Mapping the Genomic Pathways That Dysregulate Brain Inhibition in Disease

Shelley J. Russek, PhD

Laboratory of Translational Epilepsy Department of Pharmacology and Experimental Therapeutics Boston University School of Medicine Boston, Massachusetts

Introduction: The Role of GABA in the CNS

GABA is the major inhibitory neurotransmitter in the CNS. It activates three different classes of receptors: the ionotropic type A receptor (GABA_AR) and type C receptor (GABA_C) and the G proteincoupled type B receptor (GABA_B). In the retina, the GABA_C receptor regulates fast synaptic inhibition, while in the brain, this function is specific to the GABA_AR (MacDonald and Olsen, 1994; Bormann and Feigenspan, 1995; Rabow et al., 1995; Sieghart and Sperk, 2002). GABA_B receptors are involved in slower, more prolonged inhibitory signaling (Jacob, et al., 2008).

GABA_A receptors

Similar to other members of the ligand-gated ionotropic receptor family, such as the nicotinic acetylcholine receptor, the $GABA_AR$ is defined by the assembly of five subunits, as well as the presence of GABA and benzodiazepine (BZ) binding sites (Choi et al., 1981; MacDonald and Olsen, 1994; Chebib and Johnston, 1999). GABA_ARs mediate fast synaptic inhibition by regulating the flow of Cl- ions down their concentration gradient into the cell to hyperpolarize the postsynaptic neuronal membrane, hindering the spread of excitability (Costa, 1998). While GABA is an inhibitory neurotransmitter in the adult brain, in embryonic and early postnatal mammalian hippocampal neurons, synaptically released or exogenously applied GABA depolarizes and excites postsynaptic membranes via GABA_AR activation (Cherubini et al., 1991). This excitatory response has been attributed to the presence of an embryonic chloride transporter (NKCC1 [sodiumpotassium-chloride cotransporter 1) that increases intracellular chloride concentration opposed to KCC2, which is expressed in adult neurons and extrudes Cl- (Ben-Ari, 2002).

Role in normal development and disease

Dynamic changes in NKCC1 expression during brain development have recently been associated with the critical migration of neuroblasts to their targets (Mejia-Gervacio et al., 2011), while misexpressed NKCC1 has been implicated in multiple disorders, including epilepsy (Palma et al., 2006). Moreover, a role for the excitatory function of GABA has been proposed for the development of synaptic connections, as well as the subsequent plasticity and establishment of key neuronal networks dysregulated in developmental disorders such as autism (Kriegstein and Owens, 2001). GABA plays a highly significant role in both the developing nervous system, the adult brain, and the compromised brain (as reflected in multiple disease states). As a result, our laboratory has had a longstanding interest in identifying specific protein–DNA interactions that regulate the transcription of unique GABA_AR subunit genes (GABRs) and critical GABA_AR-associated proteins. Our investigations are meant to shed light on the genome response that shapes both present and future affective and cognitive behavior.

The GABA_AR Genome and Its Gene Products

GABA_AR subunits

In mammals, GABA_AR subunits are divided into seven subunit classes based on sequence homology; including α_1 -6, β 1-3, γ 1-3, δ , ε , θ , and π (Rabow et al., 1995). Although the majority of genes coding for multi-subunit receptor families lie scattered in the genome, evolution has preserved the organization of the GABA_AR subunit genes, challenging us to understand the forces behind cluster preservation and expansion. Conservation of gene order and orientation on human chromosomes is shown in Figures 1 and 2. Taken together with the conservation of intron position in the β genes (Russek and Farb, 1994), it demonstrates that the diversity of GABA_A receptor subunit genes originated from the duplication of an ancestral gene and the subsequent translocation of an ancestral gene cluster (Russek, 1999). Head-to-head orientation of the α and β subunit genes also suggests that they may be positively or negatively regulated by the proximity of regulatory elements.

