea is 
appealing, as it allows one to assess how much each 
component contributes to the spiking propensity of 
the neuron. If spiking history is not a factor associated 
with neural response, then λH (t|Ht, θ) will be very 
close to 1 for all times, and equation (1) reduces to an 
inhomogeneous Poisson process.

The model of the stimulus effect is as follows:

λS (t|θ) = αdId (t), (4)

where d = 1, 2, 3, 4 is the movement direction, Id (t) 
= 1 if movement is in direction d, and 0 otherwise 
(indicator function).

The { αd } parameters measure the effects of movement 
direction on the spiking propensity. Here, d = {1, 2, 3, 
4} corresponds to {Up,Right,Down,Left}, respectively. 
For example, if α1 is significantly larger than α2, α3, 
and α4 during movement, then the probability that a 
neuron will spike is greater when the patient moves 
in the “up” direction, suggesting that the neuron 
itself may be tuned in the up direction.

Our model of spike history effect is as follows:

log(λH (t│Ht,β,γ)) = ∑10
        βjn (t – j : t – (j+1)) +  

∑14   γkn (t – (10k+9):t – 10k), (5)

where n(a : b) is the number of spikes observed in the 
time interval [a, b) during the epoch. The βj parameters 
measure the effects of spiking history in the previous 
10 ms, and therefore, can capture refractoriness and/or 
bursting on the spiking probability in the given epoch. 
For example, if eβ1 is close to 0 for any given epoch, 
then for any given time t, if the neuron had a spike in 
the previous millisecond, then the probability that it 
will spike again is also close to 0 (due to the refractory 
period). Alternatively, if eβ5 is significantly larger than 
1, then for any time t, if the neuron had a spike 5 prior 
to t, then the probability that it will spike again is 
modulated up, suggesting bursting.

The γk parameters measure the effects of the spiking 
history in the previous 10–150 ms on spiking 
probability, which may be associated with not only 
the neuron’s individual spiking activity, but also 
that of its local neural network. For example, if eγ4 is 
significantly larger than 1, then for any time t, if the 
neuron had ≥1 spikes between 40–50 prior to t, then 
the probability that it will spike again is modulated 
up, suggesting 20–25 Hz oscillations.

By combining equations (4) and (5), we see that the 
CIF may be written as follows:

log (λ(t│Ht,β,γ))=αdId+∑
10

    βjn (t – j : t – (j+1)) +  
∑14   γkn (t – (10k + 9) : t – 10k), (6)

The model parameter vector θ = {αd, βj, γk} contains 
28 unknown parameters for each epoch and time 

j=1

k=1

j=1

k=1
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window modeled. We computed maximum-likelihood 
(ML) estimates for θ and 95% confidence intervals of 
θ for each neuron using glmfit.m in MATLAB.

Model fitting
Establishing the degree of agreement between a point-
process model and observations of the spike train and 
associated experimental variables is a prerequisite for 
using the point-process analysis to make scientific 
inferences. We used Kolmogorov–Smirnov (KS) 
plots based on the time-rescaling theorem to assess 
model goodness-of-fit. The time-rescaling theorem is 
a well-known result in probability theory, which states 
that any point process with an integrable conditional 
intensity function may be transformed into a Poisson 
process with unit rate (Johnson and Kotz, 1970). A 
KS plot, which outlines the empirical cumulative 
distribution function of the transformed spike 
times versus the cumulative distribution function 
of a unit rate exponential, was used to visualize the 
goodness-of-fit for each model. The model is better if 
its corresponding KS plot lies near the 45º line. We 
computed 95% confidence bounds for the degree of 
agreement using the distribution of the KS statistic 
(Johnson and Kotz, 1970). If a model’s KS plot was 
within the 95% confidence bounds, we included it in 
our analyses.

Making inferences from  
GLM parameters
As mentioned earlier, we built point-process models 
for STN neurons in seven PD patients and one 
healthy primate, which captured dynamics across four 
different epochs within a directed hand-movement 
task. (We summarize results for each species later.) 
For the PD data, 28 STN neuron models passed the 
KS test, and for the primate data, 35 models passed 
the KS test.

Recall from equation (2) that  λ (t|Ht) Δ approximates 
the probability that the neuron will spike at time t 
given extrinsic and intrinsic dynamics up to time t, 
which is captured in Ht. By virtue of equation (6), we 
allowed the probability that each STN neuron would 
spike at some time t, to be modulated by movement 
direction, short-term history, and long-term history 
spiking dynamics. Figure 2 illustrates these three 
modulation factors on spiking activity for both PD 
and primate single-neuron models by plotting the 
optimal parameters and their corresponding 95% 
confidence bounds before and after MV onset. We 
made the following observations:

1. Refractoriness: As illustrated in the second row of 
Figure 2, both the PD and primate STN neuron 
exhibits refractory periods (Brodal, 1998), 
indicated by downmodulation by a factor of 10 
or more due to a spike occurring 1 ms before a 
given time t. That is, if a spike occurs 1 ms before 
time t, then it is very unlikely that another spike 
will occur at time t (eβi ≤ 1 for all eβi within its 
95% confidence band).

2. Bursting: As illustrated in the second row of 
Figure 2, the PD STN neuron spikes in rapid 
succession before and after MV onset, as 
indicated by one or more of the short- term 
history parameters (eβi ’s) corresponding to 2–10 
ms in the past being larger than 1. That is, if 
a spike occurs 2–10 ms before time t, then it 
is more likely that another spike will occur at 
time t. Formally, a neuron bursts if its model 
parameters satisfy the following: for at least one 
i = 2, 3, ..., 10, LBi ≥ 1 and UBi ≥ 1.5, where LBi 
≤ eβi ≤ UBi. LB and UB are the 95% lower and 
upper confidence bounds, respectively.

Figure 2. Optimal model parameters for an STN neuron 
during MV– and MV+ periods of a (left) PD patient and (right) 
healthy primate. Top row, movement direction modulation. 
Optimal extrinsic factors eαd for d = {1, 2, 3, 4} = {U,R,D,L} 
are plotted in black lines from left to right and corresponding 
95% confidence intervals are shaded around each black line 
in a color. Middle row, short-term history modulation. Optimal 
short-term history factors eβi for i = 1, 2, ..., 10 are plotted in 
blue from right to left and the corresponding 95% confidence 
intervals are shaded in green. Bottom row, long-term history 
modulation. Optimal long-term history factors eγk for k = 1, 2, 
... , 14 are plotted in blue from right to left and corresponding 
95% confidence intervals are shaded in green.



14

NoTeS

© 2013 Sarma

3. 10–30 Hz oscillations: As illustrated in the third 
row of Figure 2, the PD STN neuron exhibits 10–
30 Hz oscillatory firing before movement. That 
is, the probability that the PD STN neuron will 
spike at a given time t is modulated upward if a 
spike occurs 30–100 ms before time t . Formally, 
a neuron has 10–30 Hz oscillations if its model 
parameters satisfy the following for at least one i 
= 2, 3, ..., 5, LBi ≥ 1 and UBi ≥ 1.5, where LBi ≤ 
eγi ≤ UBi.

4. Directional tuning: As illustrated in the first row 
of Figure 2, the PD STN neuron appears to 
exhibit more directional tuning after MV onset. 
That is, the PD neuron seems more likely to 
spike in one direction more than at least one 
other direction. To quantify directional tuning, 
we performed the following test for each neuron, 
each time relative to onset, and each epoch:

•	For	each	direction	d = {U,R,D,L}, compute pd*d 
= Pr (eαd* > eαd) = Pr (αd* > αd) for d ≠ d*. Define 
pdd = 0. Use the Gaussian approximation for αd, 
which is one of the asymptotic properties of 
ML estimates to compute pd*d.

•	If	 maxd=1,2,3,4 pd*d ≥ 0.975, then the neuron 
exhibits directional tuning.

In Sarma et al. (2010), we made the following 
observations across all neurons in both groups. Most 
neurons in both subject groups exhibit refractoriness. 
Bursting is prevalent across all epochs in neural 
activity of PD patients (on average, 39% of PD 
STN neurons burst). In contrast, neural activity in 
the healthy primate exhibits little bursting (14% on 
average) across all epochs. Oscillations of 10–30 Hz  
are prevalent in neural activity of PD patients across 
all epochs (on average, 36%) and significantly 
decrease relative to this baseline after movement. 
Beta oscillations have been observed experimentally 
in both parkinsonian primates and PD patients 
(Bergman et al., 1994; Raz et al., 2000; Bevan et 
al., 2002; Brown, 2003; Dostrovsky and Bergman, 
2004; Montgomery, 2008), and attenuation of these 
oscillations postmovement has also been observed 
(Armirnovin et al., 2004; Williams et al., 2005). 
In contrast, an average of 12% of the primate 
neurons exhibit 10–30 Hz oscillations, which does 
not significantly modulate across the entire trial. 
Directional tuning is more prevalent in the healthy 
primate across the trial. In particular, directional 
tuning increases significantly above baseline right 
after the GA is shown in the primate case. This 
observation makes sense, as the primate knows and 
moves to one of the four possible directions shown. 

Tuning increases further in the primate neurons after 
the TC appears, as now the subject knows which 
direction to move when cued to do so. In contrast, 
directional tuning fails to increase significantly 
above baseline until right before MV onset in PD 
STN neurons. The lack of significant increase in 
directional tuning in PD STN neurons early in the 
trial may reflect the lack of a dynamic range in the 
STN neurons of PD patients, which may cause their 
slow and impaired movements.

