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NOTESIntroduction 
Several disruptive technologies promise a windfall 
of insights and potential approaches to therapeutic 
interventions for neurodegenerative diseases. In 
the realm of genetics, the contributing technologies 
comprise deep sequencing of both genomes and 
transcriptomes, along with the many bioinformatic and 
statistical tools for data analysis. The reprogramming 
of somatic cells, which potentially allows one to 
determine the transcriptome for any cell type on a 
specific individual’s genetic background, is further 
enhancing these approaches.

The Genome
The principal focus of human genomic sequencing 
is genetic variation. Genomic variation arises from 
mutations, e.g., single nucleotide polymorphisms 
(SNPs), insertions and deletions, and copy number 
variation, as well as from recombination and gene 
flow (the movement of genes from one population 
to another). Full genome analyses can track all these 
parameters using a variety of databases and statistical 
tools. It is our opinion that large sequencing centers or 
commercial entities dedicated to genome sequencing 
can most efficiently and economically obtain full 
genomes. In contrast (as will be discussed later on), 
local sequencing in the lab is a preferable method 
for obtaining complete transcriptomes, which often 
have specialized requirements and methods.

A core resource for genome analysis is the Reference 
Sequence (RefSeq) Database. RefSeq is the National 
Center for Biotechnology Information (NCBI) 
database of curated, nonredundant genomic DNA 
contigs; mRNAs and proteins for known genes; and 
entire chromosomes. RefSeq provides a foundation 
for uniting sequence data with genetic and functional 
information. The collection includes sequences from 
more than 12,000 distinct taxonomic identifiers, 
ranging from viruses to bacteria to eukaryotes, and 
represents chromosomes, organelles, plasmids, viruses, 
transcripts, and more than 12.6 million proteins. 
RefSeq is available without restriction and is updated 
daily by NCBI staff and collaborating groups.

Genetic variation is classified as either rare or 
common when compared against all known variation 
in the genome. This distinction is of particular 
interest when considering susceptibility to complex 
diseases, which is a subset of the larger category of 
traits that are inherited by multiple genetic variants. 
Unlike Mendelian traits, which are controlled by 
genes of large effect size and show simple patterns 
of inheritance, the transmission of complex 
phenotypes is governed by multiple factors that lead 

to complicated patterns of familial inheritance. In 
fact, a defining feature of complex phenotypes is that 
no single locus contains alleles that are necessary or 
sufficient for the disease to develop.

How multiple variants affect a phenotype or epistasis is 
an unsolved problem in human genetics. Environmental 
and stochastic factors may also contribute to whether 
or not a particular phenotype appears, given the same 
genetic background. Some complex traits, including 
susceptibility to many neurodegenerative diseases (e.g., 
Alzheimer’s disease, amyotrophic lateral sclerosis, and 
frontotemporal dementia), also have rare Mendelian 
forms. This phenomenon may guide one’s thinking 
about the functional role of genetic variants with small 
effect size.

Genetic factors in complex diseases
Because complex diseases are often prevalent in the 
population, an early hypothesis proposed that the 
genetic factors underlying common diseases would 
be alleles that are quite common in the population 
at large (Lander, 1996; Chakravarti, 1999). However, 
allele frequencies are not smoothly distributed across 
the world’s populations. Instead, their frequencies 
are related more closely to evolutionary processes 
that include selection, mutation, and genetic drift. 
Further, selection in diseases with onset beyond the 
reproductive years must be weighted differently. 
However, even mutations whose primary effect 
manifests late in life may have a weak deleterious effect 
early in life. For example, a mutation that predisposes 
individuals to Alzheimer’s disease might also cause 
subtle changes in brain function earlier on. Indeed, 
some data have suggested this is the case for the risk 
of cognitive decline associated with ApoE4 (Caselli et 
al., 2009). Subtle early changes may have a very small 
selection coefficient; nevertheless, even a selection 
coefficient on the order of 10–4 can affect the frequency 
distribution of an allele (Pritchard, 2001).

