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Introduction

Most cells in an organism have a very similar genome yet mRNA expression (called the expression 
profile) can vary dramatically. These expression differences give rise to specialized cellular phenotypes 
and functioning. As analysis of the proteome is still quite difficult and doesn’t provide high sensitivity, 
analysis of the transcriptome provides a surrogate that can be viewed as the functional potential of the 
cell/tissue. This is the case as a protein can only be made if the RNA is expressed. Characterization of 
expression profiles has evolved and matured over the years moving from Northern Analysis, through 
PCR to microarrays and now the current application of NextGen sequencing (RNA-Seq). RNA-Seq 
methodologies permit sequence characterization and abundance measurements for all RNAs from a 
sample even as small as a single cell, in an unbiased manner. The advent of RNA sequencing (RNA-
Seq) based transcriptomic’s eliminates the requirement to choose sequences for investigation (as with 
PCR or microarray analysis), as there is no need to choose targets or probes. Sequencing can provide 
a greater depth of information regarding transcript variants and gives a more complete picture of the 
transcriptome and in turn cellular phenotype. 

Transcriptomic analysis has provided fundamental insights into cell biology including showing the 
existence of many alternatively and noncanonically spliced mRNAs from multiple genes expressed 
within a tissue sample. These variant splice forms are not limited to exonic coding region differences 
as previously undescribed retained introns have been found for a number of cytoplasmic mRNAs in 
various tissues. It is important to note that these results are not unexpected as much previous data 
on mRNA transcript sequence is based upon the most easily detectable (most abundant) isoforms 
present in cells, which then serve to define what we think of as canonical exons, introns, UTRs and 
gene boundaries. Further, transcriptome analysis has enabled the discovery of large numbers of distinct 
noncoding and small RNAs within tissues including the CNS. The discovery of variant splice forms 
of mRNA and other classes of RNA have encouraged extensive and continuing experimentation into 
the role of these RNAs in cellular function. 

With regard to the CNS, transcriptomic analysis has been used to investigate the impact of behavior 
and drug responsiveness upon normal and disease associated brain and peripheral nerve functioning 
in a variety of organisms. This short course will highlight advances in understanding of CNS function 
enabled by transcriptomic analysis while emphasizing the complexities of data and functional analysis.
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Synapses and Epigenetics in the Alzheimer’s Brain

Correlating Synapse Density with 
Cognitive Status
It has been generally accepted that synapses are the 
best correlate of cognitive status in Alzheimer’s disease 
(AD). This is intuitively appealing because synapses 
provide the mechanisms by which information is 
transmitted from cell to cell, processed, and stored. 
The concept that synapses play a vital role in 
cognition was reinforced by two early quantitative 
studies of the relationship between synapse density and 
cognitive status, both of which yielded correlations of 
approximately +0.7 (DeKosky and Scheff, 1990; Terry 
et al., 1991). However, this result yields an R2 of ~0.50, 
indicating that synapse density accounts for only 50% 
of the variability in cognitive status. This conclusion 
then leads to the question: Where is the missing 50%?

More recent study of the relationship between synapses 
and cognitive scores used unbiased stereological 
methods to quantify total synaptic numbers in lamina 
3 of the inferior temporal gyrus (Scheff et al., 2011). 
The results showed an even lower correlation of +0.5 
between cognitive score (according to the Mini-
Mental State Examination [MMSE]) and synapse 
numbers, yielding an R2 of 0.25. So in this case, synapse 
numbers accounted for only 25% of the variance in 
cognition scores. Where is the missing 50–75%?

There are several potential responses to the question:

(1) The earlier studies did not use methods of 
unbiased stereology, suggesting that researchers 
did not account for the potential effects of 
changes in size of synapses and volume of the 
brain region studied;

(2) It may be presumptuous to consider that synapse 
density in only one brain region could account 
for a behavior as complex as cognitive status; or

(3) The missing percentage can be found in synapses 
that are structurally present but functionally 
impaired.

More recent data have emphasized the complexity 
of relationships between synapses and cognition. For 
example, they have reported a correlation of 0.97 
between delayed nonmatching to sample and size 
of the spine head in thin spines in prefrontal cortex 
area 46 of monkey (Morrison and Baxter, 2012).

Gene Expression in  
Alzheimer’s Disease
A wide range of studies has provided data demonstrating 
impaired expression in AD of genes that play major 
roles in synaptic function. Studies of specific molecules 

in AD have, for example, shown reduced expression 
of dynamin 1 (Yao et al., 2003), which is critical in 
recycling synaptic vesicles, and losses in cholinergic 
receptor systems (Parri et al., 2011), a system that has 
a significant role in memory formation.

Beyond studies of specific molecules in AD, array 
studies have yielded an appreciation of the wide 
range of synapse-related genes whose expression 
is affected in AD (Berchtold et al., 2008; Liang et 
al., 2007, 2008). These studies indicate that a wide 
variety of synaptic gene classes are affected in AD, 
including transmitter receptor systems, transmitter 
synthesizing enzymes, transport systems, synapse 
stabilizing genes, postsynaptic structural genes, and 
ion channels, to name a few. Data such as these show 
coordinated modulation of expression of a wide range 
of genes and raise the question—what mechanism is 
coordinating such a wide variety of changes?

Epigenetic Mechanisms in 
Alzheimer’s Disease
Recent study findings
During early development of an organism, the 
specification of cells and tissues requires the expression 
of large numbers of genes, modulated by epigenetic 
mechanisms in a coordinated fashion to produce 
specified cell types and tissues (Allis et al., 2009; 
Olynik and Rastegar, 2012). The ability of epigenetic 
mechanisms to regulate chromatin structure and, 
consequently, the coordinated expression of large 
gene sets, has motivated a number of studies on the 
role of epigenetic mechanisms in AD.

One of the early demonstrations of a relationship 
between AD and an epigenetic mechanism came from 
the demonstration of reduced expression in AD of 10 
epigenetic markers in layer II neurons of the entorhinal 
cortex (Mastroeni et al., 2010). This study also showed 
that, in the AD brain, neurons bearing neurofibrillary 
tangles (NFTs) showed greater decrements in DNA 
methylation than tangle-free neurons.

An opportunity to eliminate genetic contributions 
from findings of epigenetic differences in AD 
came with an opportunity to examine epigenetic 
differences between a pair of identical twins 
discordant for AD (Mastroeni et al., 2009). The 
male twins of this study were educated together as 
chemical engineers and died within three years of 
each other. The twin with a clinical diagnosis of AD 
showed profuse NFTs and plaques, whereas the other 
twin had only extremely sparse NFTs and plaques. 
Compared with the nondemented twin, the levels of 
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global DNA methylation were significantly reduced 
in the temporal neocortex of the AD twin, who had 
spent much of his career working with pesticides. 
This, as well as other epigenetic studies of identical 
twins (Fraga et al., 2005), points to the pertinence of 
environmental factors affecting the epigenome and, 
consequently, the phenotype.

Evidence from transcript expression
Although the above studies are consistent with a role 
for epigenetic mechanisms in altering the structure and 
function of synapses in AD, they are far from proving 
such a relationship. More detailed information about 
relationships between epigenetic variables and the 
expression of synaptic genes come from determining 
the correlations between expression of synaptic 
transcripts and the expression of selected transcripts 
known to regulate DNA methylation and histone 
acetylations. Selected aspects of these data, taken from 
analysis of an array study of four brain regions in brains 
covering the age range 20–99 years old, have already 
been published (Berchtold et al., 2008).

Figure 1 presents new analysis of data from Berchtold 
et al., 2008. It graphically represents correlations 
between a selection of four transcripts (Fig. 1A–D) 
related to synaptic structure and function (dynamin 1, 
PSD95, AMPAA1, and synaptophysin) and ten selected 
transcripts that play roles in the methylation and 
acetylation actions of epigenetic mechanisms. These 
correlations are shown for four conditions: (1) AD in 
the postcentral gyrus (pcg, a region relatively unaffected 
in AD); (2) AD in the severely affected hippocampus 
(hipp); (3) the postcentral gyrus in nondemented, age-

matched control cases; and (4) the hippocampus in 
nondemented, age-matched control cases.

These data show that the relationship between 
epigenetics and expression of synaptic genes 
depends on both the brain region examined 
and the disease state. In AD, quantification of 
DNA methyltransferase 1 (DNMT1) expression 
in hippocampus and postcentral gyrus shows a 
negative or low correlation with expression of all 
synaptic genes examined. On the other hand, the 
correlations are positive or low in both brain regions 
in age-matched controls. DNMT3a consistently 
yields negative correlations with all four synaptic 
genes, with the exception of age-matched control 
hippocampus, for which the correlations were either 
positive or low (Fig. 1A–D). The differences between 
the correlation patterns of these two DNMTs may 
relate to their presumptive differential functions in 
both de novo and maintenance DNA methylation.

The data for histone deacetylases (HDACs) 1, 2, 6, 
and 9 show varying patterns of correlation between 
expression of synaptic and epigenetic transcripts, 
depending on brain region and disease state. 
However, the histone acetyltransferases (HATs) 
MYST3 and MYST4 are fairly consistent in being 
negatively related to expression of the synaptic genes 
shown. In other words, reduced expression of these 
HATs is associated with increased expression of the 
synaptic genes shown (Fig. 1A–D). This finding 
is inconsistent with the common association of 
acetylation with a more open chromatin structure. It 
also serves to remind us of the potential complexity 

Figure 1. A–D, Four plots that represent correlations (vertical axis) between the expression of 10 epigenetic molecules and 4 transcripts related 
to synaptic structure and function. Four data sets are represented by 4 different colors as shown: Data from AD postcentral gyrus, from AD hip-
pocampus, from age-matched postcentral gyrus, and from age-matched hippocampus. AMPAA1, ligand-gated ion channel, a subclass of glutamate 
receptor; DNMTs, a family of DNA methyltransferases; dynamin1, functions in the recycling of vesicles, especially at the synapse; HDACs, a family of 
histone deacetylases; MYSTs, a family of histone acetyltransferases; PSD95, postsynaptic density 95; synaptophysin, major synaptic vesicle protein.
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of interactions among histone modifications, 
DNA methylations, and other molecules affecting 
transcription at specific sites in the genome.

Another caution against generalizing these data 
is that the initial data came from homogenates of 
selected brain regions. Thus, these data represent 
not only neurons but also glia and vascular cells. 
Also, although more neuron-specific data have 
been derived from laser capture microdissection of 
single neurons (Liang et al., 2008), the amplification 
required for single-cell data may have differentially 
affected the selected genes of interest.

Implications
The correlations shown here do not, of course, 
prove causality. They do, however, offer suggestions 
for further studies, experimental manipulation, and 
potential therapeutic intervention for AD. At the 
same time, they providing a cautionary tale about the 
potential for complex interactions among the many 
epigenetic molecules, specific sites of synapse-related 
genes, brain regions, and disease states.

References
Allis CD, Jenuwein T, Reinberg D. (2009) 

Epigenetics. Cold Spring Harbor, NY: Cold Spring 
Harbor Laboratory Press.

Berchtold NC, Cribbs DH, Coleman PD, Rogers J, 
Head E, Kim R, Beach T, Miller C, Troncoso J, 
Trojanowski JQ, Zielke HR, Cotman CW (2008) 
Gene expression changes in the course of normal 
brain aging are sexually dimorphic. Proc Natl Acad 
Sci USA 105:15605–15610.

DeKosky ST, Scheff SW (1990) Synapse loss in 
frontal cortex biopsies in Alzheimer’s disease: 
Correlation with cognitive severity. Ann Neurol 
27:457–464.

Fraga MF, Ballestar E, Paz MF, Ropero S,  
Setien F, Ballestar ML, Heine-Suñer D, Cigudosa 
JC, Urioste M, Benitez J, Boix-Chornet M, 
Sanchez-Aguilera A, Ling C, Carlsson E,  
Poulsen P, Vaag A, Stephan Z, Spector TD, Wu YZ, 
Plass C, Esteller M (2005) Epigenetic differences 
arise during the lifetime of monozygotic twins. Proc 
Natl Acad Sci USA 102:10604–10609. 

Liang WS, Dunckley T, Beach TG, Grover A, 
Mastroeni D, Walker DG, Caselli RJ, Kukull WA, 
McKeel D, Morris JC, Hulette C, Schmechel D, 
Alexander GE, Reiman EM, Rogers J, Stephan DA. 
(2007) Gene expression profiles in anatomically 
and functionally distinct regions of the normal 
aged human brain. Physiol Genomics 28:311–322.