Conclusion
We applied the point-process framework to the 
analysis of STN microelectrode recordings from 
PD patients and a healthy nonhuman primate, to 
understand the relative importance of movement and 
spiking history for neural responses. We used GLM 
representations of the point-process CIF to develop 
an efficient likelihood-based approach to model 
fitting, goodness-of-fit assessment, and inference. 
The point-process model parameters allowed us 
to identify pathological characteristics of the STN 
neurons in PD patients, including bursting, 10–30 Hz  
oscillations, and decreased directional tuning prior 
to movement. These characteristics, which differed 
from those of the non-PD STN neurons, had been 
previously described using traditional methods. 
However, such techniques can lead to erroneous 
inferences when spiking data contain significant 
temporal dependencies, as is the case for PD STN 
spiking activity. The point-process framework is 
therefore a useful paradigm for providing a succinct, 
quantitative characterization of the pathological 
behavior of STN spiking activity in PD patients.
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Introduction
As large data sets (e.g., multisensor, high-density 
recordings) become more prevalent in neuroscience, 
analysis routines to characterize these data become 
more essential. Neuronal field data often exhibit 
rhythms, and spectral analysis techniques provide 
tools to characterize these rhythms and succinctly 
summarize important features in these large data sets. 
In this chapter, we provide a hands-on, nontechnical 
introduction to some of the spectral analysis material 
presented in this Short Course. This brief review 
necessarily provides a limited description of spectral 
analysis; excellent references exist with many more 
details (Priestley, 1983). Instead, we focus on case 
study data available for download at http://math.
bu.edu/people/mak/sfn-2013/ . Embedded within this 
chapter is MATLAB code; the reader is encouraged 
to explore these data and methods on his or her own.

Field Analysis Techniques Step  
by Step
Introduce single-sensor data: 
visualization
To start, we focus our analysis on a single field  
recording. This recording may represent an electro-
encephalographic (EEG), magnetoencephalographic 
(MEG), electrocorticographic (ECoG), or local field 
potential (LFP) observation. We collect T = 2 s of data 
(sampling frequency f0 = 500 Hz) from a single sensor  
(Fig. 1A). In this figure, the voltage trace appears as a 
continuous curve. However, closer inspection reveals 
that these data consist of discrete points in time  
(asterisks in Fig. 1B). The spacing between these points 
is small: In this case, ∆ = 2 ms, which corresponds to 
the reciprocal of the sampling frequency. Visual in-
spection of Figure 1B suggests rhythmic activity with a 

period of ~15 ms. To characterize the rhythms beyond 
visual inspection, we compute the power spectrum 
(Fig. 1C). In the next sections, we will introduce the 
notion of the power spectrum, provide intuition for 
the method, define important quantities of interest, 
and introduce the notion of tapering.

Power spectrum defined
There exist many techniques to characterize field data 
(Pereda et al., 2005; Greenblatt et al., 2012). Here, 
we compute the power spectrum of the data using a 
well-established technique: the Fourier transform. To 
summarize, the “power spectrum” is the magnitude 
squared of the Fourier transform of the data. The 
power spectrum indicates the amplitude of rhythmic 
activity in the data as a function of frequency. Many 
subtleties exist in computing and interpreting the 
power spectrum, some of which we will explore here. 
In doing so, we will strengthen our intuition and our 
ability to deal with future, unforeseen circumstances 
in other data sets.

Power spectrum: computation and 
implementation
We start by presenting the formula and MATLAB 
code to compute the power spectrum. Throughout 
the rest of this chapter, we will focus on aspects of 
this computation in more detail. The power spectrum 
(Sxx,j) of a signal x is defined as follows:

 Sxx,j = (2∆2 / T) XjXj* ,

which is the product of the Fourier transform of x 
at frequency fj (Xj) with its complex conjugate (Xj*), 
scaled by the sampling interval (∆) squared and the 
total duration of the recording (T). Notice the units 
of the power spectrum are (in this case): (μV)2/Hz. 
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Figure 1. A, T = 2 s of collected data (sampling frequency f0 = 500 Hz) from a single sensor. The voltage trace appears as a 
continuous curve. B, Closer inspection reveals that these data consist of discrete time points (asterisks). The spacing between 
these points is small: ∆ = 2 ms, corresponding to the reciprocal of the sampling frequency. Activity with a period of ~15 ms is 
apparent. C, Plot of the power spectrum, which displays the power as a function of frequency.
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NoTeS Computing the power spectrum in MATLAB and 
plotting the results require only a few lines of code:

xf = fft(x); %1.  Compute the Fourier transform 
of x.

Sxx = 2*dtˆ2/T * xf.*conj(xf); %2. Compute the power spectrum.

Sxx = Sxx(1:length(x)/2+1); %3. Ignore negative frequencies.

df = 1/max(T); %4.  Determine the frequency 
resolution.

fNQ=1/dt/2; %5.  Determine the Nyquist 
frequency.

faxis = (0:df:fNQ); %6. Construct the frequency axis.

plot(faxis, Sxx) %7. Plot power versus frequency.

xlim([0 100]) %8. Select frequency range.

xlabel('Frequency [Hz]'); 
ylabel('Power')

%9. Label axes.

The results of this computation are plotted in  
Figure 1C. Notice the large peak in power at 60 Hz. 
This peak agrees with our visual inspection of the 
EEG data (Fig. 1B), in which a dominant rhythm at 
60 Hz can be approximated. In subsequent sections, 
we will explore some subtleties of the power spectrum 
and strengthen our intuition for this measure.

Power spectrum: intuition
The power spectrum is proportional to the squared 
Fourier transform of the data. We may think of 
the Fourier transform as “comparing” the data x to 
sinusoids oscillating at difference frequencies fj . When 
the data and sinusoids “match,” the power at frequency 
fj is large, whereas when the data and sinusoids do not 
match, the power at frequency fj is small. To illustrate 
this principle, we consider an example in which the 
data are a perfect cosine function with frequency  
10 Hz (Fig. 2A, gray). Choosing fj = 4 Hz, we construct 
another cosine function (Fig. 2A, red) oscillating at 
4 Hz. To calculate the power in the data at 4 Hz, 
we multiply the data (Fig. 2A, gray) by the sinusoid  
(Fig. 2A, red) at each point in time, then sum the 

result. This point-by-point multiplication is plotted in 
Figure 2B. Notice that the product alternates between 
positive and negative values over time. Therefore, 
when we sum the product (i.e., when we sum the red 
curve in Fig. 2B over time), we expect a value near 
zero. In this case, the sinusoid at frequency fj = 4 Hz 
does not align with the data, and the power at this 
frequency is nearly zero.

Now consider the case in which we choose a cosine 
function at frequency fj = 10 Hz. With this choice of 
fj, the data and the cosine function align perfectly 
(Fig. 2C). The product of the cosine function and 
the data is always nonnegative (Fig. 2D); therefore, 
the summation is a large positive number, and the 
power in the data at frequency fj = 10 Hz is also 
large. In this sense, the power spectrum reveals the 
dominant frequencies that “match” the data.

Important quantities: frequency 
resolution and Nyquist frequency
Two important quantities to consider when 
computing the power spectrum are as follows:

1. The frequency resolution, df = 1/T, is the 
reciprocal of the total recording duration.

2. The Nyquist frequency, fNQ = f0/2 = 1/(2 ∆), is 
half of the sampling frequency f0 .

For the data considered here, the total recording 
duration is 2 s (T = 2 s), so the frequency resolution 
df = 1/(2 s) = 0.5 Hz. We can therefore resolve 
frequency differences of 0.5 Hz, but no smaller. To 
improve the frequency resolution (i.e., make df 
smaller), we must increase the duration of recording 
(i.e., make T bigger). The sampling frequency f0 is 
500 Hz, so fNQ = 500/2 Hz = 250 Hz. We can therefore 
observe frequencies up to 250 Hz, but no higher. To 
increase the highest frequency observable, we must 
increase the sampling frequency.
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Figure 2. Example intuition for computing the power spectrum. A, The data consist of a perfect cosine function with frequency 
10 Hz (gray). We choose fj = 4 Hz, a cosine function (red) that oscillates at 4 Hz. B, Plotted point-by-point multiplication for the 
two curves in A. The product alternates between positive and negative values over time. C, We choose another cosine function 
(red) at frequency fj = 10 Hz, which aligns perfectly with the data (gray). D, The product of this cosine function and the data is 
always nonnegative. Calibration: A–D, 100 ms.
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MATLAB relates the indices of vector Sxx (line 2 
of MATLAB code) to the frequencies as shown in 
Figure 3. Because the field data are real (i.e., the 
observed data have zero imaginary components), the 
negative frequencies are redundant. We therefore 
ignore the second half of the frequency axis (line 3 
of MATLAB code) and define a frequency axis in 
MATLAB that spans 0 to fNQ in steps of df (Fig. 3).

The impact of aliasing
The Nyquist frequency is the highest frequency we 
can hope to observe in the data. To illustrate this fact, 
we consider a simple example data set: a sinusoid that 
oscillates at some frequency fs. We do not observe 
these true data. Instead, we observe a sampling of these 
data that depends on our sampling interval ∆. If we 
sample the data at a high rate, f0 >> fs, then we can 
accurately reconstruct the underlying data (Fig. 4A) 
given only the discrete samples. However, if we sample 

the data at a lower rate, such that f0 < 2fs, the sampling 
produces an oscillation occurring at a different, lower 
frequency (Fig. 4B). This phenomenon of a true high-
frequency signal appearing as a low-frequency signal 
upon sampling is known as “aliasing.”

The decibel scale
Often, weak rhythms of interest remain hidden from 
visual inspection because of large peaks at other 
frequencies in the power spectrum. One visualization 
technique to emphasize lower-amplitude rhythms 
is to change the scale of the power spectrum to 
decibels. The decibel is a logarithmic scale and is 
easily computed in MATLAB (Fig. 5A).