Additional GABA_AR subunit variants are observed from alternative splicing of individual subunit transcripts (Barnard et al., 1998; Jacob et al., 2008). Subunits within groups share 60-80% homology, whereas between different subunit families, homology is only 30% (Costa, 1998). GABA_ARs are assembled from subunits in the endoplasmic reticulum (ER) (Jacob et al., 2008). Their departure from the ER depends on proteins reaching conformation maturity, contributing to a diverse population of GABA_ARs at the cell surface. While many subunit conformations are possible, only a limited number of $GABA_{A}Rs$ actually exit the ER, as less than 25% of translated subunits assemble into GABAARs (Gorrie et al., 1997). Misfolded or nonassembled subunits are degraded through the ubiquitin-proteasome pathway (Bedford et al., 2001; Jacob et al., 2008). Once assembled, GABA_ARs are trafficked to the Golgi to be packaged into vesicles for transport to and insertion into cellular membranes (Jacob et al., 2008).

Figure 1. Gene organization is conserved for the GABA_A receptor gene clusters on human chromosomes 4, 5, 15, and X. Orientation of subunit genes are indicated by arrow direction. (The schematic is not drawn to scale.) The most current cytogenetic localization of the gene cluster is indicated next to the chromosome number. Information for chromosomes 4 and 5 is presented in Russek, 1999. Information for chromosomes 15 and X is from Greger et al., 1995; Levin et al., 1996; and Wilke et al., 1997. Note that no β 4 (avian) was ever reported in mammals and that sequencing of the genome revealed presence of θ in that position for rodents and humans.) Russek, 1999, Figure 5, reprinted with permission.

Figure 2. Schematic representation of the genomic organization of GABA_A receptor gene clusters on chromosomes 4, 5, and 15 in the human genome. Estimates of genomic distance between genes on chromosomes 4 and 5 were obtained from interphase mapping. Distance measurements for the genes on chromosome 15 were obtained by restriction fragment-length fingerprinting and interphase fluorescence *in situ* hybridization (FISH) mapping (Greger et al., 1995) and by restriction fragment length analysis with field-inversion gel electrophoresis (Sinnet et al., 1993). Measurements are close to the distance verified by sequencing of the human genome. The diagram has been drawn to scale. Scale bar: 100 kb. Russek, 1999, Figure 3, reprinted with permission.

Pharmacological properties of GABA₄Rs

Different GABA_AR subtypes, a product of differential subunit composition, confer distinct receptor localization and function. Fully functional GABA_ARs require at least one α , one β , and one other subunit type, allowing for GABA-gated Cl⁻ flux (Pritchett et al., 1989; Johnston, 1996; Chebib and Johnston, 1999). The most common receptor subtype contains 2α , 2β , and 1γ (or δ) subunit (MacDonald and Olsen, 1994; Jacob et al., 2008).

GABA_ARs are the site of action for many therapeutics, including barbiturates, benzodiazepines (BZs), ethanol, and anesthetic steroids (Vicini, 1991; MacDonald and Olsen, 1994; Brooks-Kayal et al., 1998a). Research has demonstrated that different subunits confer distinct pharmacological properties to GABA_ARs. For example, BZs act as allosteric modulators of GABA_ARs, amplifying GABA signaling with varying levels of efficacy depending on the α and γ subunits present in the complex (Pritchett et al., 1989). Neurosteroids and barbiturates can also amplify GABA-gated current in most GABA_AR subtypes, by increasing chloride channel open time (Costa, 1998; Puia et al., 1990). In the adult brain, α_1 is the most abundant GABA_AR subunit and is found in 50% of GABA_ARs (Duggan and Stephenson, 1990; McKernan et al., 1991). In general, receptors containing α_1 are mostly synaptic, sensitive to BZ, insensitive to zinc inhibition, and mediate most phasic inhibition in the brain (Pritchett et al., 1989; Puia et al., 1991; MacDonald and Kapur, 1999).