Liang WS, Dunckley T, Beach TG, Grover A,  
Mastroeni D, Ramsey K, Caselli RJ, Kukull 
WA, McKeel D, Morris JC, Hulette CM,  
Schmechel D, Reiman EM, Rogers J, Stephan DA 
(2008) Altered neuronal gene expression in brain 
regions differentially affected by Alzheimer’s disease: 
A reference data set. Physiol Genomics 33:240–256.

Mastroeni D, McKee A, Grover A, Rogers J, 
Coleman PD. (2009) Epigenetic differences in 
cortical neurons from a pair of monozygotic twins 
discordant for Alzheimer’s disease. PLoS One 
4(8):e6617.

Mastroeni D, Grover A, Delvaux E, Whiteside C, 
Coleman PD, Rogers J. (2010) Epigenetic changes 
in Alzheimer’s disease: Decrements in DNA 
methylation. Neurobiol Aging 31:2025–2037.

Morrison JH, Baxter MG (2012) The aging cortical 
synapse: Hallmarks and implications for cognitive 
decline. Nat Rev Neurosci 13:240–250.

Olynik BM, Rastegar M. (2012) The genetic and 
epigenetic journey of embryonic stem cells into 
mature neural cells. Front Genet 3:81.

Parri HR, Hernandez CM, Dineley KT. (2011) 
Research update: Alpha7 nicotinic acetylcholine 
receptor mechanisms in Alzheimer’s disease. 
Biochem Pharmacol 82:931–942.

Scheff SW, Price DA, Schmitt FA, Scheff MA, 
Mufson EJ. (2011) Synaptic loss in the inferior 
temporal gyrus in mild cognitive impairment and 
Alzheimer’s disease. J Alzheimers Dis 24:547–557.

Terry RD, Masliah E, Salmon DP, Butters N,  
DeTeresa R, Hill R, Hansen LA, Katzman R. 
(1991) Physical basis of cognitive alterations 
in Alzheimer’s disease: synapse loss is the major 
correlate of cognitive impairment. Ann Neurol 
30:572–580.

Yao PJ, Zhu M, Pyun EI, Brooks AI, Therianos S,  
Meyers VE, Coleman PD. (2003) Defects in 
expression of genes related to synaptic vesicle 
trafficking in frontal cortex of Alzheimer’s disease. 
Neurobiol Dis 12:97–109.





© 2012 Russek

Laboratory of Translational Epilepsy

Department of Pharmacology and Experimental Therapeutics

Boston University School of Medicine

Boston, Massachusetts

Mapping the Genomic Pathways That 
Dysregulate Brain Inhibition in Disease

Shelley J. Russek, PhD





15

NOTESIntroduction: The Role of GABA in 
the CNS
GABA is the major inhibitory neurotransmitter 
in the CNS. It activates three different classes of 
receptors: the ionotropic type A receptor (GABAAR) 
and type C receptor (GABAC) and the G protein-
coupled type B receptor (GABAB). In the retina, the 
GABAC receptor regulates fast synaptic inhibition, 
while in the brain, this function is specific to the 
GABAAR (MacDonald and Olsen, 1994; Bormann 
and Feigenspan, 1995; Rabow et al., 1995; Sieghart 
and Sperk, 2002). GABAB receptors are involved in 
slower, more prolonged inhibitory signaling (Jacob, 
et al., 2008).

GABAA receptors
Similar to other members of the ligand-gated 
ionotropic receptor family, such as the nicotinic 
acetylcholine receptor, the GABAAR is defined by 
the assembly of five subunits, as well as the presence 
of GABA and benzodiazepine (BZ) binding sites 
(Choi et al., 1981; MacDonald and Olsen, 1994; 
Chebib and Johnston, 1999). GABAARs mediate fast 
synaptic inhibition by regulating the flow of Cl– ions 
down their concentration gradient into the cell to 
hyperpolarize the postsynaptic neuronal membrane, 
hindering the spread of excitability (Costa, 1998). 
While GABA is an inhibitory neurotransmitter in 
the adult brain, in embryonic and early postnatal 
mammalian hippocampal neurons, synaptically 
released or exogenously applied GABA depolarizes 
and excites postsynaptic membranes via GABAAR 
activation (Cherubini et al., 1991). This excitatory 
response has been attributed to the presence of an 
embryonic chloride transporter (NKCC1 [sodium–
potassium–chloride cotransporter 1]) that increases 
intracellular chloride concentration opposed to 
KCC2, which is expressed in adult neurons and 
extrudes Cl– (Ben-Ari, 2002).

Role in normal development  
and disease
Dynamic changes in NKCC1 expression during brain 
development have recently been associated with 
the critical migration of neuroblasts to their targets 
(Mejia-Gervacio et al., 2011), while misexpressed 
NKCC1 has been implicated in multiple disorders, 
including epilepsy (Palma et al., 2006). Moreover, 
a role for the excitatory function of GABA has 
been proposed for the development of synaptic 
connections, as well as the subsequent plasticity and 
establishment of key neuronal networks dysregulated 
in developmental disorders such as autism (Kriegstein 
and Owens, 2001).

GABA plays a highly significant role in both the 
developing nervous system, the adult brain, and 
the compromised brain (as reflected in multiple 
disease states). As a result, our laboratory has had a 
longstanding interest in identifying specific protein–
DNA interactions that regulate the transcription of 
unique GABAAR subunit genes (GABRs) and critical 
GABAAR-associated proteins. Our investigations 
are meant to shed light on the genome response 
that shapes both present and future affective and 
cognitive behavior.

The GABAAR Genome and Its Gene 
Products
GABAAR subunits
In mammals, GABAAR subunits are divided into 
seven subunit classes based on sequence homology; 
including α1-6, β1-3, γ1-3, δ, ε, θ, and π (Rabow et 
al., 1995). Although the majority of genes coding for 
multi-subunit receptor families lie scattered in the 
genome, evolution has preserved the organization 
of the GABAAR subunit genes, challenging us to 
understand the forces behind cluster preservation and 
expansion. Conservation of gene order and orientation 
on human chromosomes is shown in Figures 1 and 
2. Taken together with the conservation of intron 
position in the β genes (Russek and Farb, 1994), it 
demonstrates that the diversity of GABAA receptor 
subunit genes originated from the duplication of an 
ancestral gene and the subsequent translocation of an 
ancestral gene cluster (Russek, 1999). Head-to-head 
orientation of the α and β subunit genes also suggests 
that they may be positively or negatively regulated by 
the proximity of regulatory elements.

Additional GABAAR subunit variants are observed 
from alternative splicing of individual subunit 
transcripts (Barnard et al., 1998; Jacob et al., 2008). 
Subunits within groups share 60–80% homology, 
whereas between different subunit families, homology 
is only 30% (Costa, 1998). GABAARs are assembled 
from subunits in the endoplasmic reticulum (ER) 
(Jacob et al., 2008). Their departure from the ER 
depends on proteins reaching conformation maturity, 
contributing to a diverse population of GABAARs at 
the cell surface. While many subunit conformations 
are possible, only a limited number of GABAARs 
actually exit the ER, as less than 25% of translated 
subunits assemble into GABAARs (Gorrie et al., 
1997). Misfolded or nonassembled subunits are 
degraded through the ubiquitin–proteasome pathway 
(Bedford et al., 2001; Jacob et al., 2008). Once 
assembled, GABAARs are trafficked to the Golgi to be 
packaged into vesicles for transport to and insertion 
into cellular membranes (Jacob et al., 2008).

© 2012 Russek
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Pharmacological properties of 
GABAARs
Different GABAAR subtypes, a product of differential 
subunit composition, confer distinct receptor 
localization and function. Fully functional GABAARs 
require at least one α, one β, and one other subunit 
type, allowing for GABA-gated Cl– flux (Pritchett 
et al., 1989; Johnston, 1996; Chebib and Johnston, 
1999). The most common receptor subtype contains 
2α, 2β, and 1γ (or δ) subunit (MacDonald and 
Olsen, 1994; Jacob et al., 2008).

GABAARs are the site of action for many therapeutics, 
including barbiturates, benzodiazepines (BZs), ethanol, 
and anesthetic steroids (Vicini, 1991; MacDonald and 
Olsen, 1994; Brooks-Kayal et al., 1998a). Research 
has demonstrated that different subunits confer 
distinct pharmacological properties to GABAARs. For 
example, BZs act as allosteric modulators of GABAARs, 
amplifying GABA signaling with varying levels of 
efficacy depending on the α and γ subunits present 
in the complex (Pritchett et al., 1989). Neurosteroids 
and barbiturates can also amplify GABA-gated current 
in most GABAAR subtypes, by increasing chloride 
channel open time (Costa, 1998; Puia et al., 1990). 
In the adult brain, α1 is the most abundant GABAAR 
subunit and is found in 50% of GABAARs (Duggan and 
Stephenson, 1990; McKernan et al., 1991). In general, 
receptors containing α1 are mostly synaptic, sensitive 
to BZ, insensitive to zinc inhibition, and mediate most 
phasic inhibition in the brain (Pritchett et al., 1989; 
Puia et al., 1991; MacDonald and Kapur, 1999).

Levels of α1 subunit expression can be altered by 
treatment with different mediators of synaptic 
signaling, suggesting that its expression may be activity-
dependent. Treatment with NMDA stimulates α1 
expression in cultured cerebellar granule cells (Harris 
et al., 1994; Zhu et al., 1995). In contrast, prolonged 
treatment with GABA or BZ decreases α1 expression in 
cortical and hippocampal neurons, respectively (Tietz 
et al., 1993; Lyons et al., 2000). Additional experiments 
using immunoprecipitation with subunit-specific 
antibodies followed by radiolabeled muscimol binding 
(a ligand that binds to the GABA binding site between 
α and β subunits) found that α1 precipitated 70–90% of 
radiolabeled muscimol binding sites from rat or mouse 
brain membrane extracts (Sieghart and Sperk, 2002).

Alpha4 GABAA receptors
GABAARs containing α4 are less abundant, detected 
mainly in the hippocampus and thalamus (Rabow et 
al., 1995; Whiting et al., 1995; Benke et al., 1997; Sur 
et al., 1999). Furthermore, GABAARs containing α4 
subunits are predominately extrasynaptic, insensitive 

Figure 1. Gene organization is conserved for the GABAA re-
ceptor gene clusters on human chromosomes 4, 5, 15, and 
X. Orientation of subunit genes are indicated by arrow direc-
tion. (The schematic is not drawn to scale.) The most current 
cytogenetic localization of the gene cluster is indicated next to 
the chromosome number. Information for chromosomes 4 and 
5 is presented in Russek, 1999. Information for chromosomes 
15 and X is from Greger et al., 1995; Levin et al., 1996; and 
Wilke et al., 1997. Note that no β4 (avian) was ever reported 
in mammals and that sequencing of the genome revealed pres-
ence of θ in that position for rodents and humans.) Russek, 
1999, Figure 5, reprinted with permission.

Figure 2. Schematic representation of the genomic organiza-
tion of GABAA receptor gene clusters on chromosomes 4, 5, 
and 15 in the human genome. Estimates of genomic distance 
between genes on chromosomes 4 and 5 were obtained from 
interphase mapping. Distance measurements for the genes on 
chromosome 15 were obtained by restriction fragment-length 
fingerprinting and interphase fluorescence in situ hybridization 
(FISH) mapping (Greger et al., 1995) and by restriction frag-
ment length analysis with field-inversion gel electrophoresis 
(Sinnet et al., 1993). Measurements are close to the distance 
verified by sequencing of the human genome. The diagram has 
been drawn to scale. Scale bar: 100 kb. Russek, 1999, Figure 3, 
reprinted with permission.
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to BZs, sensitive to zinc inhibition, and mediate 
tonic inhibition (Knoflach et al., 1996; Benke et al., 
1997; Fisher and MacDonald, 1998; Lagrange et al., 
2007). Immunoprecipitation experiments with α4 
subunit–specific antibodies detected α4 in only 6% of 
GABAARs in the brain (Sieghart and Sperk, 2002).

Altered expression of GABAARs
Differences in the number and subunit composition 
of GABAARs contribute to their unique function 
in discrete brain regions. Any alteration in such 
expression has been observed in multiple disease 
states, including alcoholism, Alzheimer’s disease, 
autism, drug abuse, epilepsy, and schizophrenia. 
Changes in subunit expression are also observed in 
many of the comorbidities associated with epilepsy, 
such as anxiety disorders, cognitive deficits, and 
depression (Jacob et al., 2008).

With GABA and its type A receptors playing such 
critical roles in brain development and in brain 
inhibition more generally, they present a unique 
opportunity for the research community. The goal 
is to test the power of modern transcriptomics as a 
means of uncovering basic principles of brain design 
and function, which may be represented in the 
structure of the genome.