The default rectangular taper
By doing nothing, we automatically apply a 
rectangular taper to the data (Fig. 5B, red). The 
rectangular taper multiplies the observed data by 1 and 
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Figure 4. Illustration of aliasing. A, A sinusoid that oscillates at frequency fs (black) with sampling (green) at a high rate, f0 >> 
fs. B, Sampling (red) of the data at a lower rate, f0 < 2fs, produces an oscillation at a different, lower frequency, i.e., “aliasing.”

Index

Frequency

1

df

2 3

0 2df

4

3df

N/2 N-1 NN/2-1 N/2+3N/2+1 N/2+2

fNQfNQ - dffNQ - 2df

. . . 

. . . -(fNQ - df) -(fNQ - 2df) -df-2df

. . . 

. . . 

3

Ignore

Figure 3. Relationship between the indices of vector Sxx to the frequencies. Because the field data are real, the negative fre-
quencies are redundant. 

0 50 100
−60
−40
−20

0

Frequency [Hz]Po
w

er
 [d

B] 100 ms

5B5A

unobserved unobserved
observed0

1

plot(faxis, 10*log10(Sxx))

Figure 5. A, The power spectrum of the data in Fig. A plotted on a decibel scale emphasizes lower-amplitude rhythms. B, A 
rectangular taper (red) applied to the data that multiplies the observed data by 1 and the unobserved data by 0. The data continue 
perpetually, although only a small interval (lower trace) is observed.



22

NoTeS

the unobserved data by 0. We can think of the value 
1 as representing the time period when our recording 
device is operational; the data continue “forever” 
(Fig. 5B, upper trace), but we observe only a small 
interval (Fig. 5B, lower trace). The rectangular taper 
makes explicit our knowledge about the observed 
data (in this case, the 2 s interval) and our ignorance 
about the unobserved data, which are assigned the 
value zero. By computing the power spectrum of the 
2 s of data, we actually compute the power spectrum 
as the product of two functions: the observed data 
and the rectangular taper. The impact on the power 
spectrum is the emergence of “side lobes”—regions of 
increased power that surround spectral peaks. These 
side lobes can potentially mask important, lower-
power activity (Fig. 5A).

Impact of the Hanning taper
The Hanning taper acts to smooth the sharp edges of 
the rectangular taper. The Hanning taper gradually 
increases from zero, reaches a maximum of 1 at the 
center of the taper, then gradually decreases to zero 
(Fig. 6A, blue). Notice that data at the edges of the 
taper become dramatically reduced (Fig. 6A, lower). 
The power spectrum (Fig. 6B) possesses two main 
differences: (1) The peaks are wider when using 
the Hanning taper compared with the rectangular 
taper (Fig. 5A), and (2) the side lobes are reduced 
when using the Hanning taper compared with the 
rectangular taper. These two features illustrate 

the tradeoff between the two window choices. By 
accepting wider central peaks, we reduce the power 
in the side lobes. To compute and apply the Hanning 
window in MATLAB, we must replace line 1 of the 
MATLAB code with the following:

>> xf = fft(hann(length(x)).*x); %1.  Apply Hanning taper to x, then 
compute Fourier transform.

Note that two peaks at low frequency become more 
apparent after applying the Hanning taper (compare 
Fig. 5A with 6A at frequencies <20 Hz). Modern 
approaches to tapering include the multitaper 
method (Thomson, 1982; Bokil et al., 2010).

A measure of association: coherence
Thus far, we have focused on field data recorded 
from a single sensor. However, brain recordings often 
consist of multiple sensors, and recent advances in 
recording technology promise observations of brain 
activity from many sensors simultaneously (Viventi 
et al., 2011). How do we make sense of these 
large, simultaneous, multivariate recordings? Many 
techniques exist (Pereda et al., 2005; Greenblatt et 
al., 2012). Here, we focus on field data and consider 
time series recorded simultaneously from two sensors 
during a task. To characterize these data, we compute 
the coherence, which has many applications in 
neuroscience (Engel et al., 2001).
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Figure 7. A, Example data visualized from the first three trials for both sensors (red and blue), suggesting rhythmic activity. B, 
The trial-averaged power spectrum (black). Compared with the power spectrum from a single trial (red), the variability of the 
power is greatly reduced. A large peak in power is seen at 8 Hz and a smaller peak at 24 Hz.
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Visualization and trial-averaged power 
spectrum
The data consist of 100 trials, each of 1 s duration, 
recorded simultaneously from two sensors. To start, 
we visualize the data in the first three trials for both 
sensors (Fig. 7A, red and blue). The results suggest 
rhythmic activity. To further characterize the 
rhythmic activity, we compute the trial-averaged 
power spectrum for a single sensor (Fig. 7B, black). 
Because we possess multiple trials, and we assume 
that each trial represents an instantiation of the same 
underlying process, we average the power spectra 
across trials to compute the trial-averaged power 
spectrum. Compared with the power spectrum from 
a single trial (Fig. 7B, red), the variability of the 
power is greatly reduced. By reducing the variability 
in this way, interesting structure in the data becomes 
more apparent. In this case, we observe a large peak 
in power at 8 Hz and a smaller peak at 24 Hz.

Coherence defined
To assess the association between activity recorded at 
the two sensors (which we label x and y), we compute the 
coherence. To do so, we first define the cross-spectrum 
(Fig. 8A). Compared with the expression for power 

(discussed earlier in Power Spectrum: Computation 
and Implementation), we replace Xj* with Yj,k* . That 
is, we replace the Fourier transform of x with the 
Fourier transform of y. Notice that we also include the 
trial index (subscript k), sum the product of Xj,k and 
Yj,k* over all trials, and then divide by the total number 
of trials K . Using polar coordinates, we may write this 
expression in a slightly different way (Fig. 8B). Here, Aj,k 
(Bj,k) is the radius at frequency index j and trial index 
k for the signal xk (yk), and Φj,k is the phase difference 
between the two signals at frequency index j and trial 
index k. At last, we define the coherence κxy,j in Figure 
8C; the symbol < Sxy,j > indicates the magnitude of 
the trial-averaged cross-spectrum. In other words, the 
coherence is the magnitude of the trial-averaged cross-
spectrum between the two signals at frequency index j, 
divided by the magnitude of the trial-averaged power 
spectrum of each signal at frequency index j . We can 
evaluate this expression by replacing the trial-averaged 
spectrum terms with the corresponding expressions in 
polar coordinates (Fig. 8D).

Coherence: intuition
To gain intuition for the behavior of κxy,j, we make the 
simplifying assumption that the amplitude at each 
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Figure 8. Mathematical expressions for the coherence between activity recorded at two sensors (x and y). A, Equation for the 
cross-spectrum. B, Equation for the cross-spectrum in polar coordinates. C, Equation for the coherence. D, Equation for the 
coherence in polar coordinates. E, Simplified expression for the coherence in which the amplitudes in the two signals are as-
sumed identical for all trials.
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trials; that is, Aj,k = Bj,k = Cj. Then the expression 
for coherence (Fig. 8D) becomes Figure 8E. In this 
case, the coherence simplifies to an expression that 
involves only the phase difference between the two 
signals averaged across trials; the amplitudes in the 
numerator and denominator have canceled out.

We now interpret this simplified expression in two 
scenarios. First, we assume that at some frequency index j, 
the two signals possess a constant phase difference across 
trials. We therefore replace Φj,k with Φj,0 because the 
phase difference is the same for all trials k . Now consider 
the expression: exp(i Φj,0). This defines a point in the 
complex plane with radius 1, which we can think of as 
a vector leaving from the origin at angle Φj,0 to the real 
axis (Fig. 9A, first column). To compute the coherence 
κxy,j requires the summation of these terms across trials 
(Fig. 8E). This defines a sum of vectors in the complex 
plane, each of radius 1. Because the phase difference is 
the same for each trial, this vector points in the same 
direction for each trial (Fig. 9A, middle columns). By 
summing up these vectors end to end, we produce a long 
vector in the complex plane that terminates far from the 
origin (Fig. 9A, last column). The coherence (Fig. 8E) 
is this vector length, divided by K, so we conclude in 
this case that κxy,j = 1, which indicates strong coherence 
between the two signals. The strong coherence results 
from the constant phase relationship between the two 
signals across trials at frequency index j .

As a second scenario, consider another frequency 
index j in which the two signals have a random 
phase difference over trials. In this case, the phase 
difference (Φj,k) can assume any value between 0 and 
2π for each trial. To visualize this, we examine the 
phase differences in the complex plane (Fig. 9B); 
the vectors point in different directions from trial to 
trial. Because the coherence (Fig. 8E) is this vector 
length, divided by K, we conclude in this case that 
κxy,j ≈ 0, which indicates no coherence between the 
two signals. The weak coherence results from the 
random phase relationship over trials between the 
two signals at this frequency index.

To summarize, coherence is a measure of the 
relationship between x and y at the same frequency. 
The coherence ranges between 0 and 1, 0 ≤ κxy,j ≤1, 
in which 0 indicates no coherence between signals 
x and y at frequency index j, and 1 indicates strong 
coherence between signals x and y at frequency 
index j. The coherence is a measure of the phase 
consistency between signals at frequency index j 
across trials. We note that, because the coherence 
requires the Fourier transform, the issues of frequency 
resolution, Nyquist frequency, and tapering (Bokil 

et al., 2010) are identical to those described for the 
power spectrum: The frequency resolution of the 
coherence is 1/T, and the Nyquist frequency is half 
of the sampling frequency, just as before.

Coherence: computation and 
interpretation
There are a variety of alternatives for computing 
coherence. Here we compute the coherence by 
implementing the mathematical expressions in 
MATLAB:

K = size(x,1); %Define the number of trials.