Levels of α_1 subunit expression can be altered by treatment with different mediators of synaptic signaling, suggesting that its expression may be activitydependent. Treatment with NMDA stimulates α_1 expression in cultured cerebellar granule cells (Harris et al., 1994; Zhu et al., 1995). In contrast, prolonged treatment with GABA or BZ decreases α_1 expression in cortical and hippocampal neurons, respectively (Tietz et al., 1993; Lyons et al., 2000). Additional experiments using immunoprecipitation with subunit-specific antibodies followed by radiolabeled muscimol binding (a ligand that binds to the GABA binding site between α and β subunits) found that α_1 precipitated 70–90% of radiolabeled muscimol binding sites from rat or mouse brain membrane extracts (Sieghart and Sperk, 2002).

Alpha4 GABA_A receptors

GABA_ARs containing α_4 are less abundant, detected mainly in the hippocampus and thalamus (Rabow et al., 1995; Whiting et al., 1995; Benke et al., 1997; Sur et al., 1999). Furthermore, GABA_ARs containing α_4 subunits are predominately extrasynaptic, insensitive to BZs, sensitive to zinc inhibition, and mediate tonic inhibition (Knoflach et al., 1996; Benke et al., 1997; Fisher and MacDonald, 1998; Lagrange et al., 2007). Immunoprecipitation experiments with α_4 subunit–specific antibodies detected α_4 in only 6% of GABA_ARs in the brain (Sieghart and Sperk, 2002).

Altered expression of GABA_ARs

Differences in the number and subunit composition of GABA_ARs contribute to their unique function in discrete brain regions. Any alteration in such expression has been observed in multiple disease states, including alcoholism, Alzheimer's disease, autism, drug abuse, epilepsy, and schizophrenia. Changes in subunit expression are also observed in many of the comorbidities associated with epilepsy, such as anxiety disorders, cognitive deficits, and depression (Jacob et al., 2008).

With GABA and its type A receptors playing such critical roles in brain development and in brain inhibition more generally, they present a unique opportunity for the research community. The goal is to test the power of modern transcriptomics as a means of uncovering basic principles of brain design and function, which may be represented in the structure of the genome.

Gene Regulatory Networks That **Control GABA** R Subunit Genes

As discussed above, altered GABAergic function has been associated with multiple brain disorders. An additional feature of these disorders is a marked change in neurotrophic signaling, especially as orchestrated by brain-derived neurotrophic factor (BDNF). Work from our laboratory (in collaboration with Amy Brooks-Kayal and her group, who model temporal lobe epilepsy in vivo) has uncovered a unique relationship between these two receptor systems: GABA_ARs and BDNF receptors (trkB and p75 neurotrophin receptor [p75NTR]). These findings suggest the two systems are part of an important gene regulatory network that is active in normal and diseased brain (Brooks-Kayal et al., 2009). Briefly, by activating the trkB receptor and downstream mitogen-activated protein kinase (MAPK) and protein kinase C (PKC) intracellular cascades, BDNF increases levels of early growth response factor 3 (Egr3). Egr3, in turn, is an activator of the GABRA4 promoter that drives the expression of GABA_AR α_4 subunits (Roberts et al., 2005, 2006).

In parallel, working via a novel pathway we have recently shown links p75NTR to the JAK/STAT cascade, BDNF increases levels of inducible cAMP

Figure 3. Effects of ICER induction on cell-surface α_1 expression. Overexpression of ICER decreases the endogenous levels of α_1 subunit detected at the cell membrane. Primary cultured neocortical neurons were cotransfected with pDsRed2-Monomer and ICER expression (CMV-ICER) or control vectors (CMV-empty). At 48 h after transfection, unpermeabilized cells were fixed and stained with an α_1 -specific antibody using a standard protocol. The DsRed-transfected cells were viewed by using an Olympus IX71 inverted fluorescence microscope (Olympus America, Center Valley, PA), and the images were analyzed by using IPLab software (Becton Dickinson, Franklin Lakes, NJ). Representative images are shown (empty vector, top panel; ICER construct, bottom panel). Quantitation data are presented in the histogram (***, p < 0.01; mean ± S.E.; n = 3). FITC, fluorescein isothiocyanate. Hu et al., 2008, their Figure 9B, reprinted with permission.

early repressor (ICER): a repressor of the core GABRA1 promoter (Lund et al., 2008). Figure 3 depicts the overexpression of ICER in primary neurons, a process that alters the number of α_1 subunits at the cell surface (Hu et al., 2008). For the first time, the presence of ICER has been demonstrated to be directly relevant to the disappearance of the subunit from a functional compartment. Multiple intracellular signaling pathways regulate GABRA1 transcription. Figure 4 depicts the process in which activation of PKC enhances transcription while activation of protein kinase A (PKA), like BDNF, represses transcription, dependent on the presence or absence of ICER.