Gene Regulatory Networks That 
Control GABAAR Subunit Genes
As discussed above, altered GABAergic function 
has been associated with multiple brain disorders. 
An additional feature of these disorders is a marked 
change in neurotrophic signaling, especially as 
orchestrated by brain-derived neurotrophic factor 
(BDNF). Work from our laboratory (in collaboration 
with Amy Brooks-Kayal and her group, who model 
temporal lobe epilepsy in vivo) has uncovered a 
unique relationship between these two receptor 
systems: GABAARs and BDNF receptors (trkB 
and p75 neurotrophin receptor [p75NTR]). These 
findings suggest the two systems are part of an 
important gene regulatory network that is active 
in normal and diseased brain (Brooks-Kayal et al., 
2009). Briefly, by activating the trkB receptor and 
downstream mitogen-activated protein kinase 
(MAPK) and protein kinase C (PKC) intracellular 
cascades, BDNF increases levels of early growth 
response factor 3 (Egr3). Egr3, in turn, is an activator 
of the GABRA4 promoter that drives the expression 
of GABAAR α4 subunits (Roberts et al., 2005, 2006).

In parallel, working via a novel pathway we have 
recently shown links p75NTR to the JAK/STAT 
cascade, BDNF increases levels of inducible cAMP 

Figure 3. Effects of ICER induction on cell-surface α1 expression. Overexpression of ICER decreases the endogenous levels of α1 
subunit detected at the cell membrane. Primary cultured neocortical neurons were cotransfected with pDsRed2-Monomer and 
ICER expression (CMV-ICER) or control vectors (CMV-empty). At 48 h after transfection, unpermeabilized cells were fixed and 
stained with an α1-specific antibody using a standard protocol. The DsRed-transfected cells were viewed by using an Olympus 
IX71 inverted fluorescence microscope (Olympus America, Center Valley, PA), and the images were analyzed by using IPLab  
software (Becton Dickinson, Franklin Lakes, NJ). Representative images are shown (empty vector, top panel; ICER construct, bottom 
panel). Quantitation data are presented in the histogram (***, p < 0.01; mean ± S.E.; n = 3). FITC, fluorescein isothiocyanate.  
Hu et al., 2008, their Figure 9B, reprinted with permission.
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NOTES early repressor (ICER): a repressor of the core GABRA1 
promoter (Lund et al., 2008). Figure 3 depicts the 
overexpression of ICER in primary neurons, a process 
that alters the number of α1 subunits at the cell surface 
(Hu et al., 2008). For the first time, the presence of 
ICER has been demonstrated to be directly relevant 
to the disappearance of the subunit from a functional 
compartment. Multiple intracellular signaling 
pathways regulate GABRA1 transcription. Figure 
4 depicts the process in which activation of PKC 
enhances transcription while activation of protein 
kinase A (PKA), like BDNF, represses transcription, 
dependent on the presence or absence of ICER.

Dynamics of GABAAR Transcription 
as Revealed by High-Density ChIP 
Sequencing
Increased access to new opportunities to probe genome 
activity at a global level holds great promise of open-
ended discovery in GABA biology in the years to 
come. Recent evidence suggests that paracrine GABA, 
released from emerging neuroblasts, may participate 
in a negative feedback mechanism that causes cells 

to exit the cell cycle, producing fewer progenitors 
and supporting cellular differentiation (LoTurco et 
al., 1995, Kreigstein and Owens, 2001; Andäng et 
al., 2008)  . The identification of early GABA as a 
switch that may control the potential pool of neural 
progenitors in the developing brain has shed light on 
the importance of studying this receptor system in the 
embryo, in addition to the adult brain, where most 
researchers have concentrated their efforts.

As a first step in this direction, we examined 
the chromatin state of GABR gene clusters in 
mouse embryonic stem cells (ESs) as compared 
with ES-derived neural progenitors (NPs), mouse 
embryonic fibroblasts (MEFs), and whole brain 
tissue (WB). We used the UCSC Genome Browser 
(http://genome.ucsc.edu) to analyze the results of 
chromatin immunoprecipitation (ChIP). ChIP was 
performed at the Broad Institute, using antibodies 
to three markers: H3K4me3 (a histone marker of 
transcriptional activation found at or close to active 
transcriptional start sites); H3K27me3 (a histone 
marker associated with genes that are silenced); 
and H3K36me3 (a histone marker usually found 

immediately after transcriptional 
start sites associated with active 
transcription) (Mikkelsen et al, 
2007; Meissner et al., 2008). 
Genes displaying a sharp peak at 
both H3K4me3 and H3K27me3 
contain a bivalent chromatin 
mark that has been associated 
with marks that play key roles 
in lineage-specific activation or 
repression.

Figures 5–7 display the results of 
ChIP sequencing through three 
GABR clusters in the mouse 
genome. Proposed GABRs with 
the highest probability of being 
expressed, either at the ES-cell 
level or upon commitment to 
NP or MEF, are indicated by red 
lettering. Analysis of histone marks 
in these different cell populations 
suggests that the early GABAAR is 
composed of GABRA2, GABRB3, 
and GABRG1. Results of RNA 
sequencing will confirm or refute 
this hypothesis and provide the 
necessary feedback to determine 
whether unique histone marks can 
predict the expression of GABAAR 
gene clusters in normal and 
diseased brains.

Figure 4. A model for the role of CREB and ICER in the regulation of GABRA1 
transcription. Activation of the PKC pathway leads to phosphorylation of CREB 
without induction of ICER. Phosphorylated CREB at Ser-133 forms homodimers to 
increase GABRA1 expression (left). Activation of the PKA pathway induces synthesis 
of ICER and phosphorylation of CREB. Homodimers of ICER or ICER and CREB 
heterodimers repress transcription of GABRA1 (right) and alter the number of α1-
containing GABAARs (α1-GABAR) at the cell surface. None α1 subunit–containing 
receptors are as indicated by “αx” key. CREB, cAMP response element-binding 
protein. Hu et al., 2008, their Figure 10, reprinted with permission.

© 2012 Russek

18



19

NOTES

Figure 5. GABRG1, GABRA2, GABRA4, GABRB1 gene cluster. Note that GABRG1 is not univalent but is marked for transcription 
in NP, while GABRA2 is univalent with high levels of expression in NP and H3K36me3 close to the start site.

Figure 6. GABRG2, GABRA1, GABRA6, GABRB2 gene cluster. Note that there are no peaks associated with GABRG2 or GABRA6. 
However, there are univalent marks for ES and MEF with their loss in NP for GABRA1.
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Breaking New Ground in a 
Familiar Landscape
Our lab and others across the country have identified 
a handful of gene regulatory proteins that are critical 
to the altered expression of certain GABRs in disease 
models. We have done so through a combination 
of traditional candidate gene regulatory assays 
and investigator-driven bioinformatic analysis. 
These discoveries have opened up new avenues 
for whole-genome investigations, using the power 
of ChIP-Seq and RNA-Seq analysis, to determine 
the transcriptome that is regulated in a coordinate 
or independent manner. Little is still known about 
how GABRs are coordinately regulated and why they 
have remained in clusters throughout our evolution. 
New techniques such as chromosome conformation 
capture—as used first to describe the beta-globin 
locus (Tolhuis et al, 2011)—may be powerful tools 
for exploring this new and complex territory.

Future discoveries in the field of GABA subunit 
gene regulation will take place in the background 
of an extensive history of GABA receptor biology 
that parallels the development of the larger field 
of neuroscience. Identifying gene duplications and 
inversions within GABR clusters that associate with 
human diseases will also provide a window onto the 
relationship between GABAAR number and kind that 
is key to maintaining a healthy balance of GABAergic 

neurotransmission in the young and old. These 
important questions have perplexed neuroscientists for 
over two decades; finally, the techniques are powerful 
enough to provide some answers.
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NOTESIntroduction 
Several disruptive technologies promise a windfall 
of insights and potential approaches to therapeutic 
interventions for neurodegenerative diseases. In 
the realm of genetics, the contributing technologies 
comprise deep sequencing of both genomes and 
transcriptomes, along with the many bioinformatic and 
statistical tools for data analysis. The reprogramming 
of somatic cells, which potentially allows one to 
determine the transcriptome for any cell type on a 
specific individual’s genetic background, is further 
enhancing these approaches.

The Genome
The principal focus of human genomic sequencing 
is genetic variation. Genomic variation arises from 
mutations, e.g., single nucleotide polymorphisms 
(SNPs), insertions and deletions, and copy number 
variation, as well as from recombination and gene 
flow (the movement of genes from one population 
to another). Full genome analyses can track all these 
parameters using a variety of databases and statistical 
tools. It is our opinion that large sequencing centers or 
commercial entities dedicated to genome sequencing 
can most efficiently and economically obtain full 
genomes. In contrast (as will be discussed later on), 
local sequencing in the lab is a preferable method 
for obtaining complete transcriptomes, which often 
have specialized requirements and methods.

A core resource for genome analysis is the Reference 
Sequence (RefSeq) Database. RefSeq is the National 
Center for Biotechnology Information (NCBI) 
database of curated, nonredundant genomic DNA 
contigs; mRNAs and proteins for known genes; and 
entire chromosomes. RefSeq provides a foundation 
for uniting sequence data with genetic and functional 
information. The collection includes sequences from 
more than 12,000 distinct taxonomic identifiers, 
ranging from viruses to bacteria to eukaryotes, and 
represents chromosomes, organelles, plasmids, viruses, 
transcripts, and more than 12.6 million proteins. 
RefSeq is available without restriction and is updated 
daily by NCBI staff and collaborating groups.

Genetic variation is classified as either rare or 
common when compared against all known variation 
in the genome. This distinction is of particular 
interest when considering susceptibility to complex 
diseases, which is a subset of the larger category of 
traits that are inherited by multiple genetic variants. 
Unlike Mendelian traits, which are controlled by 
genes of large effect size and show simple patterns 
of inheritance, the transmission of complex 
phenotypes is governed by multiple factors that lead 

to complicated patterns of familial inheritance. In 
fact, a defining feature of complex phenotypes is that 
no single locus contains alleles that are necessary or 
sufficient for the disease to develop.

How multiple variants affect a phenotype or epistasis is 
an unsolved problem in human genetics. Environmental 
and stochastic factors may also contribute to whether 
or not a particular phenotype appears, given the same 
genetic background. Some complex traits, including 
susceptibility to many neurodegenerative diseases (e.g., 
Alzheimer’s disease, amyotrophic lateral sclerosis, and 
frontotemporal dementia), also have rare Mendelian 
forms. This phenomenon may guide one’s thinking 
about the functional role of genetic variants with small 
effect size.

Genetic factors in complex diseases
Because complex diseases are often prevalent in the 
population, an early hypothesis proposed that the 
genetic factors underlying common diseases would 
be alleles that are quite common in the population 
at large (Lander, 1996; Chakravarti, 1999). However, 
allele frequencies are not smoothly distributed across 
the world’s populations. Instead, their frequencies 
are related more closely to evolutionary processes 
that include selection, mutation, and genetic drift. 
Further, selection in diseases with onset beyond the 
reproductive years must be weighted differently. 
However, even mutations whose primary effect 
manifests late in life may have a weak deleterious effect 
early in life. For example, a mutation that predisposes 
individuals to Alzheimer’s disease might also cause 
subtle changes in brain function earlier on. Indeed, 
some data have suggested this is the case for the risk 
of cognitive decline associated with ApoE4 (Caselli et 
al., 2009). Subtle early changes may have a very small 
selection coefficient; nevertheless, even a selection 
coefficient on the order of 10–4 can affect the frequency 
distribution of an allele (Pritchard, 2001).

The observed allele frequency depends on the 
population under study and arises from that 
population’s evolutionary history. Alleles that have 
been in the population for a long time are more likely 
to have escaped genetic drift, to have been less subject 
to purifying selection, and even possibly to confer some 
weak selective advantage. Nevertheless, gene flow 
may have restricted the presence of an ancient allele 
in isolated populations, and the allele may not confer 
the same advantages or disadvantages on every genetic 
background.

Common variants have been associated with some 
complex traits. Recent examples include hippocampal 
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NOTES volume (which is associated with incipient Alzheimer’s 
disease but reduced in schizophrenia), major depression, 
and mesial temporal lobe epilepsy (Stein et al., 
2012). The associated variant, rs7294919 (12q24.22;  
N = 21,151; p = 6.70 × 10–16), is intergenic, which 
raises a frequently encountered problem: how to 
interpret the mechanism by which a noncoding variant 
contributes to the phenotype. Another example does 
implicate a coding gene—glycerophosphocholine 
phosphodiesterase (GPCPD1) in the highly heritable 
trait of visual cortical surface area (Bakken et al., 
2012), which correlates with visual acuity and 
visual perception. The significantly associated SNP 
(rs238295; p = 6.5 × 10–9) is located within 4 kb of 
the 5'UTR of GPCPD1, which in humans is more 
highly expressed in occipital cortex, compared with 
the remainder of cortex, than are 99.9% of genes 
genomewide. Late-onset Alzheimer’s disease has been 
associated with common variants at MS4A4/MS4A6E, 
CD2AP, CD33, and EPHA1 (Naj et al., 2011).