N = size(x,2); %Define the number of indices 
per trial.

dt = t(2)-t(1); %Define the sampling interval.

T = t(end); %Define the duration of data.

Sxx = zeros(K,N); %Create variables to save the 
spectra.

Syy = zeros(K,N);

Sxy = zeros(K,N);

for k=1:K %Compute the spectra for each 
trial.

 Sxx(k,:) = 2*dt^2/T * fft(x(k,:)) .* conj(fft(x(k,:)));

 Syy(k,:) = 2*dt^2/T * fft(y(k,:)) .* conj(fft(y(k,:)));

 Sxy(k,:) = 2*dt^2/T * fft(x(k,:)) .* conj(fft(y(k,:)));

end

Sxx = Sxx(:,1:N/2+1); %Ignore negative frequencies.

Syy = Syy(:,1:N/2+1);

Sxy = Sxy(:,1:N/2+1);

Sxx = mean(Sxx,1); %Average the spectra across 
trials.

Syy = mean(Syy,1);

Sxy = mean(Sxy,1);

cohr = abs(Sxy) ./ (sqrt(Sxx) .* sqrt(Syy));  
                                                      %Compute the coherence.

df = 1/max(T); %Determine the frequency 
resolution.

fNQ = 1/ dt / 2; %Determine the Nyquist 
frequency.

faxis = (0:df:fNQ); %Construct frequency axis.

plot(faxis, real(cohr)); %Plot the results

xlim([0 50]); ylim([0 1]) %Set the axes limits

xlabel('Frequency [Hz]') %Label axes.

ylabel('Coherence [ ]')
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We plot the coherence between x and y in Figure 10. 
We find in this case strong coherence at 24 Hz and 
weak coherence at all other frequencies. Comparing 
the power spectrum (Fig. 7B) with the coherence 
(Fig. 10), we find that the dominant rhythm (8 Hz) 
is not coherent between the two sensors, whereas the 
weaker rhythm (24 Hz) is coherent.

Conclusion

This chapter provides a brief introduction to the 
power spectrum and coherence. As “big data” 
become increasingly common in neuroscience, 
computational tools to assess interesting structures 
within time series, as well as relationships between 
simultaneously recorded time series, will become 
more critical.
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Introduction
Dynamic causal models (DCMs) for EEG are a 
suite of neuroimaging analysis tools designed to 
provide estimates of the neurobiological mechanisms 
that generate electroencephalographic (EEG), 
magnetoencephalographic (MEG), and local field 
potential (LFP) recordings. The principal idea is 
that generative models of interconnected neural 
populations can be used as a substrate against which 
competing hypotheses about how empirical data 
are generated can be compared and investigated. 
Effective connectivity within and between brain 
regions, and their synaptic and cellular constituents, 
can be assessed using these DCMs.

Connectivity estimates using DCMs for EEG have 
been used to inform the mechanisms underlying 
a variety of neurological disorders: Parkinson’s 
disease, epilepsy, the so-called vegetative state, and 
schizophrenia. Application of this methodology 
rests on a plausible generative model of neuronal 
dynamics from connected brain regions or “nodes” 
that can then be optimized, given empirical 
observations. These models describe, through sets 
of differential equations, mechanisms that are not 
directly observable, such as the strength of synaptic 
connections along extrinsic corticocortical pathways. 
Bayesian inference schemes are then used to map 
from recorded responses (in EEG/MEG/LFP data) 
back to the underlying cause. Hence, the estimates 
of intrinsic (within-region) and extrinsic (region-
to-region) connections are deemed “effective” or 
model-based assessments.

This DCM procedure (Friston et al., 2003) of proposing 
a generative architecture and then fitting the model to 
data can be applied to a range of electrophysiological 
data features. These features include event-related 
potentials (ERPs), spectral densities, cross-spectral 
densities (CSDs), induced (time-frequency) responses 
(IRs), and phase coupling (PHA). DCMs for ERPs and 
DCMs for CSDs utilize an underlying neurobiological 
structure in the form of neural mass models to describe 
active brain regions. In contrast, DCMs for IR and 
DCMs for PHA use phenomenological models that 
recapitulate, with abstracted dynamic parameters, the 
interregional effects.

This chapter first outlines the types of neural mass 
models used in DCMs for ERP/CSDs. The second 
section outlines the forward-mapping that allows 
these models to generate scalp-level and sensor-level 
EEG and MEG data or invasive LFPs. It then describes 

how Bayesian inversion procedures are utilized to test 
competing hypotheses about the generative processes 
underlying empirical observations. The third section 
demonstrates how these models and procedures can 
be applied in the context of either ERP or CSD data. 
The fourth section outlines the phenomenological 
class of DCMs.

Neural Mass Models
Since Hodgkin and Huxley developed their 
biophysical model of ionic currents and action 
potential generation in the squid axon (Hodgkin and 
Huxley, 1952), scientists have considered how similar 
membrane potential mechanisms can be described 
at the level of neuronal populations. This pursuit 
of describing “neuronal activity in concert” has led 
to the development of neural mass models and their 
application in DCMs for EEG. Neural mass models 
use principles of statistical physics to mathematically 
describe how a population’s dynamic characteristics 
emerge from single-cell dynamics. In particular, 
mean field reductions rely on the representation of 
probability densities to describe salient population 
features, such as the average current flow induced 
by particular ions. Neural mass models reduce the 
interaction of these types of neuronal states to 
interactions among the means, or modes, of their 
densities. This simplification reduces a potentially 
large parameter space (describing interactions among 
many orders of probability densities) to a simpler, 
one-dimensional characterization. DCMs for ERPs 
and CSDs use neural mass models that are assembled 
in this way (with options to include second-order 
interactions). From this dynamic and statistical 
starting point, the neural mass models that represent 
dynamics within a brain region are constructed 
based on known properties of neuroanatomy and 
neurophysiology.

Three important neurobiological properties are 
represented in DCMs’ neural mass models: laminar- 
specific cellular subtypes within a region,  
laminar-specific extrinsic connections between regions, 
and glutamate and GABAergic receptor dynamics. 
Based on histological data, it is known that cortex 
has a layered structure (6-layered neocortex, and the 
less layered allocortex) and that different cell types 
populate these layers. The neural mass models used in 
DCMs capture this anatomical structure by specifying 
(currently 3 or 4) subpopulations of cell types, which 
represent occupancy in granular, supragranular, 
and infragranular layers. These are interconnected 
through plausible intrinsic connectivity structures and 
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interneurons, and spiny stellate cells. It is worth noting 
that these architectures are designed to be rearranged 
for particular investigations (e.g., in agranular primary 
motor cortex, by disconnecting certain layers/
populations).

Whereas synapses formed by local gray matter 
axons are represented within a region, as “intrinsic 
connections,” network-based brain dynamics 
(where multiple regions are coactivated) are 
generated through interregional (myelinated) 
connections. These extrinsic connections have the 
same mathematical form as intrinsic connections 
but are exclusively glutamatergic (excitatory) 
and impinge on cell populations in particular 
layers. For example, a thalamocortical or forward-
corticocortical connection will excite granular 
layer IV stellate cells. In contrast, other backward, 
modulatory extrinsic connections will excite 
pyramidal cells and inhibitory interneurons outside 
of layer IV.

Neural mass models also allow one to infer the 
synaptic connections that are mediated by different 
neurotransmitters and receptor types. We explicitly 
model GABAergic and glutamatergic processes. 
This third component of biophysical plausibility is 
provided by describing the dynamic mathematical 
effects (and differences) of, for example, glutamate 
arriving at an AMPA receptor (fast excitatory) 
versus an NMDA receptor (slow, excitatory, 
and gated). Describing these different channel-
membrane responses generates more realistic brain 
dynamics and provides for fine-grained inference 
on neurophysiological contributions to EEG 
recordings. From this perspective, DCM represents 
a “mathematical microscope” and can assess local 
synaptic physiology.

Together, these dynamic descriptions, comprising 
coupled nonlinear differential equations, form a 
mathematical state space. These states describe 
the dynamic elements of a neural mass, such as 
fluctuations in membrane depolarization. Thus, 
the states of the neuronal model evolve over time 
according to the value of a set of neuronal parameters. 
These parameters include the strength of intrinsic 
connections within each region, the strength of 
extrinsic connections, and parameters controlling 
synaptic adaptation (namely, synaptic time 
constants) (Fig. 1). A forward-observation model is 
then required to transform these depolarizations into 
the observed EEG or MEG output.

Forward Models, Model 
Comparison, and Hypothesis 
Testing
Forward models in these DCMs comprise a 
linear mixture of depolarizations, which are then 
transformed via a parameterized lead field into scalp-
level or sensor-level data (Fig. 2). This mapping 
can accommodate different lead fields that depend 
on the imaging modality (e.g., invasive LFPs or 
noninvasive EEG and MEG). Since dendrites of 
interneurons are roughly symmetrically positioned 
around the cell body, whereas dendrites of pyramidal 
cells align tangentially to the cortical surface, 
the net dipolar output is modeled primarily as the 
output of these pyramidal subpopulations.This 
fully parameterized generative model can then 
recapitulate electrophysiological data.