Dynamics of GABA_AR Transcription as Revealed by High-Density ChIP Sequencing

Increased access to new opportunities to probe genome activity at a global level holds great promise of openended discovery in GABA biology in the years to come. Recent evidence suggests that paracrine GABA, released from emerging neuroblasts, may participate in a negative feedback mechanism that causes cells

Figure 4. A model for the role of CREB and ICER in the regulation of *GABRA1* transcription. Activation of the PKC pathway leads to phosphorylation of CREB without induction of ICER. Phosphorylated CREB at Ser-133 forms homodimers to increase *GABRA1* expression (left). Activation of the PKA pathway induces synthesis of ICER and phosphorylation of CREB. Homodimers of ICER or ICER and CREB heterodimers repress transcription of *GABRA1* (right) and alter the number of α 1-containing GABA_ARs (α 1-GABAR) at the cell surface. None α_1 subunit–containing protein. Hu et al., 2008, their Figure 10, reprinted with permission.

to exit the cell cycle, producing fewer progenitors and supporting cellular differentiation (LoTurco et al., 1995, Kreigstein and Owens, 2001; Andäng et al., 2008) . The identification of early GABA as a switch that may control the potential pool of neural progenitors in the developing brain has shed light on the importance of studying this receptor system in the embryo, in addition to the adult brain, where most researchers have concentrated their efforts.

As a first step in this direction, we examined the chromatin state of GABR gene clusters in mouse embryonic stem cells (ESs) as compared with ES-derived neural progenitors (NPs), mouse embryonic fibroblasts (MEFs), and whole brain tissue (WB). We used the UCSC Genome Browser (http://genome.ucsc.edu) to analyze the results of chromatin immunoprecipitation (ChIP). ChIP was performed at the Broad Institute, using antibodies to three markers: H3K4me3 (a histone marker of transcriptional activation found at or close to active transcriptional start sites); H3K27me3 (a histone marker associated with genes that are silenced); and H3K36me3 (a histone marker usually found

immediately after transcriptional start sites associated with active transcription) (Mikkelsen et al, 2007; Meissner et al., 2008). Genes displaying a sharp peak at both H3K4me3 and H3K27me3 contain a bivalent chromatin mark that has been associated with marks that play key roles in lineage-specific activation or repression.

Figures 5-7 display the results of ChIP sequencing through three GABR clusters in the mouse genome. Proposed GABRs with the highest probability of being expressed, either at the ES-cell level or upon commitment to NP or MEF, are indicated by red lettering. Analysis of histone marks in these different cell populations suggests that the early GABA_AR is composed of GABRA2, GABRB3, and GABRG1. Results of RNA sequencing will confirm or refute this hypothesis and provide the necessary feedback to determine whether unique histone marks can predict the expression of GABA_AR gene clusters in normal and diseased brains.

Figure 5. *GABRG1*, *GABRA2*, *GABRA4*, *GABRB1* gene cluster. Note that *GABRG1* is not univalent but is marked for transcription in NP, while *GABRA2* is univalent with high levels of expression in NP and H3K36me3 close to the start site.