Alleles that have been in the population a relatively 
short time are more likely to be rare, to have a more 
limited distribution, and in the absence of sufficient 
time for purifying selection, to be deleterious. Owing 
to explosive population growth in certain geographic 
locales, the balance between rare and common 
mutations in many human populations has shifted 
toward an excess of rare genetic variants (Keinan and 
Clark, 2012). For example, rare copy-number variants 
and rare single nucleotide variants occurring as de novo 
mutations are important contributors to the autism 
phenotype (Sanders et al., 2012). Interestingly, multiple 
independent de novo single nucleotide variants in the 
same gene (e.g., sodium channel, voltage-gated, type 
II, α subunit) among unrelated probands were able to 
reliably identify risk alleles. In another study (O’Roak 
et al., 2012), de novo point mutations in autism 
spectrum disorder were found to be overwhelmingly 
paternal in origin (4:1 bias) and positively correlated 
with paternal age. In this study, 39% (49 of 126) of the 
most severe or disruptive de novo mutations mapped 
to a highly interconnected β-catenin/chromatin 
remodeling protein network with recurrent protein-
altering mutations observed in two genes: CHD8 and 
NTNG1. These instructive examples of both rare and 
common alleles contributing to genetic conditions 
point out that, when undertaking genomic analyses, 
dividing SNPs simply into the categories rare or 
common may be an oversimplification.

The genotype–phenotype interface
The transcriptome is the first phenotypic expression 
of the genome. Although RNA sequence space 
maps directly onto DNA sequence space, each 

genotype corresponds to multiple RNA secondary 
structures. Thus, RNA folding can be regarded as a 
minimal model of a genotype–phenotype relation 
(Fontana and Schuster, 1998b) and represents an 
enormous expansion of genotypic space. At this 
level, even neutral change in the genome will alter 
the “statistical topology” of the set of minimum 
free energy secondary RNA structures. These 
RNA structures exist as kinetic minima across a 
Waddingtonian landscape (Waddington, 1957).

In C.H. Waddington’s well-known metaphor, one 
imagines marbles rolling down a hill and competing 
for grooves on the slope, in which they come to 
rest at the lowest points. Although Waddington 
used this imagery to represent developmental cell 
fates, it applies to many phenomena, including the 
variety of possible RNA secondary structures. RNA 
structures that arise from genotypic variation have 
been treated as evolutionary trajectories in which 
some transformations (including those that arise 
from neutral drift) are irreducibly discontinuous and 
likely play a key role in evolutionary optimization 
(Fontana and Schuster, 1998a; Stadler et al., 2001). 
A more in-depth understanding of RNA topologies 
may explain how SNPs in noncoding transcripts 
contribute to phenotypes.

High-Throughput Mapping of  
the Transcriptome
No high-throughput mechanism exists for 
determining RNA topologies. However, the 
technologies to determine RNA transcripts in a 
high-throughput manner, called RNA-Seq or Whole 
Transcriptome Shotgun Sequencing, are flourishing. 
The major platforms, providing what has been called 
deep sequencing or next-generation sequencing, 
are the Illumina Genome Analyzer (Illumina, 
San Diego, CA), ABI Solid Sequencing (Applied 
Biosystems, Carlsbad, CA), and 454 Life Sciences’ 
Sequencing (454 Life Sciences, Branford, CT). 
These technologies offer deep coverage and base-
level resolution from which one can perform several 
tasks: infer differential expression of genes, quantify 
allelic expression, determine differentially expressed 
spliced transcripts, detect noncoding RNAs, editing 
and gene fusions. Although these parameters do not 
capture the entire shape repertoire of RNA, they 
do represent an expansion of genotypic information 
because the deeply sequenced transcriptome is the 
product of both the genome and the epigenome. The 
epigenome controls transcript levels by way of histone 
modifications, DNA methylation, and chromatin 
accessibility as well as translation regulation through 
noncoding RNAs. Therefore, to fully understand 
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NOTESthe significance of the transcriptome, one requires 
knowledge of the underlying genome and epigenome.

The most informative expression sequencing 
techniques use the following:

•	RNA-Seq	libraries	prepared	with	poly(A)	primers	
to obtain mRNAs;

•	RNA-Seq	libraries	prepared	with	random	primers	
to obtain both mRNAs and noncoding transcripts;

•	RNA-Seq	libraries	prepared	from	gel-purified	small	
RNAs to obtain small noncoding transcripts (which 
in the brain are primarily the microRNAs); and

•	RNA	immunoprecipitation	followed	by	sequencing	
(RIP-Seq), to obtain those RNAs that are 
immunoprecipitated with an antibody to an RNA-
binding protein.

Because ribosomal RNA represents more than 90% 
of the RNA within cells, its removal increases the 
capacity to retrieve data from the remaining portion 
of the transcriptome. However, for samples with 
extremely small amounts of RNA (~100 ng) in which 
we could not risk further sample loss with a ribosomal 
removal step, we have sequenced very deeply and 
bioinformatically removed ribosomal sequences.

Aligning transcriptomes to  
genomic databases
Aligning transcriptomes to genomic reference 
databases faces the challenge of aligning transcripts, 
which are usually short reads, when they cross exon 
boundaries. To accomplish this task, specialized 
algorithms for transcriptome alignment have been 
developed, including TopHat (Trapnell et al., 2009) 
and Cufflinks (Trapnell et al., 2010). TopHat is a fast-
splice junction mapper that aligns RNA-Seq reads 
to mammalian-sized genomes using the short-read 
aligner Bowtie. It then analyzes the mapping results 
to identify splice junctions between exons. Cufflinks 
assembles transcripts, estimates their abundances, 
and tests for differential expression and regulation 
in RNA-Seq samples. The program accepts aligned 
RNA-Seq reads, assembles the alignments into a 
parsimonious set of transcripts, and estimates the 
relative abundances of these transcripts based on 
how many reads support each one. To assess relative 
abundance, sequencing reads are often expressed as 
reads per kilobase (RPKMs) of exon model per million 
mapped reads (Mortazavi et al., 2008). These units 
reduce the error associated with unequal reads over all 
the exons of an mRNA. If one is doing paired end-
reads, then the two fragments are counted together.

MicroRNAs are among the various categories of 
transcripts obtained by deep-sequencing techniques 
and are of particular interest to our group. We have 
published a comprehensive deeply annotated set of 
miRNAs from mouse hippocampus and staged sets 
of mouse cells that underwent reprogramming to 
induced pluripotent stem cells (iPSs) (Zhou et al., 
2012). Using a dataset of more than 600 million 
deeply sequenced small RNAs, we annotated the 
stem–loop precursors of the known miRNAs in order 
to identify isomoRs (miRNA-offset RNAs), loops, 
nonpreferred strands, and guide strands. Products 
from both strands were readily detectable for most 
miRNAs. Changes in the dominant isomiR occurred 
among the cell types, as did switches of the preferred 
strand. The terminal nucleotide of the dominant 
isomiR aligned well with the dominant offset 
sequence, suggesting that Drosha cleavage generates 
most miRNA reads without terminal modification. 
Among the terminal modifications detected, most 
were nontemplated mononucleotide or dinucleotide 
additions to the 3'-end.

In addition to these descriptive features, the 
interpretation of the data was enhanced by performing 
RIP-Seq on an Ago-IP fraction. Ago or Argonaut 
proteins are key members of the RNA inhibitory 
silencing complex (RISC), which houses miRNAs 
as they form duplexes with mRNA targets. The 
binding between miRNAs and Ago proteins is very 
tight; therefore, Ago-IP can reveal a set of miRNAs 
associated with the RISC. This approach allowed 
us to predict which miRNA modifications—either 
isomiR modifications or nontemplated additions—
might affect RISC loading. Furthermore, sequence 
variation of the two strands at their cleavage sites 
suggested higher fidelity of Drosha than Dicer.

Preparing iPS-derived neurons
iPSs offer the possibility of analyzing the complete 
transcriptome of any cell type against a specific 
individual’s genetic background. The most common 
approach begins with harvesting skin fibroblasts from 
an individual of interest. A variety of reprogramming 
procedures have been described. These techniques 
are best divided into (1) direct reprogramming to 
the desired cell type and (2) reprogramming first 
to an embryonic stem cell, followed by subsequent 
differentiation to the desired cell type. Although 
some compelling approaches to direct reprogramming 
to neurons have been reported recently (Ring et al., 
2012), we have generally transitioned cells through 
the embryonic stem-cell stage before differentiating 
them to neurons.

Enhancing the Interpretation of Genomic Data Using RNA-Seq from iPS-Derived Neurons
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NOTES Although complete control over neuronal fate in 
the dish still requires much further experimental 
work, differentiation procedures are selected based 
on the type of neurons one would like to grow. For 
example, techniques for growing motor neurons from 
stem cells are quite well developed (Soundararajan 
et al., 2006). The procedure involves treatment 
with a sonic hedgehog (Shh) agonist and retinoic 
acid (RA). To obtain a broad distribution of cortical 
neurons, we begin by withdrawing the β-FGF and 
add NT3, BDNF, or GDNF solutions. The cells pass 
through a neurosphere stage as neural precursors 
and get dissociated and plated to undergo neuronal 
differentiation on a laminin-coated surface. We 
have verified the neuronal identity of the cells by 
immunostaining with the following markers: MAP2, 
tau, synapsin, PSD95, as well as GFAP (to detect 
glial cells) and nestin (to detect neuronal precursors). 
We analyzed cultures for the colocalization of the 
presynaptic and postsynaptic markers (synapsin 
and PSD95) and for the polarization of the axonal 
and dendritic markers (tau and MAP2). In addition 
to immunocytochemical validation of neuronal 
identity, we have labeled cells with green fluorescent 
protein (GFP) or dye I to examine spine morphology 
and loaded cells with FM dye to analyze synaptic 
vesicle uptake and release.

Use of iPS-derived neurons to 
enhance the interpretation of 
genomes and transcriptomes
In collaboration with Fen Gao at the University of 
Massachusetts and Yadong Huang at the Gladstone 
Institute, we have prepared and analyzed human iPS 
cells that harbor tau mutations that are associated 
with neurodegenerative diseases. The iPS cells were 
first shown to be bona fide iPS cells based on the 
expression of pluripotency markers. Next, they were 
transformed into neurons (Wilson and Stice, 2006). 
Once the cells were well differentiated, a complete 
transcriptome was obtained. Full genomes were 
obtained on the same individuals.

The analysis of these data sets allows us to make 
several tentative conclusions:

(1) A broad range of neuronal types was present 
in the cultures, based on the expression of the 
various neurotransmitter receptor types, and 
their transcript levels were comparable to that 
in deeply sequenced brain tissue;

(2) Markers for glial cells were detectable but below the 
levels found in comparably analyzed brain tissue;

(3) Very low levels of transcripts related to neuronal 
precursors remained present in the culture;

(4) Potentially deleterious genetic variants in the 
genome, such as SNPs that alter splice sites, could 
be analyzed for their effect on transcription; and

(5) The distribution of a mutant allele could be 
determined as a function of the total reads for 
the transcript containing the variant. In this 
way, we could detect allele bias.

Conclusion
In summary, support for determining the significance of 
genomic variation can come from the transcriptome. 
The difficulty of obtaining tissue-specific gene 
expression in poorly accessible tissues such as the brain 
can be circumvented by using iPS technology and by 
differentiating iPS to specific cell types.
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Introduction
High-throughput RNA sequencing is providing 
unparalleled resolution of the transcriptome and 
has been especially instrumental in revealing the 
transcriptome’s sequence-level complexity (Core et 
al., 2008; Morin et al., 2008; Trapnell et al., 2009, 
2010; Wang et al., 2009; Guttman et al., 2010; 
Nechaev et al., 2010; Pickrell et al., 2010; Marquez 
et al., 2012). In this chapter, I will discuss some 
of the computational and statistical challenges of 
quantifying the transcriptome from high-throughput 
RNA sequence data. I will also set forth the principles 
of high-dimensional data analysis using quantified 
transcriptomes. RNA sequencing, quantification, 
and data analysis share many of the same problems 
and solutions with microarray-based assays. 
Therefore, I will concentrate on issues more specific 
to RNA sequencing—especially RNA sequencing 
from single cells. I will assume familiarity with the 
overall experimental scheme for massively parallel 
short-sequence reads provided by instruments such 
as Illumina HiSeq (Illumina, San Diego, CA) 
and ABI SOLiD platforms (Applied Biosystems, 
Carlsbad, CA). It should be noted that many of the 
specific experimental, statistical, and computational 
problems are still being actively addressed in the field, 
so best practices for using massive RNA sequencing 
data for functional genomics are expected to 
continue evolving.