An inversion routine can then be applied to a 
particular model given empirical EEG/MEG or LFP 
recordings. The inversion routine is central to the 
utility of these neural masses and is a fundament 
of DCM methodology. So far, we have outlined a 
generative model of electrophysiological data. DCM 
is designed to map backward from real measured 
responses to the underlying neuronal generators 
(Fig. 2). This inverse mapping or model inversion 
provides an estimation of the model parameters that 
are conditional on a given set of data. In DCM, this 
procedure is prescribed by a variational scheme, which 
optimizes the conditional density of parameters under 
a fixed-form (Laplace) assumption. This optimization 
entails using the expectation maximization method 
to maximize a free-energy bound on the log evidence. 
The inversion scheme requires both a form for the 
observation noise (to produce a likelihood function 
of the modeled parameters) and prior probabilities 
based on model parameters. These priors are 
specified in terms of a prior mean and variance (the 
prior variance determines how far the parameter 
can move from its prior mean during inversion). 
Parameters that have been investigated empirically, 
such as the time constants of different receptors, are 
ascribed relatively small prior variance. In contrast, 
flat (higher variance) priors are used for effective 
connectivity measures to ensure that their posterior 
estimates are determined primarily by the data.

Once optimized, the inversion routine returns 
both an approximation to the log-model evidence, 
known as the “free energy,” and a set of posterior 
or conditional model parameters. The first of these 
is used to assess competing hypotheses about the 
structure of a model, independent of their parameters. 
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This is used to identify the most plausible architecture 
subtending observed responses. Individual parameter 
posteriors can then be investigated to assess relative 
contributions to network dynamics or to compare 
across populations (e.g., using an identical model 
but fitted to data from healthy controls and a 
pathological cohort).

DCM for ERP and DCM for  
Cross-spectral Densities
Both DCM for ERPs (Kiebelet al., 2006) and 
DCM for cross-spectral densities (Moran et al., 
2009) utilize the neural mass models outlined 
above to describe activity within a region in a 
cortical network. For ERPs, exogenous inputs, 
timed according to experimental stimuli, serve 
as the input to the deterministic state equations 

of the neural masses.This input is represented as a 
thalamic input volley, with the form of a delayed (by 
a few tens of milliseconds) narrow Gaussian impulse 
function. This can be entered into plausible cortical 
nodes from whose extrinsic efferent dynamics will 
propagate throughout connected nodes in the 
modeled network. The inversion procedure will then 
determine how parameters are weighted (including 
biophysical and forward parameters) to best fit the 
empirical scalp, sensor, or electrode ERPs.

Cross-spectral densities are modeled in the same 
way, with the exception of specific exogenous inputs. 
Instead, a mixture of parameterized white and 
pink noise components provides the input to the 
neural mass equations. This system of differential 
equations is linearized around a fixed point, to 
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Figure 1. A neural mass model used in DCM for EEG to represent an active brain region. This 4-subpopulation model uses Mor-
ris Lecar–type differential equations to describe the time evolution of current and conductance states at different cell types. Cells 
can possess AMPA, GABAA, and NMDA receptors with ion-channel time constants (1/κ). Layers and regions are connected with 
strengths parameterized by γ. Vrev are reversal potentials for ions through these channels, and Vthreshold is the threshold potential. 
The neuronal architecture comprises interconnected neuronal subpopulations, including inhibitory interneurons and pyramidal 
cells (supragranular and infragranular layers) and spiny stellate cells (granular layer IV). Pyramidal cells send signals to regions 
outside of the neural mass. These deliver forward signals (from superficial layer) and backward signals (from deep layers). The 
spiny stellates, in turn, receive extrinsic forward connections, while the inhibitory cells and superficial pyramidal cells receive 
extrinsic backward connections.
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domain. This linearization allows one to compute 
the transfer function mapping from the endogenous 
(neuronal) fluctuations to the scalp, sensor, or 
electrode data. This transformation assumes that 
the system operates in a stationary regime, with 
fluctuations around a stable fixed point. The DCM 
for CSDs also returns coherence, covariance, and 
phase lags at the level of neuronal sources and the 
scalp or sensor level.

DCM for Induced Responses and 
DCM for Phase Coupling
DCM for IRs (Chen et al., 2008) and DCM for PHA 
(Penny et al., 2009) are based on identical principles 
to those outlined above. These comprise the 
description of a generative model and the description 
of priors on model parameters, and Bayesian model 
inversion. These DCMs are distinct from DCM for 
ERPs and DCM for CSDs in two ways. The first 
difference is that they do not explicitly describe a 
neurobiological architecture in the generative model; 
instead, they prescribe an abstracted mathematical 
form that is flexible enough to accommodate highly 
nonlinear generative mechanisms. The second 
difference is that data are modeled directly in source 

space, so they require preliminary source localization 
and time-series extraction.

Frequency-to-frequency interactions are a popular 
topic in human electrophysiological research. For 
example, it arises when assessing whether alpha spectra 
suppress other spectral features locally or at different 
regions of the brain. This type of hypothesis can be 
addressed formally using a DCM for IR, in which a full 
time-frequency interaction can be deconstructed using 
a model of connected brain nodes. DCMs for IR show 
spectral dynamics in terms of a mixture of frequency 
modes obtained from source space with singular value 
decomposition. The differential equations employed 
in this routine represent the time evolution of energy 
interactions across all frequencies, where linear or 
nonlinear source interactions can prescribe within- 
and between-frequency empirical effects.

To understand how regions of the brain may become 
phase-locked or drift out of phase, DCM for phase 
coupling optimizes a generative model comprising 
weakly coupled oscillators. These sets of differential 
equations describe how the phase of one region 
(modeled as an oscillator) influences the change 
of phase of another. These time-evolving phase 

couplings are described in terms 
of a Fourier series to any order. 
Given empirical data series from 
EEG/MEG or LFP, a Hilbert 
transform of source-space time-
series data (band-passed to a 
frequency of interest) reveals 
how networks interact in that 
spectral domain. This is an 
increasingly studied principle 
of cortical organization, one 
prominent example being the 
investigation of hippocampal-
based network interactions in 
theta and gamma bands.

Conclusion
The DCM approach to analyzing 
electrophysiological data takes 
advantage of the large and rich 
body of literature surrounding 
neural physiology and neuronal 
codes. It is an informed analysis 
method that allows us to formally 
address how our EEG/MEG/LFP 
data could have been generated 
by the brain.

© 2013 Moran

Figure 2. Elements of the DCM framework. Generative models (physiological for DCM 
for ERP/CSD and phenomenological for DCM for IR/PHA) produce a repertoire of 
empirical recordings. A particular data set acquired in humans (or animals) can then 
be fitted to these models using a variational Bayesian inversion, to reveal the density of 
model parameters conditional on those particular data.
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Introduction
By noninvasively measuring electromagnetic signals 
ensuing from neurons, magnetoencephalography 
(MEG) and electroencephalography (EEG) are the 
only noninvasive human brain imaging tools that 
provide submillisecond temporal accuracy. In this 
way, they help to unravel precise dynamics of brain 
function. Functional magnetic resonance imaging 
(fMRI) provides a spatial resolution in the millimeter 
scale, but its temporal resolution is limited because 
it measures neuronal activity indirectly by imaging 
the sluggish hemodynamic response. In contrast, 
MEG and EEG measure the magnetic and electric 
fields that are directly related to the underlying 
electrophysiological processes and can thus attain 
their high temporal resolution.

Processing MEG or EEG data to obtain accurate 
localization of active neural sources is a complicated 
task. It involves numerous steps: signal denoising; 
segmenting various structures from anatomical MRIs; 
numerical solution of the electromagnetic forward 
problem; a solution to the ill-posed electromagnetic 
inverse problem; and appropriate control of multiple 
statistical comparisons spanning space, time, and 
frequency across experimental conditions and groups 
of subjects. This complexity not only constitutes a 
challenge to MEG investigators but also offers a great 
deal of flexibility in data analysis.

However, thanks to the direct relationship between 
the MEG and EEG signals and the underlying neural 
currents, much insight into these methods can be 
gained by understanding the associated biophysics in 
the context of neurophysiology and anatomy. This 
chapter discusses the relationship of the macroscopic 
MEG and EEG signals and their physiological sources, 
thus providing the foundation for understanding the 
analysis methods applied to estimate the time courses 
of brain activity. It also gives an overview of available 
source estimation methods to help beginners 
understand their underlying assumptions and their 
applicability to particular experimental data.

Sources and Fields
Neuronal currents generate magnetic and electric 
fields according to Maxwell’s equations. This current 
distribution can be described as the primary current, 
the “battery” if you will, in a resistive circuit that 
comprises the head. The postsynaptic currents in 
the cortical pyramidal cells are the main primary 
currents giving rise to measurable MEG/EEG signals. 
In many calculations, the head can be approximated 
with a spherically symmetric conductor; however, 
more realistic head models for field calculations 

can be constructed with the help of anatomical 
magnetic resonance (MR) or computed tomography 
(CT) images.

If we employ the spherically symmetric conductor 
model, the magnetic field of a current dipole can be 
derived from a simple analytic expression (Sarvas, 
1987). An important feature of this sphere model is 
that the result is independent of the conductivities 
and thicknesses of the spherical layers; it is sufficient 
to know the center of symmetry. In contrast, 
calculating the electric potential is more complicated 
and requires full information on conductivity. 
Because radial currents do not produce any magnetic 
field outside a spherically symmetric conductor, MEG 
to a great extent is selectively sensitive to tangential 
sources. EEG data are thus required for recovering all 
components of the current distribution. Since the 
resultant current orientation on the cortex is normal 
to the cortical mantle, MEG is selectively sensitive 
to fissural activity (Fig. 1).

The analytic sphere model provides accurate enough 
estimates for many practical purposes. However, 
when the source areas are located deep within the 
brain or in frontal areas, it is necessary to use more 
accurate approaches (Mosher et al., 1999). Within 
a realistic geometry of the head, the Maxwell’s 
equations cannot be solved without resorting to 
numerical techniques. In the boundary-element 
method (BEM), the electrical conductivity of the 
head is assumed to be piecewise homogeneous and 
isotropic. Under these conditions, electric potential 
and magnetic field can be calculated numerically, 
starting from integral equations that are discretized 
to linear matrix equations (Hämäläinen and Sarvas, 
1989; Mosher et al., 1999).