chr	11 (qA5) 🗾 1	1qA1 qA2	A3.1 A3.3 1	1qA4 <mark>11qA</mark> B	81.1	11qB1.3 B2 11ql	33 B4 11q	B5 11qC	11qD	11qE1	11qE2		
Scale chr11 GC Percen	e : 41,750,000 t	41,800,000	41,850,000	200 kb 1,900,000 4	1,950,00	00 42,000,000	42,050,000	42,100,000	mm8 42,150,00	0 42,200	,000 42,250,	000	
Gabrg2 Gabrg2 Gabrg2 Gabrg2 Gabrg2 Gabra1 Gabra6 Gabra6 Gabra6	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<pre></pre>				∎ {< ⊱ ⊱ 	←~k µ			⊧←₩ ┝←₩		ŧ	
H3K4me3 ES Sig	<u></u>					<u> </u>							
H3K27me3 ES Sig		an an tao an			d as the		ي يور و الم	լ լովեսիս տո	hand a se	un la u		يال الم	ليسله
H3K36me3 ES Sig	athe i a hairean		ha ha ha an			n til na se cula datte.		t and billional die of design		to the second second			
H3K4me3 MEF Sig	ليومون ير والم	and along a strategical sec	A di susi ana si susi susi suto	. <u>ka</u> <u>anklanan dika</u>		an a					har on should not on		
H3K27me3 MEF Sig	أفراءه ورافر تقمط	المراجع والمراجع	و رابط المحمد الم			nana ani akin a a a ana	L. L. Martin	ور السرو يتقال شنو الرو ر	س در سرف الله	halan kata di	ويعط والأرور والأوجور أورج		بيهرسها
H3K36me3 MEF Sig			ما ، برا کرد ، ا				1.14.1.11			de de sé			
H3K4me3 NP Sig	mi a har se	ditiin men a ritera	فيليد بعد وقط يقتصه والملكة	. a			konst di sk. kisos	e e standarildari i A	Life Laduri (k.	مرا با العان			el 101 Miles
H3K27me3 NP Sig	MI LAND	her and the little		يقا بالأربي الا	dente al	المراجع والمراجع المراجع		mu takkonista autor	ي المباردي	الألفاني	المتلطة بأقاريتهم بمل	harmad dill	للقريراول
H3K36me3 NP Sig		անում հայ են հայ	dir a contacto contacto d		ALL III III	n an fhair a chi sair	hell ward		idalidda all	1 Inthe	hi (1949 - 1947		ha ibar
H3K4me3 WB Sig	und an and add					el contra entra antita		Laura Albaharan					
H3K27me3 WB Sig	hà a la luian	un statute en	u daharan sebaga Bel		ار اداری	henry Hole with diverse law of		n al alkla seiter a a	mahluda	.lettels.	يترابا بالتاريية	natulitudint.	

Figure 6. GABRG2, GABRA1, GABRA6, GABRB2 gene cluster. Note that there are no peaks associated with GABRG2 or GABRA6. However, there are univalent marks for ES and MEF with their loss in NP for GABRA1.

Figure 7. GABRG3, GABRA5, GABRB3 gene cluster. Note that all genes in this cluster are univalent with evidence for some GABRB3 in stem cells. There is a loss of a GABRB3 univalent mark in MEF and strong H3K36me3 in NP, suggestive of a transcribed gene.

Breaking New Ground in a Familiar Landscape

Our lab and others across the country have identified a handful of gene regulatory proteins that are critical to the altered expression of certain GABRs in disease models. We have done so through a combination of traditional candidate gene regulatory assays and investigator-driven bioinformatic analysis. These discoveries have opened up new avenues for whole-genome investigations, using the power of ChIP-Seq and RNA-Seq analysis, to determine the transcriptome that is regulated in a coordinate or independent manner. Little is still known about how GABRs are coordinately regulated and why they have remained in clusters throughout our evolution. New techniques such as chromosome conformation capture-as used first to describe the beta-globin locus (Tolhuis et al, 2011)—may be powerful tools for exploring this new and complex territory.

Future discoveries in the field of GABA subunit gene regulation will take place in the background of an extensive history of GABA receptor biology that parallels the development of the larger field of neuroscience. Identifying gene duplications and inversions within GABR clusters that associate with human diseases will also provide a window onto the relationship between GABA_AR number and kind that is key to maintaining a healthy balance of GABAergic neurotransmission in the young and old. These important questions have perplexed neuroscientists for over two decades; finally, the techniques are powerful enough to provide some answers.