Transcript Quantification from 
RNA Sequencing Reads
Aligning the reads to a  
reference genome
When processing short reads from RNA sequencing, 
the key computational step consists of aligning 
the reads to a reference genome. If the sequence 
reads are exact copies of contiguous regions of the 
reference genome, this step is straightforward. 
However, the sequence reads may differ from the 
genomic sequence owing to several factors: errors 
in the sequence chemistry, artifacts created by the 
library construction step (e.g., concatemers or fusion 
of separate molecules), or biological RNA processing 
such as splicing and RNA editing. A more important 
source of variation is found in the polymorphism 
of the reference genome, which is likely to contain 
indels and single nucleotide polymorphisms (SNPs) 
not present in the sequenced strain. Therefore, the 
computational alignment of the reads to the genome 
must take into account such possible variations.

Algorithmic procedures and 
alignment strategies
The standard algorithmic procedure for dealing 
with such variations involves finding the best local 
alignment for subsequences of the reads to the 
subsequences to the genome, and assembling the 
matches while respecting the positional constraints. 
The simplest reasonable algorithm for this 
procedure goes through a number of steps that are 
proportional to the product of the read length and 
the reference genome length. However, while such a 
computation is feasible for any single read, it becomes 
computationally impossible when multiplied for tens 
or hundreds of millions of sequence reads. Therefore, 
available algorithms try to approximate the best 
solutions within a reasonable computing time. The 
main strategies involve indexing the reference 
genome or the read set with various kinds of k-mer 
seeds (the so-called filtration strategy) and using 
special data structures (e.g., suffix arrays) to organize 
all substrings of the sequences (Li and Homer, 2010).

Obtaining high-quality alignment involves tradeoffs 
in processing speed versus accuracy. Various 
strategies center around ways to allow for more 
sensitive alignments without exacting too high a 
computational penalty. One important consideration 
is that algorithms that allow gapped reads can be 
costly for computation. For genomic sequencing, 
an alignment algorithm that does not allow indels 
can generate a large number of false-positive SNPs. 
However, for RNA sequencing, transcript counts 
are the desired output, and false SNPs are not as 
important. Therefore, algorithms that try to increase 
the sensitivity of the alignment, say by allowing 
larger deviations, are more important than those that 
try to increase specificity and accuracy.

Increasing alignment specificity
Increasing alignment specificity may involve a 
consideration of the specific sequencing experiment. 
For example, in vitro transcription (IVT)–amplified 
RNA (Van Gelder et al., 1990), used in single-
cell transcriptome analysis, tends to create short 
transcript templates with 5' poly-T leaders in the 
amplified RNA. Many of the fragments in the library 
will keep the 5' poly-T sequence, which needs to be 
trimmed for effective alignment. Aligning across 
potential splice variants also creates challenges, and 
typical strategies involve using known splice signals 
and intron–exon boundaries to increase the reference 
variants. However, using only known gene models 
may impede the detection of novel splice variants.
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One possible solution is to use a hierarchical processing 
strategy where the reads from a sample are processed 
through algorithms of increasing sensitivity. For 
example, the nearly exact reads might be first mapped 
using efficient algorithms, and the remaining reads 
might be processed through increasingly sensitive 
algorithms. The recently developed program RNA-
Seq Unified Mapper (RUM) (Grant et al., 2011) 
utilizes such a strategy. The downside of this strategy 
is that computational time may greatly increase, 
depending on the particular sample. For example, 
processing 100 million 100 bp reads through fastest 
aligners (e.g., BOWTIE and BWA [Burrows–Wheeler 
Aligner]) (Langmead et al., 2009; Li and Durbin, 2009) 
takes ~30 CPU hours on typical computers, whereas 
RUM may take up to 1,500 CPU hours. (Note that 
RUM is just another variation of filtration strategy.) 
Another problem (in addition to computational time) 
is that with increasing sensitivity comes the potential 
increase in false-positive alignments. Because the 
algorithms involve heuristic tradeoffs between 
sensitivity and specificity, the researcher has to make a 
decision between optimizing these two objectives.

Importance for RNA sequencing
The key issue for RNA sequencing is whether 
different alignment strategies produce biased 
samples of true transcripts, regardless of their false-
negative and false-positive rate. In our experience, 
there is a considerable variation in read counts 
mapped to specific transcript models, depending 
on the alignment algorithm used. Unfortunately, 
the particular types and degree of biases are still 
unresolved, and at this time, consistent comparison 
of datasets requires identical processing of the short 
read set (as discussed below under Complexities of 
Quantifying the Transcripts). Lastly, the relatively 
short length of the sequence reads in next-generation 
sequencing (100–150 bp) makes it very difficult 
to consider de novo genomes that do not have a 
reference sequence. The short reads are generally 
too brief to assemble into a unique transcriptome. 
However, recent computational approaches have 
been making progress toward recovering a large 
fraction of the transcriptome from de novo assembly 
(Grabherr et al., 2011). Also, longer reads from 
improved chemistry and coupling of paired-end or 
mate-paired sequencing from multiple insert libraries 
are expected to lead to effective characterization of 
novel transcriptomes in the near future.

Benefits of RNA Sequencing
Sequencing RNA provides three major benefits 
(albeit with caveats to be discussed in the following 

pages): precision, dynamic range, and the ability to 
detect novel transcripts.

Precision
Precision of RNA sequencing comes from the ability 
of a sequence read to uniquely identify the presence 
of a particular transcribed RNA. If we see a sequence 
in the high-throughput data that is sufficiently 
complex that it uniquely maps to the genome, there 
must be at least one RNA molecule that contains 
that sequence in the original library preparation. 
Sequencing chemistry can be surprisingly error-prone 
at the 3'UTR ends, but if a read maps uniquely to the 
genome within a prespecified mismatch tolerance, the 
presence of the molecule can be confirmed with high 
confidence. The only caveat here is contamination, 
which is not specific to the instrument, and the 
possibility of misalignment to a paralogous locus. 
Alignment to a paralogous locus can be a problem, 
especially if the study strain has polymorphisms vis-
à-vis the available reference genome. Therefore, 
when considering singular sequence reads as possible 
evidence of a transcript, it is advisable to carry out 
additional alignment to the reference genome under 
less stringent criteria to confirm unique alignment. 
The numerical precision of the sequencing (i.e., the 
precision of relative counts of transcript molecules) 
depends on many factors that will be discussed 
further below.

Dynamic range
A key advantage of RNA sequencing is that the 
dynamic range of quantification can be modulated 
by the sequencing depth. The total number of 
reads required to recover a rare transcript depends 
on the cell (tissue) type and the distribution of the 
frequency of the transcript—that is, the expected 
frequency of the most highly expressed transcript, the 
expected frequency of the next most highly expressed 
transcript, etc. In various single-cell samples, we find 
a surprising diversity of transcriptome frequency 
distributions. For example, a mouse brown adipose 
cell sample recovers ~6,500 distinct transcripts 
with ~20 million mapped unique reads, whereas 
a rat cortex cell sample recovers ~17,000 distinct 
transcripts with ~10 million mapped unique reads.

We can approximately compute desired sequencing 
depth using a variation of the coupon collector’s 
problem: Given the need to collect N distinct 
coupons in a game, what is the expected number 
of total coupons needed? In the optimal case, in 
which all distinct transcripts have equal abundance 
in the transcriptome, we need ~1.8 million mapped 
reads to recover 10,000 distinct transcripts with 
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NOTES95% confidence (using Markov inequality). In our 
experience, a typical high-throughput sequencing 
experiment yields only 25% high-quality, unique 
paired-end RefSeq mapped reads. Therefore, under 
the optimal scenario, we need ~8 million in total 
read depth to recover 10,000 distinct transcripts 
with high probability. However, as mentioned, 
some transcripts are much more common than 
others, greatly skewing this computation. Assuming 
100,000 total RNA molecules in a cell, and assuming 
only a single molecule of a rare transcript, similar 
computations suggest that we need ~100 million 
total reads to recover all transcripts (including the 
most rare transcript) with high confidence. Optimal 
read yield from Illumina HiSeq Systems is on the 
order of 350 million reads per lane. Therefore, these 
calculations suggest 3-fold multiplexing per lane to 
recover the rarest transcripts.

Ability to detect novel transcripts
As mentioned above, many studies using RNA 
sequencing are reporting novel transcripts. For 
example, using RNA sequencing from mechanically 
dissected dendritic samples, we found that up to 56% 
of the expressed genes in the mouse hippocampal 
cells and 50% of the expressed genes in the rat 
hippocampal cells show evidence of intronic 
sequences in the cytoplasm: cytoplasmic intron-
sequence-retaining transcripts, or CIRTs (Bell et al., 
2010; Buckley et al., 2011).

One characteristic of Illumina’s sequencing 
chemistry is that, for every double-stranded template 
insert, reads are obtained from only the 5'UTR 
ends of the sense and antisense strand. The 3'UTR 
ends of the insert are read only if the insert size is 
smaller than the requested read length (see below). 
This chemistry produces a key asymmetry in the 
mapped reads. A given nucleotide will be covered by 
reads from both the sense and antisense directions 
only if the insert was smaller than the read length 
or the library fragmentation step induced cleavage 
randomly around the nucleotide. This means that if 
a transcript has a definite end (e.g., in the 5'UTR or 
the 3'UTR), the reads from the ends will be mostly 
from a single direction.

Figure 1 shows a moving window plot-of-read density 
for the 3'UTR end of the Grin2b gene from the rat 
hippocampal transcriptome. The red and blue lines 
show read density in each direction. Clearly visible is 
a shift in the density owing to the strand directional 
bias of the Illumina sequencing chemistry. This bias 
can be exploited by computing the differential of the 
read densities in the two directions, shown as black 

lines with blue fill. A sharp peak in the differential 
curve indicates the presence of a natural 3'UTR end 
of the transcript. The horizontal blue bar indicates 
previously annotated coding sequence and 3'UTR 
for this gene (thick and thin bars, respectively). As 
can be seen, these RNA sequence data indicate a 
novel 3'UTR for this gene. We have used this kind 
of computational procedure to map 3'UTR isoforms 
for the rat hippocampal transcriptome.

Figure 2 shows a heatmap of estimated 3'UTR ends, 
where the coordinate 0 indicates the previously 
annotated 3'UTR for these transcripts. We found 
evidence that some genes have more than seven different 
end-isoforms, and two-thirds of the transcriptome show 
novel, previously unannotated 3' UTRs.

Complexities of Quantifying  
the Transcript
Once the short read set has been mapped to the 
reference genome, quantifying the transcript numbers 
has several complexities. We first assume that the 
RNA sample has been prepared to satisfactory quality 

Figure 1. Read-density plot for the Grin2b locus. Blue denotes 
sense direction reads, red denotes antisense direction reads, 
and blue-filled black curved lines denotes differential in the 
two directions.

Figure 2. Heat plot of 3'UTR ends from rat hippocampal tran-
scriptome. Rows indicate different genes. Position zero on the 
x-axis indicates canonical 3'UTR annotation.
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NOTES (i.e., we assume that quality issues not specific to 
RNA sequencing are not part of the problem). The 
RNA pool is typically fragmented, cDNA is created 
to an appropriate size class, and adaptors are ligated 
for library amplification and sequencing.

Bias correction
Fragmentation and cDNA creation bias
Many authors have noted biases in the library resulting 
from both the fragmentation and cDNA creation 
step (Bullard et al., 2010; Hansen et al., 2010). Even 
without the bias, however, longer transcript molecules 
will be sampled more frequently during fragmentation 
and thus be more accurately measured, leading to 
greater statistical power for detecting differential 
expression (Oshlack and Wakefield, 2009). Several 
ad hoc bias correction methods have been suggested, 
but the optimal procedure is still uncertain at this 
point. In our experience, a pile-up visualization of 
the RNA sequencing reads on the genome shows 
clear heterogeneities. These include a large amount 
of reads that locate to a focal region or regions, with 
complete absence of reads despite high coverage in 
other adjacent regions. These kinds of variations are 
difficult to completely control and are likely to lead to 
artifactual theories of the transcriptome.

PCR bias
The PCR step in library construction can also 
lead to counts that are nonlinear in terms of input 
molecules and to a tendency to inflate the counts 
of more frequent molecules. The PCR bias can be 
modeled by noting the reads that map to nearly 
identical locations of the genome.