The conductivity of the skull is low; therefore, 
most of the current associated with brain activity is 
limited to the intracranial space. A highly accurate 
model for MEG is obtained by considering only one 
homogeneous compartment bounded by the skull’s 
inner surface (Hämäläinen and Sarvas, 1989). The 
boundary-element model for EEG is more complex 
because at least three compartments need to be 
considered: the scalp, the skull, and the brain.

It is also possible to employ the finite-element method 
(FEM) or the finite difference method (FDM) for 
solving the forward problem. The solution is then 
based directly on the discretization of the Poisson 
equation governing the electric potential. In this case, 
any three-dimensional conductivity distribution and 
even anisotropic conductivity can be incorporated. 
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Thanks to improvements to computational methods, 
FEM approaches are being introduced into routine use 
in source modeling algorithms that require repeated 
calculation of the magnetic field from different source 
distributions (Wolters et al., 2004).

As discussed above, MEG signals can be computed 
to a high level of accuracy without referring to the 
particular electrical conductivity values within the 
head. Therefore, MEG is likely to provide more accurate 
estimates of the current strengths than EEG. Combined 
with information about the feasible current densities on 
the cortex (Okada et al., 1997; Murakami et al., 2002), it 
is thus possible to infer the sizes of the activated cortical 
areas. These current density estimates are in the range 
of 0.1–1.0 nAm/mm2, translating a typical 20 nAm 
current dipole observed in MEG/EEG to 
a cortical area of 20–200 mm2.

Sensitivity 
Characteristics of MEG 
and EEG
In general, electric and magnetic 
fields decay as a function of distance 
from the underlying sources. However, 
other important factors affect the 
sensitivity of MEG and EEG to activity 
in different brain structures. These 
factors include the organization of the 
active cell assemblies, effects of the 
almost spherical symmetry of the head, 
macroscopic spatial cancellation effects, 
and extent of temporal coherence of 
the source activity.

As shown in Figure 1, the cortex has 
a cellular organization favoring the 
generation of strong MEG and EEG 
signals: The pyramidal cells are oriented 
in parallel and normal to the cortical 

mantle, making it possible for 
the electromagnetic fields from 
postsynaptic currents in individual 
cells to add up constructively 
to produce measurable fields. 
Such inference is much more 
difficult to make for small deeper 
structures, even though it has 
been clearly shown that both 
EEG and MEG signals can be 
produced, for example, by the 
brainstem nuclei (Parkkonen et 
al., 2009). Using simulations, it 
also has been shown that, in the 
absence of simultaneous cortical 
activity, hippocampal activity can 

be detected with standard source localization methods 
(Attal and Schwartz, 2013). The same study also found 
that it is possible to detect weak thalamic modulations 
of ongoing activity. Furthermore, MEG has provided 
insights into the specific dissociated neural pathways 
involved in emotion and face perception, including 
sources in both the cortex and the amygdalae (Hung 
et al., 2010).

It is important to note that since the spherically 
symmetrical conductor model well approximates the 
computation of MEG/EEG, the overall conclusion 
regarding the relative sensitivities of the two methods 
remains valid even in a more realistic head model. 
Figure 2 illustrates the distribution of MEG and EEG 
sensitivity across the cortex when the signals are 
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Figure 1. Principal orientation of primary currents on the cortex (left). Differential sen-
sitivity of MEG and EEG in the presence of cortical folding (right).

Figure 2. The power of the MEG (left) and EEG (right) signal patterns mea-
sured with 102 magnetometers (left) and 60 EEG electrodes (right) generated 
by current sources normal to the cortex. The maximal value of each distribu-
tion is normalized to unity, i.e., the scale bars show fractions of the maximum 
value. Notice the strong contribution that sources at the crests of the gyri 
make to EEG and the steep falloff of the MEG signal with depth.
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computed using a three-compartment BEM rather 
than the sphere model. MEG indeed appears almost 
blind to sources at the crests of the gyri and those at 
the bottom of the sulci, whereas EEG receives a very 
strong contribution from the radially oriented gyral 
sources. This discrepancy means that the signal-to-
noise ratio (SNR) of EEG for activity in the sulci is 
likely to be lower than that of MEG. In a study by 
Goldenholz et al. (2009), theoretical calculations 
were further supported by evidence from observations 
of variable SNRs of epileptic spikes as a function of 
their location of origin. Figure 2 also clearly shows that 
deep sources are more weakly reflected in MEG than 
in EEG. However, as discussed in Attal and Schwartz 
(2013) and supported by the evidence of MEG being 
able to detect signals from the deeper structures 
discussed earlier, the SNR of MEG and that of EEG 
may be more similar than generally thought.

Because the cortex is heavily folded, MEG and 
EEG signals originating from the synchronous 
activation of a large region of cortex probably suffer 
from cancellation effects due to different source 
orientations being present. These spatial cancellation 
effects were recently studied in detail (Ahlfors et al., 
2010). The results indicate that both MEG and EEG 
signals are strongly attenuated because of cortical 
folding. Also, this attenuation is more significant in 
MEG than in EEG, when a large ensemble of patches 
at different locations of the cortex is considered. 
The reason for the latter difference is most likely 
the contribution that radial sources make to EEG. In 
particular, if the activated patch includes a crest of 
a gyrus and walls of fissures symmetrically on both 
sides of it, the MEG signals arising from the fissural 
cortex are canceled out, while the EEG signals 
arising from the radially oriented currents remain. 
This phenomenon is illustrated in Figure 3, which 
simulates the signals arising from the activation of a 
large patch in the parietal cortex, covering both walls 
of fissures. The EEG signals indicate the presence 
of radial currents at the activated site, whereas 
MEG detects only minor tangential sources in the 
“outskirts” of the activated patch.

The Equivalent-Current Dipole 
Models
The goal of the electromagnetic inverse problem is 
to estimate the source-current density underlying 
the MEG or EEG signals measured outside the head. 
Unfortunately, the primary current distribution 
cannot be recovered uniquely, even if the magnetic 
field and/or the electric potential were precisely 
known everywhere outside the head (Helmholtz, 
1853). However, it is often possible to use additional 

anatomical and physiological information to 
constrain the problem and to facilitate its solution. 
One approach is to replace the actual current sources 
by equivalent generators that are characterized by a 
few parameters. A unique solution for the parameters 
may then be obtained from the measured data by a 
least squares fit. Figure 4 illustrates the concept of 
the equivalent-current dipole (ECD) source. In this 
simulation, an extended patch of cortex near the left 
auditory cortex was activated, and the ECD was fitted 
to the simulated data. The location of the dipole 
matches the site of activation well, even though the 
information of the actual extent is naturally lost.

In the time-varying dipole model, first introduced to 
the analysis of EEG data (Scherg and von Cramon, 
1985; Scherg, 1990), an epoch of data is modeled 
with a set of current dipoles whose orientations and 
locations are fixed but whose amplitudes are allowed 
to vary with time. This approach corresponds to the 
idea of small patches of the cerebral cortex or other 
structures being activated simultaneously or in a 
sequence. As noted, the precise details of the current 
distribution within each patch cannot be revealed by 
the measurements, which are performed at a distance 
in excess of 3 cm from the sources.

Overcoming Challenges of MEG/EEG Data Analysis: Insights from Biophysics, Anatomy, and Physiology
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Figure 3. MEG (a) and EEG (b) signal distributions arising from 
the activation of a patch of parietal cortex. In a, the red and blue 
contours indicate magnetic emerging and entering the head, 
respectively, while in b, red and blue indicate the positive and 
negative potential values. The corresponding minimum-norm 
current estimates were computed with a cortical constraint and 
are visualized in an inflated view of the cortex in c and d. The 
activated area is shown with green shading. EEG shows activity 
in cortex with radially oriented currents (light gray areas), whereas 
the MEG-visible currents in the fissures are largely invisible owing 
to cancellation between the opposite walls of the sulci.
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Distributed Source Models
An alternative approach to source modeling is to 
assume that the sources are distributed within a 
volume or surface (often called the source space) and 
then to use various estimation techniques to find out 
the most plausible source distribution. The source 
space may be either a volume defined by the brain 
or restricted to the cerebral cortex, determined from 
MR images (Dale et al., 1999). These techniques 
can provide reasonable estimates of complex 
source configurations without having to resort to 
complicated dipole-fitting strategies.

Inverse solutions that result in a source distribution 
are commonly referred to as “imaging methods.” This 
nomenclature is motivated by the fact that the current 
estimate explains the data and can be visualized 
as an image or a sequence of images. If the sources 
are limited to the cortex, their orientations can be 
aligned with the estimated cortical surface normals 
(Dale and Sereno, 1993). In this case, only the dipole 
amplitudes need to be estimated. Alternatively, the 
orientations can be considered unknown, in which 
case both amplitudes and orientations need to be 
estimated at each spatial location.

One of the challenges for distributed inverse methods 
is that the number of dipoles by far exceeds the number 
of MEG/EEG sensors. Therefore, a priori constraints 
based on the likely characteristics of the actual source 
distributions are necessary. Common priors are based 
on the Frobenius norm and lead to a family of methods 
generally referred to as minimum-norm estimates 
(MNEs) (Hämäläinen and Ilmoniemi, 1984). MNEs 
can be converted into statistical parameter maps, 
which take into account the noise level, leading to 
noise-normalized methods such as dSPM (dynamic 
statistical parametric mapping) (Dale et al., 2000) 

or sLORETA (standardized 
low-resolution electromagnetic 
tomography) (Pascual-Marqui, 
2002).