References

- Andäng M, Hjerling-Leffler J, Moliner A, Lundgren TK, Castelo-Branco G, Nanou E, Pozas E, Bryja V, Halliez S, Nishimaru H, Wilbertz J, Arenas E, Koltzenburg M, Charnay P, El Manira A, Ibañez CF, Ernfors P (2008) Histone H2AX-dep. GABAR regulation of stem cell proliferation. Nature 451:460–464.
- Barnard EA, Skolnick P, Olsen RW, Mohler H, Sieghart W, Biggio G, Braestrup C, et al. (1998) International Union of Pharmacology. XV. Subtypes of gamma-aminobutyric acid_A receptors: classification on the basis of subunit structure and receptor function. Pharmacol Rev 50:291–313.
- Bedford FK, Kittler JT, Muller E, Thomas P, Uren JM, Merlo D, Wisden W, Triller A, Smart TG, Moss SJ (2001) GABA_A receptor cell surface number and subunit stability are regulated by the ubiquitin-like protein Plic-1. Nat Neurosci 4:908–916.
- Ben-Ari Y (2002) Excitatory actions of GABA during development: The nature of the nurture. Nat Rev Neurosci 3:728–739.

- Benke D, Michel C, Mohler H (1997) GABA(A) receptors containing the alpha4-subunit: Prevalence, distribution, pharmacology, and subunit architecture *in situ*. J Neurochem 69:806–814.
- Bormann J, Feigenspan A (1995) GABA_C receptors. Trends Neurosci 18:515–519.
- Brooks-Kayal AR, Jin H, Price M, Dichter MA (1998) Developmental expression of GABA(A) receptor subunit mRNAs in individual hippocampal neurons *in vitro* and *in vivo*. J Neurochem 70:1017–1028.
- Brooks-Kayal AR, Raol Y, Russek SJ (2009) Alteration of epileptogenesis genes. Neurotherapeutics 6:312–318.
- Chebib M, Johnston GAR (1999) The "ABC" of GABA receptors: A brief review. Clin Exp Pharmacol Physiol 26:937–940.
- Cherubini E, Gaiarsa JL, Ben-Ari Y (1991) GABA: An excitatory transmitter in early postnatal life. Trends Neurosci 14:515–519.
- Choi DW, Farb DH, Fischbach GD (1981) Chlordiazepoxide selectively potentiates GABA conductance of spinal cord and sensory neurons in culture. J Neurophysiol 45:621–631.
- Costa E (1998) From $GABA_A$ receptor diversity emerges a unified vision of GABAergic inhibition. Annu Rev Pharmacol Toxicol 38:321–350.
- Duggan MJ, Stephenson FA (1990) Biochemical evidence for the existence of gammaaminobutyrate_A receptor iso-oligomers. J Biol Chem 265:3831–3835.
- Fisher JL, MacDonald RL (1998) The role of an alpha subtype M2-M3 His in regulating inhibition of GABA_A receptor current by zinc and other divalent cations. J Neurosci 18:2944–2953.
- Gorrie GH, Vallis Y, Stephenson A, Whitfield J, Browning B, Smart TG, Moss SJ (1997) Assembly of GABA_A receptors composed of alpha1 and beta2 subunits in both cultured neurons and fibroblasts. J Neurosci 17:6587–6596.
- Greger V, Knoll JH, Woolf E, Glatt K, Tyndale RF, DeLorey TM, Olsen RW, Tobin AJ, Sikela JM, Nakatsu Y, et al. (1995) The gamma-aminobutyric acid receptor gamma 3 subunit gene (GABRG3) is tightly linked to the alpha 5 subunit gene (GABRA₅) on human chromosome 15q11–q13 and is transcribed in the same orientation. Genomics 26:258–264.