Associating read counts and 
normalizing read depth
The more critical problem is associating read  
counts to transcript models and normalizing the 
read counts to quantities that are comparable across 
different sequencing libraries. Different RNA preps 
and library preps yield different numbers of total reads 
and mapping reads. Initial attempts at quantification 
divided the reads mapping to a transcript model (e.g., 
RefSeq annotations) by the total number of mapping 
reads and the length of the transcript model. These 
calculations resulted in quantities such as reads per 
kilobase of exon model per million mapped reads 
(RPKM), which is still commonly used. Model-
based methods have been proposed wherein the 
read coverage at any given base pair is assumed to 
be a Poisson sample with an unknown intensity 
parameter that represents the biological transcription 
level. Several variations of the model-based approach 

take into account possible intensity variation across 
a putative transcript molecule owing to such factors 
as fragmentation during library construction and 
convolution of biological variation from different 
samples.

Normalizing for read depth is also not so simple 
because the total mapped reads can be dominated 
by a small number of highly expressed genes. In 
such a case, there will be loss of sampling of more 
moderately expressed genes, distorting the estimate 
of relative expression levels. One simple corrective 
approach that has been suggested is to normalize the 
counts by a quantile of the read counts, such as the 
75% quantile (i.e., every library is normalized such 
that the 75th percentile read count of a gene is 1).

Nonunique mapping reads and 
isoforms
The two largest problems with quantification are 
how to handle nonunique mapping reads and how 
to handle multiple isoforms of a given transcribed 
region of the genome. Nonunique maps can result 
either from redundant sequences of the genome or 
from overlapping transcriptional units. The former 
may be resolved with increasing sequence read 
length, but the latter has a biological origin and 
thus will be difficult to resolve without full-length 
sequencing of the transcript.

Isoforms of a transcript result from alternative 
splicing and lead to dependencies between reads and 
genomic regions: That is, the same read may result 
from multiple transcript molecules. Approaches to 
the isoform problem involve fitting the read data as 
samples from multiple transcript models. The models 
might involve using existing annotations of possible 
transcripts or estimating splice variants de novo by 
generating the best fitting models.

Variations among programs
Even when the algorithms do not try to deconvolute 
the read data into distinct isoforms, considerable 
variations can be found in the quantification because 
different programs handle the multiple reads and 
transcript models (i.e., the unit of quantification) 
differently. An important confounding factor is 
that these problems are sequence-specific and 
therefore affect different genes in different ways. A 
computational analysis of the mouse genome suggests 
that there are fewer than 1,000 possible transcripts 
without problems associated with transcript 
variations and overlapping transcript units.

© 2012 Kim
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complexity
A growing body of literature is addressing these 
quantification complexities, and we expect the 
procedures to evolve (Marioni et al., 2008; Bullard et 
al., 2010; Li et al., 2010; Trapnell et al., 2012). Some 
experimental protocols, such as ABI Solid SAGE 
(Applied Biosystems), attempt to characterize only 
3'UTR tags, but we have found that the resulting 
sequences still contain potential artifacts that 
must be postprocessed. RNA sequences from IVT-
amplified single cells have additional characteristics 
that modulate the quantification process. The IVT 
protocol involves transcript selection (using 3' poly-A 
or other A-rich sequences) and template-shortening 
due to multiple rounds of random hexamer priming. 
The template-shortening makes it less important 
to correct for length of the transcript model, but 
the template selection based on poly-A sequence 
requires one to consider the relationship of any other 
A-rich regions cis to the putative transcripts.

While these complexities may make RNA 
sequencing data seem hopelessly difficult to obtain, 
two facts should be recognized:

(1) Early microarray data required considerable 
research to arrive at uniform protocols for its 
usage; and

(2) Many of the complexities affect bias in transcript 
quantification, which may not be critical for 
most analyses.

Bias in the estimate of transcript levels can affect 
absolute quantification but will not affect analysis of 
differential expression or variational analysis (e.g., 
the variation associated with single cells).

There are two important caveats to consider going 
forward:

(1) If we find a significant difference between two 
samples, the difference may be the result of reads 
from overlapping maps. In this situation, the 
biological genesis of the difference may require 
further dissection that takes into account 
possibilities of splice isoforms, independent 
overlapping transcript units, and other sources 
of variation; and

(2) All quantitative comparisons across different 
samples need to be processed through the 
same computational pipeline; thus, it will be 
important to make the primary short-read data 
available for independent analyses.

Characterizing Transcriptome 
Variation
Jointly with the laboratory of Jim Eberwine, we have 
been characterizing transcriptome variations across 
individual cells of various cell types, especially CNS 
cells in rat and mouse. We typically collect RNA 
through mechanical isolation from dispersed primary 
cell culture. It is then amplified by IVT protocols, 
sequenced using the HiSeq platform (Illumina), 
mapped with the RUM pipeline, and quantified 
using custom programs. Once the transcriptome is 
quantified, the resulting data consist of a vector of 
numbers, representing the normalized read counts. 
The number of different transcripts depends on the 
experiment, but for the single cells we have assayed, 
the transcriptome ranges from ~6,000 to 14,000 
different quantified units. We typically analyze the 
log transform of the read counts both because the 
RNA library is PCR amplified and because the RNA 
samples represent relative densities of RNA rather 
than absolute numbers. From here on, I assume that 
the data from each sample are represented by log-
normalized read counts, which are equated to a vector 
in high-dimensional space (i.e., the dimensions 
correspond to distinct transcripts). Therefore, a 
dataset of multiple transcriptomes comprises a set of 
points in this high-dimensional space, which I will 
call the RNA state space (Kim and Eberwine, 2010).

Clustering analysis
It is now routine to perform clustering analysis of 
transcriptome data from multiple samples, typically 
with an accompanying heatmap representation of 
gene expression levels. Clustering analysis generally 
falls into the class of machine learning algorithms 
called “unsupervised learning.” That is, the 
algorithms assume no prior information about the 
points but instead try to use the spatial distribution 
of the points to group them into clusters. The general 
idea is that biologically natural groups (such as 
distinct cell types and functionally coherent tissues) 
form spatial clumps in the high-dimensional space.

A whole constellation of algorithms exists, and these 
algorithms differ mainly as to how they interpret 
the spatial distribution (e.g., whether they consider 
certain directions more important than others) and 
how they impose prior ideas about the structure of 
spatial distribution (e.g., whether the distribution 
has a hierarchical organization). In terms of analyzing 
variation, clustering algorithms are useful for revealing 
distinct spacings or gaps between points and summarizing 
high-dimensional relationships that might be difficult to 
intuitively understand. Their downside is that different 
algorithms and measures of space within the RNA-state 
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is very little guidance on the “correct” procedure.* 
Nonetheless, clustering the points gives important 
information on the degree of data heterogeneity, and we 
typically use the technique to complement other kinds 
of high-dimensional analysis.

Dimension-reduction techniques
A major problem with high-dimensional data is 
the number of dimensions itself. This is especially 
exacerbated in transcriptome data, where the number 
of variables (i.e., the different transcripts) vastly 
outnumbers the number of observations (e.g., cells, 
tissues, and experiments). This mismatch potentially 
leads to greatly overfitting complex models to sparse 
data. For example, given enough dimensions, one 
could easily come up with diagnostic markers for any 
reasonable classification of the input data.

Several important techniques have been developed 
to mediate this problem which typically involve 
either dimension reduction or methods to limit 
model complexity. Dimension reduction usually 
involves projecting the original high-dimensional 
data to lower dimensions. Projections involve taking 
the original high-dimensional points and projecting 
their positions onto some geometric object within 
that space, for example, a line. In fact, each individual 
coordinate can be seen as a particular projection onto 
a particular set of orthogonal lines.

Singular value decomposition and principle 
component analysis
Singular Value Decomposition (SVD) and the related 
Principle Component Analysis (PCA) have been 
used extensively in transcriptome analysis. In these 
techniques, an orthogonal set of linear projections 
are constructed in which each projection is, in 
effect, the line closest to the current distribution of 
points. These techniques transform coordinates into 
orthogonal coordinate axes, where each dimension 
can be ordered in terms of how much of the original 
dispersal pattern is captured on respective projections. 
This allows both visualization and dimensional 
reduction. For example, with the assumption that 
biologically meaningful transcriptome variation is 
found only in a small number of dimensions, the 
original data can be reduced to the projection in the 
PCA directions, and all subsequent analysis can be 
limited to the reduced dimensions. The caveat is that 

PCA directions typically tend to involve a very large 
number of genes, and therefore, the interpretation 
can become strained in terms of individual genes.

Linear discriminant analysis
A useful dimension-reduction technique is Linear 
Discriminant Analysis (LDA), in which the 
projections to lines maximize the separation between 
a priori classes of points. Figure 3 shows a three-
dimensional projection of a single-cell transcriptome 
from eight different cell types (shown in different 
colors) using PCA projections (Fig. 3A) and LDA 
projections (Fig. 3B). As can be seen in this picture, 
the LDA projections emphasize the separation of 
the different a priori classified cell types. In effect, 
each dimension in the LDA projections is a weighted 
combination of the expression level of genes that 
best separate the cell types.

Partial Least Squares
Another projection technique is Partial Least Squares 
(PLS). PLS projection is useful if there is another 
continuous response variable that is assumed to be 
a function of the transcriptome, e.g., cell size, cell 
physiology, or signaling output. The projection tries to 
find a set of orthogonal lines (directions) in the RNA-
state space that best explains the response variable.

Nonlinear projections
Lastly, projections do not have to be linear (i.e., 
project to lines). For example, we might imagine 
that, given enough data points, the transcriptome 
from single hippocampal cells forms nonlinear curves 
in the transcriptome space (say, because the RNA 
products have to form dimers and satisfy quadratic 
stoichiometric relationships). Techniques such as 
Locally Linear Embedding (LLE) (Roweis and Saul, 
2000) aim to detect and characterize such nonlinear 
geometric distributions.

Deriving transcriptomes from single 
cell types
The distribution of transcriptomes for single cells 
or tissues within the RNA-state space may have 
complex structures. One way to think about single-
cell transcriptomes is that particular levels of RNA 
expression are maintained for a given cell because 
certain RNA molecules are required to satisfy the 
stoichiometric relationship of functional reactions 
involved in the cell’s phenotypic function. For example, 
a neuron might require the maintenance of certain 
ratios of different glutamate receptors. The collective 
effect of such stoichiometric constraints limits the 
viable points in the RNA-state space for a particular 
cell type. If there are 10,000 different transcripts in the 

© 2012 Kim

*It is important to note here that algorithmic “learning” from high-
dimensional data is generally a difficult problem because it involves 
inferring potentially complex models of the data ab initio rather than 
fitting the data into simple models such as differential gene expression. 
Thus, statistics and mathematics used in many approaches have consid-
erable degrees of freedom in determining the significance of any result. 
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Figure 3. Three-dimensional projection of high-dimensional single-cell transcriptome data from 8 different cell types. a, PCA axis 
projection; b, LDA axis projection. The axes of both figures are abstract, and the numerical values represent linear combinations 
of the original variables. The values have no direct interpretation in terms of original data values. The PCA axes are meant to 
emphasize the overall variation, while the LDA axes emphasize the distinction between groups.

Computational Analysis of RNA-Seq Data: From Quantification to High-Dimensional Analysis

© 2012 Kim

a

b



42

NOTES cell, then each constraint reduces the viable dimension 
by one. If there are 10,000 constraints, then we might 
expect the transcriptome to maintain a particular set 
of expressions, i.e., be concentrated around a single 
point. If there are fewer than 10,000 constraints, then 
the transcriptome has multiple degrees of freedom 
and the single-cell transcriptomes might form a broad 
distribution, as seen in Figure 3.

Given enough data (i.e., transcriptomes from multiple 
single cells of the same type), it might be feasible 
to characterize the viable functional transcriptome 
states of a particular cell type using these projection 
techniques. It may also be possible to identify the 
physiological constraints for these cells’ function. In 
the last part of the talk, I will present some potential 
models for analyzing such single-cell variation data.
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NOTESIntroduction: Models of Addiction
Repeated use of addictive drugs such as cocaine 
causes long-lasting changes in the brain’s reward 
circuitry, a key component of which is the nucleus 
accumbens. Accordingly, a major goal in the field 
has been to uncover the molecular mechanisms 
underlying addiction-associated neuroadaptations in 
this brain region. It has been hypothesized that one 
such mechanism of drug-induced neuroadaptations 
is the regulation of gene expression (Nestler, 2001). 
Since then, numerous studies have documented 
altered expression of genes, through candidate gene 
approaches or through gene expression microarrays, 
in the nucleus accumbens, among them Freeman et 
al., 2001; McClung and Nestler, 2003; Yao et al., 
2004; and Yuferov et al., 2005. In addition, several 
transcription factors have been shown to be altered 
in this brain region after chronic cocaine exposure. 
These factors include ∆FosB (a Fos family protein) 
(Nestler, 2008) and cAMP-response element binding 
protein (CREB) (Carlezon et al., 2005), both of 
which have been related directly to the behavioral 
abnormalities that characterize an addicted state.