Although these methods have 
clear benefits, including simple 
implementation and robustness to 
noise, they do not take into account 
the natural assumption that only 
a few brain regions are typically 
active during a task. Interestingly, 
this latter assumption is exactly 
what justifies the use of discrete 
dipole-fitting methods. In order 
to promote such focal or sparse 
solutions within the distributed 
source model framework, one uses 
sparsity-inducing priors (Matsuura 

and Okabe, 1995; Uutela et al., 1999). However, if 
such priors are applied time point by time point (using 
minimum-current estimates, or MCEs), it becomes 
challenging to obtain consistent estimates of the 
source orientations as well as temporally meaningful 
source waveforms.

In order to promote spatiotemporally coherent 
focal estimates, several publications have proposed 
constraining the active sources to remain the same 
over the time interval of interest (Friston et al., 2008; 
Ou et al., 2009; Wipf and Nagarajan, 2009; Gramfort 
et al., 2012). The implicit assumption then becomes 
that the sources are stationary. This conjecture is 
reasonable for short time intervals. However, it is not 
a good model for realistic source configurations where 
multiple transient sources activate sequentially or 
simultaneously during the analysis period before 
returning to baseline at different time instants.

We recently addressed the problem of localizing 
nonstationary focal sources from MEG/EEG data 
using appropriate sparsity-inducing norms (Gramfort 
et al., 2013). Extending the work from Gramfort et 
al. (2012) in which we coined the term “mixed-norm 
estimates” (MxNEs), we proposed in Gramfort et al. 
(2013) to use mixed norms defined in terms of the 
time-frequency decompositions of the sources. We 
called this approach the time-frequency mixed-norms 
estimates (TF-MxNE). The benefit of this modification 
is that the estimates of nonstationary sources can be 
obtained over longer time intervals while making 
optional standard preprocessing (e.g., filtering or time-
frequency analysis of the sensor signals).

Figure 5 summarizes the spatiotemporal character-
istics of different distributed source estimates. The 
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Figure 4. An equivalent-current dipole (green dot) corresponding to an activated 
patch of cortex (red shading). A, anterior; R, right; S, superior.
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MNE solutions and statistical maps derived there-
from exhibit nonzero activity at all time points and 
spatial locations. Therefore, the extents of the ac-
tivity depend on the statistical thresholding applied. 
The MCE solution is a sparse estimate computed 
separately at each time point and, therefore, spatial 
consistency across time is not warranted. The MxNE 
solution posited by Ou et al. (2009) and Gramfort et 
al. (2012) shows consistent locations of activity, but 
the source amplitudes are nonzero at all time points. 
Finally, the TF-MxNE solution is sparse in space and 
locally smooth in time/frequency but allows for non-
stationarity of the sources on the global time scale.

Conclusions
Since the relationship of MEG or EEG signals and their 
sources is fully governed by the Maxwell’s equations, 
the signal distributions arising from given cerebral 
sources can be simulated accurately. These simulations 
give several insights into the characteristics of MEG 
and EEG. For example, MEG is less sensitive to the 
actual electrical conductivities within the head, and 
EEG and can thus provide more accurate estimates 
of the source strengths than can MEG. Furthermore, 
although MEG receives weaker contributions from 
deep sources within the brain than EEG, the SNRs of 
MEG and EEG may actually be similar. The similarity 
derives from the strong EEG signals arising from very 
superficial cortical activity; these signals, in turn, are 
filtered out from MEG owing to the radial orientation 
of the corresponding sources.

The ambiguity of the inverse problem has been 
often cited as a major drawback of both EEG and 
MEG. Both methods thus have had to rely on a 
restrictive source model, making the analysis rather 
difficult for a beginner. It is also perhaps confusing 
to find that several competing source models are 
available, and sometimes, the authors introducing 
them are not clear enough about stating the 
underlying assumptions and their consequences for 
data interpretation. Fortunately, constraints for the 
inverse problem can be obtained from other imaging 
modalities, in particular, anatomical MRI.

We expect in the future major developments 
in efficient and automated MEG/EEG analysis 
methods, novel experimental paradigms to fully 
utilize the benefits of MEG/EEG, and reliable 
routines to combine MEG/EEG with other imaging 
modalities. We anticipate that such approaches will 
significantly increase our understanding of human 
brain functions, especially their temporal dynamics 
and the interactions between cortical regions and 
deeper structures involved in perception, cognition, 
and action.
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Introduction
Traditional analyses of functional magnetic resonance 
imaging (fMRI) data compare mean blood-oxygen-
level–dependent (BOLD) activations during different 
tasks to determine where brain activation differences 
occur. More recently, the patterns of activation within 
regions of the brain have been studied with keen 
interest. In them, the input patterns consist of either 
the test statistics or the activation estimate magnitudes 
associated with a task over space (Haxby, 2001; 
Carlson et al., 2003; Pereira et al., 2009; Kriegeskorte 
et al., 2008; Kriegeskorte, 2011). The two most 
common pattern analyses are multivariate pattern 
classification analyses and pattern similarity analyses, 
which are commonly referred to as representational 
similarity analyses (RSAs).

Multivariate pattern classification analyses use 
activation patterns, either over the entire brain or 
within a region of interest (ROI). They use a cross-
validation approach, where part of the data is used 
to train a model that discerns between different task 
patterns; then, this fitted model is used to predict 
the task associated with another set of independent 
patterns, ignoring their labels. The performance of the 
model is assessed by the accuracy of the predictions. 
The models used include regularized logistic regression 
and support vector machine-based classification 
algorithms (Carlson et al., 2003; Pereira et al., 2009). 
RSAs correlate activation patterns over space with 
different tasks to assess the similarity in activation 
patterns. One can then compare the RSA values, which 
consist of all possible pairwise correlations between 
tasks, across different regions of interest and between 
different imaging modalities (Kriegeskorte et al., 2008; 
Kriegeskorte, 2011). For example, in Kriegeskorte 
et al. (2008), RSA-based networks were used to 
compare human and primate network similarities. The 
activation patterns used in classification and similarity 
analyses can be based on estimates for individual trials, 
as well as windows of time surrounding a trial, and be 

aggregated over many trials (Xue et al., 2010; Mumford 
et al., 2012; Turner et al., 2012).

Because RSA analyses are a newer type in the field, 
the methods for data analysis have not yet been 
perfected. The focus here is on RSA analyses that use 
single-trial activation patterns to generate similarity 
matrices. For example, a single run of the paradigm 
might include presenting images of 30 faces and 30 
houses, and the goal is then to compute a 60 × 60 
similarity matrix to be used in the analysis. This type 
of approach has been used in the past for designs in 
which the trials are temporally spaced (Kriegeskorte 
et al., 2008; Jenkins and Ranganath, 2010; Xue 
et al., 2010; Ritchey et al., 2012). Recent work 
has developed methods for obtaining single-trial 
parameter estimates for faster event–related designs 
that have improved performance in classification 
based analyses (Mumford et al., 2012). Therefore, it 
is only natural that these models be used in RSA-
based analyses. This chapter discusses the methods 
for obtaining single-trial parameter estimates as 
well as possible problems that can arise when these 
estimates are used in RSA analyses.

Modeling Single-Trial Activation 
Patterns
Obtaining single-trial parameter estimates can be 
difficult in studies where the stimuli are presented 
with a short interstimulus interval (ISI). This is 
because the blurring and delayed nature of the 
BOLD fMRI signal makes it difficult to isolate a 
signal that is unique to a specific trial. Previous work 
introduced a new approach for estimating single-trial 
parameter estimates in fast event–related designs: 
using a separate model for each trial and iteratively 
estimating the pattern for each trial separately. This 
method is referred to as least squares single (LSS) and 
is illustrated in the right panel of Figure 1 (Mumford 
et al., 2012). This method was shown to produce less 

Figure 1. Model illustration for LSA and 
LSS. In both cases, trial-specific activations 
are estimated for each of 10 trials, and the 
model is run in a voxelwise fashion. The left 
panel shows LSA, which estimates all trials 
simultaneously in a single regression, and the 
estimates β1, …, β10, which represent the 
activation magnitudes for each trial. The right 
panel shows LSS, where each trial's activation 
is estimated in a separate model. The first 
regressor represents the trial of interest, and 
the two additional regressors model the 
remaining trials according to trial type (in this 
case, two). Only the estimates for the first 
parameter are retained from each model.
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NoTeS variable estimates than the more standard approach, 
which estimates all trials simultaneously in a single 
model. The standard approach is referred to as least 
squares all (LSA) and is illustrated in the left panel 
of Figure 1. Although the behavior and performance 
of LSS and LSA estimates were studied within the 
context of pattern classification analyses, they have 
not been studied within the RSA setting.

Factors That Influence RSA 
Measures
Noise differences
Since the RSA measure is based on correlations 
between activation patterns, it is susceptible to noise 
differences. For example, if similarity matrices are 
obtained for multiple ROIs, and one is interested in 
studying the correlation of the RSA matrices between 
ROIs (Kriegeskorte et al., 2008; Diedrichsen et al., 
2011), then noise variations between regions can 
induce false-positive differences. For example, if one 
region has noisier data than another, but the theoretical 
correlations of the within-region RSA are identical 
for the two regions, then the noisier region will have 
smaller RSA values than the other. This problem was 
discussed by Kriegeskorte et al. (2008), who concluded 
that a rank-based correlation is necessary to avoid 
correlation magnitude differences when comparing 
RSAs between regions. It was also addressed by 
Diedrichsen et al. (2011), who used a random-effects 
model to estimate the RSA correlations within 
regions, adjusting for noise differences. Theoretically, 
this method would allow for directly comparing RSA 
values between regions, because it would remove any 
biases induced by noise differences.