- Harris BT, Charlton ME, Costa E, Grayson DR (1994) Quantitative changes in alpha 1 and alpha 5 gamma-aminobutyric acid type A receptor subunit mRNAs and proteins after a single treatment of cerebellar granule neurons with N-methyl-D-aspartate. Mol Pharmacol 45:637–648.
- Hu Y, Lund I, Gravielle M, Farb DH, Brooks-Kayal AR, Russek SJ (2008) Surface expression of GABA(A) receptors is transcriptionally controlled by the interplay of CREB and its binding partner ICER. J Biol Chem 283:9328–9340.
- Jacob TC, Moss SJ, Jurd R (2008) GABA(A) receptor trafficking and its role in the dynamic modulation of neuronal inhibition. Nat Rev Neurosci 9:331–343.
- Johnston G (1996) GABA(A) receptor pharmacology. Pharmacol Ther 69:173–198.
- Knoflach F, Benke D, Wang Y, Scheurer L, Lüddens H, Hamilton BJ, Carter DB, Mohler H, Benson JA (1996) Pharmacological modulation of the diazepam-insensitive recombinant gammaaminobutyric acid_A receptors alpha 4 beta 2 gamma 2 and alpha 6 beta 2 gamma 2. Mol Pharmacol 50:1253–1261.
- Kriegstein AR, Owens DF (2001) GABA may act as a self-limiting trophic factor at developing synapses. Sci STKE 95:PE1.
- Lagrange AH, Botzolakis EJ, MacDonald RL (2007) Enhanced macroscopic desensitization shapes the response of alpha4 subtype-containing GABA_A receptors to synaptic and extrasynaptic GABA. J Physiol 578(Pt 3):655–676.
- Levin ML, Chatterjee A, Pragliola A, Worley KC, Wehnert M, Zhuchenko O, Smith RF, Lee CC, Herman GE (1996) A comparative transcriptional map of the murine bare patches (Bpa) and striated (Str) critical regions and Xq28. Genome Res 6:465–477.
- LoTurco JJ, Owens DF, Heath MJS, Davis MBE, Kriegstein AR (1995) GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 15:1287–1298.
- Lund IV, Hu Y, Raol YH, Benham RS, Faris R, Russek SJ, Brooks-Kayal AR (2008) BDNF selectively regulates GABA_A receptor transcription by activation of the JAK/STAT pathway. Sci Signal 1(41):ra9.

- Lyons HR, Gibbs TT, Farb DH (2000) Turnover and down-regulation of GABA(A) receptor alpha1, beta2S, and gamma1 subunit mRNAs by neurons in culture. J Neurochem 74:1041–1048.
- MacDonald RL, Kapur J (1999) Pharmacological properties of recombinant and hippocampal dentate granule cell GABA_A receptors. Adv Neurol 79:979–990.
- MacDonald RL, Olsen R (1994) GABA(a) receptor channels. Ann Rev Neurosci 17:569–602.
- McKernan RM, Quirk K, Prince R, Cox PA, Gillard NP, Ragan CI, Whiting P (1991) GABA_A receptor subtypes immunopurified from rat brain with alpha subunit-specific antibodies have unique pharmacological properties. Neuron 7:667–676.
- Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, Zhang X, Bernstein BE, Nusbaum C, Jaffe DB, Gnirke A, Jaenisch R, Lander ES (2008) Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454:766–770.
- Mejia-Gervacio S, Murray K, Lledo P-M (2011) NKCC1 controls GABAergic signaling and neuroblast migration in the postnatal forebrain. Neural Dev 6:4.
- Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim TK, Koche RP, Lee W, Mendenhall E, O'Donovan A, Presser A, Russ C, Xie X, Meissner A, Wernig M, Jaenisch R, Nusbaum C, et al. (2007) Genome-wide maps of chromatin state in pluripotent and lineagecommitted cells. Nature 448:553–560.
- Palma E, Amici M, Sprero F, Spinelli G, Di Angelantonio S, Ragozzino D, Mascia A, Scoppetta C, Esposito V, Miledi R, Eusebi F (2006) Anomalous levels of Cl- transporters in the hippocampal subiculum from temporal lobe epilepsy patients make GABA excitatory. Proc Natl Acad Sci USA 103:8465–8468.
- Pritchett DB, Sontheimer H, Shivers BD, Ymer S, Kettenmann H, Schofield PR, Seeburg P (1989). Importance of a novel GABA_A receptor subunit for benzodiazepine pharmacology. Nature 338:582–585.
- Puia G, Santi MR, Vicini S, Pritchett DB, Purdy RH, Paul SM, Seeburg PH, Costa E (1990) Neurosteroids act on recombinant human GABA_A receptors. Neuron 4:759–765.