Limitations
Investigations of cocaine-induced changes in gene 
expression to date have focused by necessity on 
measures of steady-state mRNA levels, which may 
not reflect the transcriptional regulation of the 
encoding gene. Rather, such measures provide a 
static snapshot of mRNA levels without yielding 
insight into how the genes are regulated by 
subsequent stimuli. Another limitation, regardless 
of the platform used, is the very high rates of false-
positive and false-negative findings, even within 
the same laboratory. This variability has proven a 
major hindrance in gene discovery efforts and has 
made longitudinal studies (i.e., identifying in animal 
models long-lasting changes in gene expression that 
contribute to addiction vulnerability over a lifetime) 
very challenging.

Recent advances
Recent advances in chromatin biology have made 
it possible for the first time to extend this level of 
knowledge, based on gene expression microarrays, to 
direct examination of transcriptional mechanisms. 
Thus, we now know, largely from studies of nonneural 
tissue, that the state of activation or repression 
of a gene is typically reflected in the covalent 
modifications of histone proteins in the gene’s vicinity 
as well as in a host of other chromatin modifications 
(Borelli et al., 2008). Recent work has demonstrated 
robust regulation of epigenetic mechanisms by drugs 
of abuse (McQuown and Wood, 2010; Robison 

and Nestler, 2011). We believe that analysis of the 
epigenetic landscape of genes will assist significantly 
in defining drug-induced changes in gene expression 
within the brain’s reward circuitry.

Experimental Approaches
Next-generation sequencing 
technologies
Our approach to defining the drug “transcriptome” 
is to overlay several types of information from the 
coordinated use of RNA-Seq, ChIP-Seq, and related 
methods. RNA-Seq has many advantages over older 
microarray technology because it provides a far more 
complete and quantitative analysis of expressed 
RNAs within a microdissected brain region. It 
better captures and distinguishes between multiple 
splice variants of a gene, and it enables the analysis 
of several forms of noncoding RNAs, both long and 
short species. The limitation of RNA-Seq is that it 
results in extremely large and complicated datasets 
whose analysis is not as established as for microarrays.

Likewise, ChIP-Seq is superior to earlier 
methodologies, such as ChIP-chip (the analysis 
of immunoprecipitated DNA on promoter chips). 
ChIP-Seq provides far more precise information 
concerning the binding site of a particular 
transcription factor or modified histone. It is also 
more quantitative than ChIP-chip and far more 
comprehensive: ChIP-chip allows the analysis of 
only promoter regions, whereas ChIP-Seq provides 
a full genomewide view of chromatin modifications. 
This advantage is particularly important, since we 
know that nonpromoter regions are crucial for gene 
regulation and that regulation of nongenic regions 
likely contributes to the genomic effects of drugs  
of abuse.

There is particular interest in defining changes in 
DNA methylation genomewide in drug addiction 
models, based on the view that this regulatory 
mechanism likely contributes to the long-lasting 
effects of drug exposure on gene expression. Indeed, 
DNA methyltransferases and methyl-DNA binding 
proteins have been implicated in drug action (Deng 
et al., 2010; Im et al., 2010; LaPlant et al., 2010). 
However, genomewide approaches to analyze the 
specific genes affected by methylation in drug abuse 
models have not yet been reported.

Our published work to date validates this general 
approach to defining the drug transcriptome, although 
it has relied thus far on ChIP-chip technology. An 
example of our approach is shown in Figure 1. We first 
used ChIP-chip to define gene promoters in nucleus 
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Figure 1. Regulation of ∆FosB and phospho-CREB binding at gene promoters in nucleus accumbens by chronic cocaine admin-
istration. A, Venn diagrams of genes that show significant levels of ∆FosB or phospho-CREB binding, or of H3/H4 acetylation or 
H3 methylation (dimethylation of Lys 9 or 27), after 7 days of cocaine. B, Patterns of ∆FosB (green) and phospho-CREB (purple) 
binding at representative gene promoters after chronic cocaine (solid line) or saline (dotted line) treatment. Short bold lines on the 
x-axes indicate positions of consensus or near-consensus AP1 (red) or CRE (orange) sites. C, The top panel illustrates significant 
∆FosB target genes from ChIP-chip (histogram) after chronic cocaine exposure and how expression of the encoded mRNAs are 
regulated upon inducible overexpression of either ∆FosB or its dominant negative antagonist ∆cJun in nucleus accumbens (heat-
maps) (ρ = –0.09, p = 0.005). The bottom panel illustrates significant phospho-CREB target genes from ChIP-chip (histogram) 
after chronic cocaine exposure and how expression of the encoded mRNAs is regulated upon inducible overexpression of either 
CREB or its dominant negative antagonist mCREB (heatmaps) in the nucleus accumbens (ρ = –0.3; p < 1E-16). Renthal et al. 
(2009), their Figure 2, reprinted with permission.



49

NOTESaccumbens that show enrichment of ∆FosB or phospho-
CREB (the active form of CREB) binding as well as a 
change in histone H3 or H4 acetylation (a major mark 
of gene activation) or a change in repressive histone 
methylation (dimethylation of Lys 9 or 27 on H3) 
in response to chronic exposure to cocaine (Fig. 1A) 
(Renthal et al., 2009). Examples of specific genes are 
shown in Figure 1B. We then asked how these patterns 
of chromatin modifications relate to earlier studies 
where we defined the mRNAs that are regulated in 
nucleus accumbens upon the inducible overexpression 
of ∆FosB or CREB, or a dominant negative antagonist 
of these transcription factors, in this brain region 
(McClung and Nestler, 2003). As Figure 1C shows, 
there is considerable overlap across these various 
levels of analysis, which provides important validation 
of this experimental approach and reveals a subset 
of genes that shows robust regulation by cocaine. 
Indeed, genes that display regulation across these 
several platforms of analysis can be viewed as bona 
fide cocaine targets, since ~90% are validated upon 
analysis of independent tissue samples.

Role of sirtuins
These gene discovery efforts are providing novel 
understanding into the molecular basis of addiction. 
An example is provided by the sirtuin class of proteins 
(categorized as Class III histone deacetylases), which 
regulates numerous cell functions through the 
deacetylation of histones and many other proteins. 
Sirtuins had not been implicated in drug abuse until 
our genomewide studies, which found significant 
induction of H3 acetylation at the SIRT1 and SIRT2 
gene promoters, along with enrichment of ∆FosB at 
SIRT2, in nucleus accumbens after chronic cocaine 
administration (Renthal et al., 2009). Based on these 
findings, we validated the hypothesis that chronic 
cocaine use indeed induces SIRT1 and SIRT2 
mRNA expression as well as catalytic activity in this 
brain region. We subsequently demonstrated that 
local activation of SIRTs increases the firing rate of 
nucleus accumbens neurons and enhances behavioral 
responses to cocaine, including increased cocaine 
self-administration, whereas inhibition of SIRTs in 
this region exerts the opposite effects (Renthal et al., 
2009). These findings illustrate how the genomewide 
approaches described here can lead to fundamental 
new insights into how cocaine changes the brain to 
cause addiction.

Chromatin studies
Chromatin studies also make it possible to go well 
beyond a static view of steady-state mRNA levels. 
These studies are able to identify those genes primed 
(sensitized) for greater induction, or desensitized 

for diminished induction, as a consequence of prior 
drug exposure, providing a far more dynamic view 
of gene regulation (Maze et al., 2010; Robison and 
Nestler, 2011). For example, we are finding that 
certain chromatin marks (e.g., the binding of certain 
phosphorylated forms of RNA polymerase II to gene 
promoters) provide a mark of genes that are poised 
for sensitized induction in response to subsequent 
exposure to cocaine (Damez-Werno et al., 2012).

Importantly, chromatin studies provide the first ever 
insight into the molecular mechanisms underlying 
gene regulation in the brain in vivo (Robison and 
Nestler, 2011). By contrast, all prior studies have 
relied by necessity on examining the mechanisms 
underlying a change in mRNA levels by working 
in cell culture, even though we know that what 
happens in cultured cells—even cultured neurons—
does not accurately reflect what occurs in the intact 
brain. Epigenetic studies thus reveal truly unique 
insight into the molecular mechanisms underlying 
addiction. Our work on ∆FosB and CREB, and 
associated histone modifications, represents early 
efforts to define the precise transcriptional steps 
through which cocaine alters the epigenetic status at 
specific genes in concert with their regulation within 
the nucleus accumbens in vivo.

Finally, work at the chromatin level is beginning 
to define the effects of drug exposure at nongenic 
regions. In a recent study, we found that chronic 
administration of cocaine decreases total levels of 
H3K9me3 (trimethylation of Lys9 of H3) in nucleus 
accumbens, as measured by Western blotting and 
immunohistochemistry (Maze et al., 2011). This was 
a surprising finding, since H3K9me3 has been shown 
in other, nonneural systems to be concentrated in 
heterochromatic regions of the genome where it 
would not be expected to regulate gene expression 
(Barski et al., 2007). This finding was also confirmed 
for nucleus accumbens by ChIP-Seq, where we 
found the H3K9me3 mark to be enriched almost 
exclusively at nongenic regions and yet to be 
dynamically regulated by cocaine (Maze et al., 
2011). In fact, we found that chronic cocaine use 
reduces H3K9me3 levels at many repetitive genomic 
sequences, including at LINE-1 (long interspersed 
nuclear element-1) repeats, and increases expression 
of LINE-1 retrotransposons in this brain region. 
Although the functional consequences of this 
regulation remain unknown, these observations 
further illustrate the complex genomic regulation 
that a drug of abuse induces within specific regions of 
brain: information accessible only through advanced 
sequencing methodologies.

© 2012 Nestler
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NOTES Future Directions
Our ultimate goal is to define codes of chromatin 
modifications that can be used to predict altered 
steady-state RNA expression levels or active priming 
or desensitization of genes in response to subsequent 
stimulation. A related goal is to identify codes of 
chromatin modifications that can predict highly 
stable modifications (as opposed to the majority 
of chromatin changes observed to date, which are 
highly labile) and thereby mark genes that are good 
candidates for mediating the very persistant (in 
some cases, life-long) nature of addiction. Whether 
such codes in fact exist remains unknown, as work 
to date has revealed an extraordinary complexity of 
chromatin mechanisms in the brain. Nevertheless, 
delineating such mechanisms of gene regulation 
will facilitate the identification of the genes and 
biochemical pathways involved in distinct aspects 
of the addiction syndrome and should provide new 
pathways forward in the development of novel 
therapeutics for drug addiction.
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NOTESIntroduction to  
Transcriptomics Analysis
Transcriptomics analysis provides valuable qualitative 
and quantitative information about the global set of 
messenger RNAs (mRNAs) in a given sample. From 
such studies, tens of thousands of transcripts can be 
investigated simultaneously, from which information 
can be inferred about the sample’s biochemical 
and functional properties. The most frequently 
used methods today to sample the transcriptome 
are cDNA microarrays and next-generation RNA 
sequencing (RNA-Seq) (Lockhart and Winzeler, 
2000; Mortazavi et al., 2008). 

Microarrays
Microarrays have been used extensively over the past 
decade in order to investigate the relative expression 
of specific mRNAs among different cell samples 
(Table 1). The major drawback of microarrays is 
that detection is based on the hybridization signal 
between an oligonucleotide anchored onto the chip 
and the fluorescently tagged nucleotide sample. This 
detection principle requires prior knowledge about the 
nucleotide sequences to be investigated and cannot 
lead to discoveries about, for instance, novel transcripts, 
splice variants, and retained introns. Also, the 
inherently high background noise on most commercial 
microarrays makes distinguishing between low-
abundant RNAs and false-positives difficult, so such 
information must be validated using other methods, 
e.g., in situ hybridization. However, microarrays do 
provide a robust method for investigating sequence-
specific mRNA abundances and thus, they remain a 
powerful quantitative method for most transcripts.

RNA sequencing
In contrast, the recent development of RNA-Seq 
has made unbiased mRNA sequence examination 
possible and eliminated concern about low-abundant 
transcripts, false-positives, and prior knowledge 

about sequence information. As in the examples 
given below, RNA-Seq makes unbiased sequence 
discoveries possible and has been applied to solving 
a variety of problems and discoveries, e.g., retained-
introns, alternative splicing, and microRNAs 
(miRNAs). Although the algorithms for comparative 
quantification of specific transcripts are still being 
developed for RNA-Seq, this method is far superior 
to microarrays and provides a vast amount of detailed 
sequence information (Wang et al., 2009).