Variability differences
Although spatial noise differences and their impact 
on RSA estimates have been studied, variability 
differences across trial pattern estimates also can 
induce false-positive RSA differences within a 
region of interest. For example, assume that a study 
has 30 presentations of each of two trials (type 1 and 
type 2). The T1 trials have a longer duration than 
the T2 trials, and the RSA study of interest is how 
the distributions of within-trial RSA values compare 
between these two trials. It is well known that 
longer trials yield more efficient estimates of BOLD 
activation when using the general linear model 
(GLM), so trial A will have less variable activation-
pattern estimates than trial B (Smith et al., 2007). 
Even if the true within-trial correlation were 
identical for both trial types, the higher variability 
in T2’s estimates would lead to within-trial RSA 
values lower for T2 than for T1. This is not the only 
case where variability differences may occur between 
trials, within a region of interest. If the ISI (duration 
of the baseline task surrounding each trial) differs 
between trials, shorter trials will also have noisier 
activation-pattern estimates.

Model influence 
A less studied phenomenon is how the model itself 
can determine correlations between activation 
patterns. This is the case for both LSS and LSA 
methods for obtaining activation patterns for single 
trials. Figure 2 illustrates the true RSA values 
between 60 trials (the first 30 trials are type 1 and 
second set of 30 are type 2), where a correlation of 0 
is assumed between all trials, and the ISI is equal for 
all trials and 2 s on average (left panel). The middle 
and right panels show the theoretical correlations 

© 2013 Mumford

Figure 2. RSA estimate comparisons for the null case. The run consisted of 20 trials, each 2 s long with a random ISI between 
2 s and 4 s. There were two trial types: 30 of trial type 1, followed by 30 of trial type B. Trials are ordered in the matrices as they 
were presented in time, starting from trial 1 (bottom left corner) to trial 60 (top right corner). Each cell in the matrix corresponds 
to the correlation between activation patterns between two trials. The left panel illustrates the true RSA, which in this case of the 
null is set to an identity matrix (1s on diagonal and 0s elsewhere). The middle and left panels are the LSA- and LSS-based RSA 
matrices that were theoretically derived.
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between the activation patterns when using LSA 
and LSS, respectively. In these graphs, the trials are 
ordered temporally from first to last, from the bottom 
left corner to the top right corner of the plot. The 
first off-diagonal of the plot, therefore, indicates the 
lag 1 correlations between trials.

As this figure shows, for both LSS and LSA, there is 
a bias in the lag 1 correlation. In LSS, trials that are 
temporally adjacent (lag 1) are anticorrelated, since 
the collinearity in the model pushes the estimate of 
one trial in the opposite direction of its collinear 
neighbors. In contrast, LSA has a positive bias that 
occurs because the trials are modeled separately and, 
hence, are not adjusted for each other statistically 
and thus describe similar parts of the data. LSS shows 
a blocked pattern caused by a collinearity effect in 
the LSS model that occurs when the neighbors of a 
trial match each other, but not necessarily the trial in 
the middle. This causes a weak negative correlation 
between that trial and all trials of the neighbors’ type, 
owing to a collinearity between the single trial and 
the nuisance regressor for the trial of the neighbors’ 
type. The fact that trials are blocked in Figure 2 causes 
a weak negative correlation between all trials of the 
same type, though correlations between trial types 
are comparatively more positive—a counterintuitive 
result. These patterns are described in more detail for 
a variety of trial orderings and ISI durations below.

Trial order and ISI duration
A series of simulations were used to study how the 
patterns in Figure 2 vary as a function of the ordering 
of the trials and the ISI duration. Trials were either 
blocked (all trial 1, followed by all trial 2), alternated 
(T1, T2, T1, etc.), or randomly generated for each 

run. Situations where the ISIs matched between 
trials and when the ISI was longer for T2 were 
investigated. The ISIs were randomly drawn from 
continuous uniform distributions, where U(a,b) 
represented random draws between a and b. The TR 
used in the simulations was 2 s.

To start, the behavior of the correlation as a function 
of lag was estimated. Figure 3 shows the mean 
correlation as a function of lag for ISIs ranging 
between 2 s and 7 s, where ISIs matched for the 
two trial types. The left panel shows the patterns 
for LSA, in which for an ISI of 2 (red line), the 
correlation alternates between negative and positive. 
This pattern results from collinearity pushing 
neighboring trials in opposite directions. Thus, at a 
lag of 1, the correlation would be negative, but at a 
lag of 2, there is a positive correlation (since both 
trials would be pushed in the same direction by their 
common collinear neighbor). This effect diminishes 
as the ISI increases, since the collinearity problem 
is reduced. Even so, the mean correlation is never 
the true correlation of 0 but hovers around 0.1—the 
result of the influence of the model itself.

The LSS model shows positive correlations for early 
lags owing to the overlap in the trials, which are not 
statistically adjusted for each other and hence describe 
the same variability in the data. The dip around a lag 
of 3 when the ISI equals 2 results from the peak of one 
trial meeting the poststimulus undershoot of another, 
a difference of approximately 6 s.

The results in Figure 4 compare within-trial correlations 
(red and green) to between-trial correlations (blue) 
when the ISIs match and when T2’s ISIs are longer 

Considerations When Using Single-Trial Parameter Estimates in Representational Similarity Analyses
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Figure 3. Averaged correlations as a function of lag for LSA (left) and LSS (right) for varying ISIs when trials are blocked. LSA 
tends to alternate between positive and negative due to collinearity; in contrast, LSS tends to have high positive correlations at 
early lags, followed by a negative correlation when the peak of one trial meets with the poststimulus undershoot of another trial.
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for blocked (left), alternating (middle), and random 
(right) trial orderings. Significantly, in the random 
setting (right), each run had a different randomization. 
The top row shows the LSA results, and the bottom 
shows LSS ones. The alternating blocked designs 
illustrate that, even with the ISIs matching, the 
within-trial correlations are not comparable with the 
between-trial correlations. In the alternating LSA, 
the within-trial correlations are larger; in the blocked 
case, they are smaller, as noted in Figure 1. When the 
ISIs differ between trials, there is not much impact in 
the alternating case since, on average, each trial has 
the same amount of fixation or rest on either side of 
it. In both the blocked and random cases, the second 
trial type will always have more fixation surrounding 
it, which decreases the collinearity problem for trials 
of type 2, removing some bias in the correlation 
estimate. The only case where the correlations are 
comparable for both LSA and LSS is when the ISIs 
match and the trial order is randomized.

Randomly ordering trials and matching the ISI 
seem to be key for both LSS and LSA; however, 
it is important that the trials be randomly ordered 
for each run of the analysis. In reality, it is common 
to generate one or two trial orderings found to be 
efficient for the design and to use these for all subjects. 
But when this is done, slight biases in ISI may occur. 

In 100 simulated data sets with 40 subjects in each 
study, more than half of the data sets exhibited 
a statistically significant difference between at 
least one of the pairwise comparisons (within T1 
versus within T2; within T1 versus between T1/
T2; or within T2 versus between T1/T2). Figure 5 
illustrates the distribution of RSA values for a single 
one of these simulated data sets. It shows that the 
within-T2 correlations are significantly larger than 
both within-T1 and between-T1/T2 ones. Although 
the magnitude of the difference is quite small, it is 
common to look only at the p values of these tests, so 
this would not be taken into consideration.

Possible Remedies and 
Considerations
One possible fix for this problem is to compute RSA 
matrices by using comparisons of patterns estimated 
with different models. For example, if there are two 
runs of a study for a single subject, correlate only a 
single trial’s pattern from run 1 with trials in run 2. 
Since the biases discussed above were all imposed 
by the models used, this will prevent that bias from 
entering the analysis. Notably, however, this will not 
solve problems where the ISI was not equal across all 
trial types.

© 2013 Mumford

Figure 4. Distributions of within-trial and between-trial correlations for 100 simulated data sets for varying ISI settings and trial 
orderings for LSA (top) and LSS (bottom). The setting of equal ISIs with random trial orderings appears to remove biases, as-
suming that a different randomization is used for each subject.
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Before running a study, it is fairly easy to take the 
proposed paradigm and perform simulations like 
the ones run here to investigate possible biases that 
may enter the analysis. However, using between-run 
correlations should remedy many of the problems. 
What is important is to recognize that paradigms that 
work very well when studying activation magnitudes 
and their differences may not work as well in the 
RSA setting. Although only ISI differences were 
studied here, the same problems would arise if there 
were differences in the duration of the stimuli. Where 
stimulus presentation is controlled by the reaction 
time of the subject, further analysis strategies would 
need to be developed to control for those differences.
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Figure 5. When the same randomization is used across all subjects, unusual patterns can emerge that cause small yet statisti-
cally significant differences in RSA distributions. In this case, the within-T2 similarities appear larger than within-T1 and between-
T1/T2 similarities, when theoretically, they all equal 0.

LSA LSS

0.085

0.090

0.095

0.100

0.105

0.110

0.115

U(2,4)/U(2,4) U(2,4)/U(2,4)
ISI

C
or

re
la

tio
n

Correlation Type
within T1
within T2
btwn T1/T2



© 2013

50

NoTeS Smith S, Jenkinson M, Beckmann C, Miller K, 
Woolrich M (2007) Meaningful design and 
contrast estimability in FMRI. Neuroimage 
34:127–136.

Turner BO, Mumford JA, Poldrack RA, Ashby FG 
(2012) Spatiotemporal activity estimation for 
multivoxel pattern analysis with rapid event-
related designs. Neuroimage 62:1429–1438.

Xue G, Dong Q, Chen C, Lu Z, Mumford JA,  
Poldrack RA (2010) Greater neural pattern 
similarity across repetitions is associated with 
better memory. Science 330:97–101.