- Puia G, Vicini S, Seeburg PH, Costa E (1991) Influence of recombinant gamma-aminobutyric acid-A receptor subunit composition on the action of allosteric modulators of gamma-aminobutyric acid-gated Cl⁻ currents. Mol Pharmacol 39:691–696.
- Rabow LE, Russek SJ, Farb DH (1995) From ion currents to genomic analysis: recent advances in GABA_A receptor research. Synapse 21:189–274.
- Roberts DS, Raol YH, Bandyopadhyay S, Lund IV, Budreck EC, Passini MA, Wolfe JH, Brooks-Kayal AR, Russek SJ (2005) Egr3 stimulation of GABRA4 promoter activity as a mechanism for seizureinduced up-regulation of GABA(A) receptor alpha4 subunit expression. Proc Natl Acad Sci USA 102:11894–11899.
- Roberts DS, Hu Y, Lund IV, Brooks-Kayal AR, Russek SJ (2006) Brain-derived neurotrophic factor (BDNF)–induced synthesis of early growth response factor 3 (Egr3) controls the levels of type A GABA receptor alpha 4 subunits in hippocampal neurons. J Biol Chem 281:29431–29435.
- Russek SJ (1999) Evolution of GABA_A receptor diversity in the human genome. Gene 227:213–222.
- Russek SJ, Farb DH (1994) Mapping of the beta2 subunit gene (GABRB2) to microdissected human chromosome 5q34–q35 defines a gene cluster for the most abundant GABA_A receptor isoform. Genomics 23:528–533.
- Sieghart W, Sperk G (2002) Subunit composition, distribution and function of GABA(A) receptor subtypes. Curr Top Med Chem 2:795–816.
- Sinnet D, Wagstaff J, Glatt K, Woolf E, Kirkness EJ, Lalande M (1993) High-resolution mapping of the γ -aminobutyric acid receptor β 3 and α 5 gene cluster on chromosome 15q11–q13, and localization of breakpoints in two Angelman syndrome patients. Am J Hum Genet 52:1216–1229.
- Sur C, Farrar SJ, Kerby J, Whiting PJ, Atack JR, McKernan RM (1999) Preferential coassembly of alpha4 and delta subunits of the gammaaminobutyric acid_A receptor in rat thalamus. Mol Pharmacol 56:110–115.
- Tietz EI, Huang X, Weng X, Rosenberg HC, Chiu TH (1993) Expression of alpha 1, alpha 5, and gamma 2 GABA_A receptor subunit mRNAs measured *in situ* in rat hippocampus and cortex following chronic flurazepam administration. J Mol Neurosci 4:277–292.

- Tolhuis B, Blom M, Kerkhoven RM, Pagie L, Teunissen H, Nieuwland M, Simonis M, de Laat W, van Lohuizen M, van Steensel B (2011) Interactions among polycomb domains are guided by chromosome architecture. PLoS Genet 7:e1001343.
- Vicini S (1991) Pharmacologic significance of the structural heterogeneity of the $GABA_A$ receptor-chloride ion channel complex. Neuropsychopharmacology 4:9–15.
- Whiting PJ, McKernan RM, Wafford KA (1995) Structure and pharmacology of vertebrate GABA_A receptor subtypes. Intl Rev Neurobiol 38:95–138.
- Wilke K, Gaul R, Klauck SM, Poutska A (1997) A gene in human chromosome band Xq28 (GABRE) defines a putative new subunit class of the GABA_A neurotransmitter receptor. Genomics 45:1–10.
- Zhu WJ, Vicini S, Harris BT, Grayson DR (1995) NMDA-mediated modulation of gammaaminobutyric acid type A receptor function in cerebellar granule neurons. J Neurosci 15:7692–7701.