Transcriptome Data: One of a  
Kind or Just Average?
While transcriptome-generating methods can 
produce a vast amount of expression data, the 
interpretation of such data depends entirely on 
the type of sample. Studying the transcriptome of 
pools of cells provides a unique window into their 
biochemistry and function; however, information 
about cell-to-cell variability is lost. This becomes 
especially significant if the pool of cells is very 
heterogeneous, such as in intact brain tissue. The 
advantage of performing single-cell transcriptomics 
can easily be appreciated when considering the 
effect of averaging over the entire pools of cells. 
Furthermore, several single-cell transcriptome studies 
have concluded that single cells, even of the same 
type, are unique, and their subtleties of expression 
differences can have important biological functions. 
Limited information exists about the transcriptional 
differences among single neurons in vivo. Even so, 
one can easily speculate about how single neurons 
provide an especially unique system with inherent 
single-cell variability that may account for the 
differences in functional properties of those neurons 
and permit plasticity-associated changes.

The transcriptome of mRNA extracted from bulk 
tissue will give insight into the types of mRNAs 
species in the tissue. However, information about 

© 2012 Eberwine

Single-Cell Transcriptomics in the Brain

Table 1. Comparison of transcriptome analysis methodsa

 Property Microarrays RNA-Seq

Quantitative ** ***

Qualitative ** ***

Low-abundant mRNA detection * ***

Generation of false-positives *** *

Costb * ***

a Increasing numbers of asterisks signify increased ability to generate the itemized data, e.g., RNA-Seq.
b More asterisks signify increased cost.
***, generates more quantitative data than microarrays, **.
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NOTES individual cells where these mRNAs originated from 
will be lost (Fig. 1). The result of this “averaging 
effect” will mask information about mRNA species 
that are present only in a subset of cells in the tissue, 
as their impact will be diluted. If microarray profiling 
is used, such subset-specific transcripts may be diluted 
out even beyond the detection limit; consequently, 
they will not be detected at all. In addition, the use of 
transcriptome profiling on mRNA samples from bulk 
tissue or pools of cells prevents us from distinguishing 
whether two mRNA species, X and Y, that function 
in the same signaling pathway are coexpressed in the 
same cell or expressed by different cells. Inferring 
information about the regulation of existing 
pathways is therefore also compromised. Although 
network analysis has been applied to transcriptome 
data from bulk tissue as a pathway-mapping tool in 
individual cell types, for the reasons stated above, 
this method can mistakenly conclude the existence 
of pathways. That is, X may be expressed exclusively 
by cell A, and Y may be expressed exclusively by cell 
B, so although they both are detected in the bulk 
mRNA, they actually cannot interact (Fig. 1).

The averaging effect will also mask information 
about cell-to-cell variability in the expression level 
of mRNAs that are expressed by the majority of cells 
in the tissue (Fig. 1). For instance, the majority of 
cells may express transcript Z, but at the single-cell 

level, Z can be expressed at either a high level, a low 
level, or not at all. However, such information is 
masked by the averaging effect, another argument for 
why single-cell transcriptomics is crucial to employ 
for questions related to how single cells function and 
interact with one another.

Single-Cell mRNA Isolation Methods
Clearly, the averaging effect has an important impact 
on the interpretation of transcriptome data if the 
tissue contains several unique cells or cell types. This 
is particularly true for brain tissue, which contains 
neurons, glia, and vascular cell types. In order to 
investigate how these cell types differ and how cell-to-
cell variability characterizes single cells, one must apply 
transcriptomics to single cells instead of bulk tissue. 
The use of dispersed cell cultures could be an option to 
easily isolate single cells and perform transcriptomics 
on such samples. Nevertheless, the ultimate capture 
of a transcriptome is to sample cells from live intact 
tissue, in which all the synaptic architecture and cell-
to-cell interactions are still in place. 

Live intact tissue sampling can be accomplished by 
using acutely cut live brain slices or sampling cells 
in live animals through cranial windows. However, 
several technical obstacles prevent single-cell 
mRNA isolation in intact tissue. Brain tissue is very 
heterogeneous, and most cell types within the brain 

© 2012 Eberwine

Figure 1. The “averaging effect.” Transcriptomes of mRNA from bulk tissue (left) that comprises many cell types is subjected 
to an averaging effect in which mRNA data from each is averaged. This effect results in the dilution of mRNA species that are 
only present in a subset of cell transcripts (green and red). In contrast, transcriptomes from single cells (right) precisely report the 
abundances of each mRNA specie relative to other mRNA species in that particular cell.
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NOTEShave polarized and highly branched morphologies that 
intermingle. This anatomical feature compromises 
our ability to isolate single cells because the degree of 
contamination from neighboring cells is significant. 
Although laser capture microdissection (LCM) is 
capable of isolating single cells from frozen and fixed 
tissue (Espina et al., 2006; Tang et al., 2009), these 
procedures adversely affect RNA quality. Also, LCM 
adds a significant degree of RNA contamination 
from neighboring structures to the dissected sample 
compared with other intact-tissue RNA isolation 
methods, such as fluorescence-activated cell sorting 
(FACS), immunopanning, and manual sorting 
(Okaty et al., 2011).

Perhaps the most successful single-cell RNA 
isolation method used in intact tissue to date is the 
micropipette approach, which isolates cytosolic 
mRNA from whole-cell patched cells by aspirating 
the cytosol (Surmeier et al., 1996; Martina et al., 
1998). This method has been used in a variety of 
cell types including neurons of the preoptic area of 
the mouse hypothalamus, pyramidal neurons of the 
hippocampus, and serotonergnic neurons of the raphe. 
Indeed, it was using this approach that researchers 
first demonstrated that hundreds of G-protein coupled 
receptor (GPCR) genes can be expressed in a single 
cell. Data such as these offer a rationale for choosing 
receptor agonists and antagonists, to be used alone 
or in combination with other drugs (e.g., 5-HT1 
agonists), for physiological testing in selected cells or 
to study specific behavioral responses.

However, it should be noted that the use of a 
patch pipette to harvest cells from a live slice will 
cause mechanical damage to the slice. Thus, the 
development of an RNA isolation method that could 
isolate mRNA from single cells (or even subcellular 
structures, like dendrites) without contamination or 
induction of injury-related pathways would provide a 
valuable tool for studying single-cell transcriptomics.

Once mRNA has been isolated from a single cell, it 
has to be processed to prepare it for the downstream 
transcriptome method. First the mRNA has to 
be amplified, since the amount of mRNA from a 
single cell falls in the hundreds of femptograms-to-
picograms range—far below the detection limit of 
most transcriptome methods, including RNA-Seq. 
In order to perform quantitative transcriptome 
analysis, it is crucial to use linear amplification (as 
opposed to PCR amplification) of the mRNA to 
maintain the stoichiometry among the different 
mRNA species (Morris et al., 2011). Linear 
amplification techniques are well developed. 

Following amplification of the mRNA to micrograms 
of amplified RNA (aRNA), either the aRNA need 
to be processed for microarray or RNA-Seq libraries 
need to be constructed. Altogether, these processing 
procedures take approximately one week before the 
prepped sample can be submitted to a microarray or 
RNA-Seq facility.

Single-Cell Transcriptomics to 
Distinguish TIPeR Transcriptome 
Transfer
Transcriptome profiling of single cells can be used to 
address a variety of scientific problems. In our lab, 
we previously used single-cell transcriptomics to 
validate transcriptome-induced phenotype remodeling 
(TIPeR)–mediated cell-to-cell transcriptome transfers 
(Sul et al., 2009). TIPeR is the process by which RNA 
populations are transferred into single cells to alter or 
remodel their phenotype. A successfully remodeled 
TIPeR cell will gradually change its transcriptome 
through activation and suppression of host-cell 
transcriptional pathways from the host cell toward that 
of the desired cell type. This process eventually gives 
rise to new cellular phenotypes in the TIPeR cells and, 
potentially, may be used in cell-replacement therapies.

To validate the transfer of the TIPeR cells, poly-A+ 
tailed mRNA from single TIPeR cells is linearly 
amplified (Morris et al., 2011) and processed for 
microarray or RNA-Seq analysis. Microarray data 
from TIPeR cells can be analyzed using conventional 
analysis software with modified algorithms that 
account for the 3' end amplification bias. To deal with 
the bias, these algorithms extract the second highest 
intensity values from each probe set and use them for 
quantitative expression analysis. Once the program 
obtains expression values, it selects probe sets based on 
their ability to distinguish the donor from the recipient 
TIPeR cells. Most often, such probe sets are cell-type–
specific transcripts. The analysis results are presented 
in the form of clustering, differential gene expression 
profiles, and gene ontology tables to show the difference 
between TIPeR cells and non-TIPeR cells.

In a previous study, we used the TIPeR approach 
to transfer the transcriptome of cardiomyocytes 
into mouse fibroblasts, which converted the 
phenotype of the fibroblasts into cardiomyocyte-
like cells (tCardiomyocyte) (Kim et al., 2011). 
Besides examining phenotypic signs of successful 
conversion, the TIPeR process was validated using 
single-cell transcriptomics, as described above. To 
this end, we isolated poly-A+ RNAs from single adult 
cardiomyocytes, tCardiomyocytes, control cells, and 
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Figure 2. Transcriptomics used to validate TIPeR-mediated phenotype conversion. Global gene expression of tCardiomyocytes is 
reprogrammed toward adult cardiomyocytes. Dendrogram and heatmap show hierarchical clustering (Euclidean distance, complete 
linkage) of single cardiomyocytes, fibroblasts, cardio-TIPeR, and mock transfection using the expression values of 418 informative genes.
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NOTESfibroblasts 3–4 weeks after transfection and then 
amplified and processed the mRNA for microarray 
and transcriptome analysis. A comparison of the 
transcriptomes showed that tCardiomyocytes 
clustered closely with adult cardiomyocytes and 
far from fibroblasts, as expected for successful 
TIPeRing. However, not all TIPeR cells clustered 
with fibroblasts, suggesting that some TIPeR cells 
are not remodeled completely (Fig. 2). Global gene 
expression profiles also show that the expression 
pattern of differentially regulated genes was similar 
between tCardiomyocytes and adult cardiomyocytes 
but differed from TIPeR control cells or fibroblasts 
(Fig. 2). In conclusion, single-cell transcriptomics is 
a powerful method to validate TIPeR cells. 

Single-Cell Transcriptomics for 
Discovering Novel Transcripts
RNA-Seq has allowed for the unbiased discovery of 
functionally important, low abundance transcript 
variants that would have been missed using 
conventional approaches. For example, a broad class 
of cytoplasmic intron-retaining transcripts (CIRTs) 
has been described in the dendrites of primary rat 
neurons (Buckley et al., 2011). Sequencing libraries 
constructed from the mRNA of mechanically isolated 
dendrites revealed not only coding region sequences 
for dendritically localized transcripts but also a 
subset of intronic regions located across the genomic 
organization of their respective genes. Although 
feasible, using microarray or PCR techniques to screen 
for these retained introns represents a significant 
challenge because it requires a priori knowledge of 
sequences that may be retained and decisions regarding 
which intronic sequences to target.

Further, these retained intron sequences have been 
demonstrated as functionally relevant for normal 
cellular function in neurons. Introducing small 
interfering RNA (siRNA) that targets a retained 
intron in KCNMA1 leads to alterations in the protein 
distribution of the channel as well as changes to 
the intrinsic excitability of cells (Bell et al., 2008). 
Additionally, intron definition (ID) element sequences 
harbored within retained introns of the CAMK2B 
and FMR1 transcripts are capable of competing for 
endogenous targeting machinery for those transcripts 
and impacting both RNA and protein distribution 
throughout the cell (Buckley et al., 2011). These 
results have linked relatively rare transcripts directly to 
observable endogenous functions. The identification 
of these sequences would not have been possible 
without current single-cell techniques like RNA-Seq.

Conclusions
Single-cell biology has undergone dramatic 
developments over the past decade. Performing single-
cell transcriptomics from live cells in complex tissues 
is still difficult. Nevertheless, the development of 
novel methods that can isolate RNA from single cells 
with little resultant tissue damage promises to yield 
new insights into gene regulation of individual cells 
and how single cells in multicellular organisms work 
in concert. As more quantitative single-cell methods 
are being developed for sampling other “omes” (e.g., 
the proteome or metabolome), such large-scale data 
can be correlated to elucidate the link between gene 
expression and a cell’s functional properties. It is 
through such correlations at the level of the single cell 
that the complexities of gene-product interactions will 
be identified. The goal of such research is to rationally 
modify these biological processes to produce predicted 
outcomes, including disease therapies.
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