The observed allele frequency depends on the 
population under study and arises from that 
population’s evolutionary history. Alleles that have 
been in the population for a long time are more likely 
to have escaped genetic drift, to have been less subject 
to purifying selection, and even possibly to confer some 
weak selective advantage. Nevertheless, gene flow 
may have restricted the presence of an ancient allele 
in isolated populations, and the allele may not confer 
the same advantages or disadvantages on every genetic 
background.

Common variants have been associated with some 
complex traits. Recent examples include hippocampal 
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NOTES volume (which is associated with incipient Alzheimer’s 
disease but reduced in schizophrenia), major depression, 
and mesial temporal lobe epilepsy (Stein et al., 
2012). The associated variant, rs7294919 (12q24.22;  
N = 21,151; p = 6.70 × 10–16), is intergenic, which 
raises a frequently encountered problem: how to 
interpret the mechanism by which a noncoding variant 
contributes to the phenotype. Another example does 
implicate a coding gene—glycerophosphocholine 
phosphodiesterase (GPCPD1) in the highly heritable 
trait of visual cortical surface area (Bakken et al., 
2012), which correlates with visual acuity and 
visual perception. The significantly associated SNP 
(rs238295; p = 6.5 × 10–9) is located within 4 kb of 
the 5'UTR of GPCPD1, which in humans is more 
highly expressed in occipital cortex, compared with 
the remainder of cortex, than are 99.9% of genes 
genomewide. Late-onset Alzheimer’s disease has been 
associated with common variants at MS4A4/MS4A6E, 
CD2AP, CD33, and EPHA1 (Naj et al., 2011).

Alleles that have been in the population a relatively 
short time are more likely to be rare, to have a more 
limited distribution, and in the absence of sufficient 
time for purifying selection, to be deleterious. Owing 
to explosive population growth in certain geographic 
locales, the balance between rare and common 
mutations in many human populations has shifted 
toward an excess of rare genetic variants (Keinan and 
Clark, 2012). For example, rare copy-number variants 
and rare single nucleotide variants occurring as de novo 
mutations are important contributors to the autism 
phenotype (Sanders et al., 2012). Interestingly, multiple 
independent de novo single nucleotide variants in the 
same gene (e.g., sodium channel, voltage-gated, type 
II, α subunit) among unrelated probands were able to 
reliably identify risk alleles. In another study (O’Roak 
et al., 2012), de novo point mutations in autism 
spectrum disorder were found to be overwhelmingly 
paternal in origin (4:1 bias) and positively correlated 
with paternal age. In this study, 39% (49 of 126) of the 
most severe or disruptive de novo mutations mapped 
to a highly interconnected β-catenin/chromatin 
remodeling protein network with recurrent protein-
altering mutations observed in two genes: CHD8 and 
NTNG1. These instructive examples of both rare and 
common alleles contributing to genetic conditions 
point out that, when undertaking genomic analyses, 
dividing SNPs simply into the categories rare or 
common may be an oversimplification.

The genotype–phenotype interface
The transcriptome is the first phenotypic expression 
of the genome. Although RNA sequence space 
maps directly onto DNA sequence space, each 

genotype corresponds to multiple RNA secondary 
structures. Thus, RNA folding can be regarded as a 
minimal model of a genotype–phenotype relation 
(Fontana and Schuster, 1998b) and represents an 
enormous expansion of genotypic space. At this 
level, even neutral change in the genome will alter 
the “statistical topology” of the set of minimum 
free energy secondary RNA structures. These 
RNA structures exist as kinetic minima across a 
Waddingtonian landscape (Waddington, 1957).

In C.H. Waddington’s well-known metaphor, one 
imagines marbles rolling down a hill and competing 
for grooves on the slope, in which they come to 
rest at the lowest points. Although Waddington 
used this imagery to represent developmental cell 
fates, it applies to many phenomena, including the 
variety of possible RNA secondary structures. RNA 
structures that arise from genotypic variation have 
been treated as evolutionary trajectories in which 
some transformations (including those that arise 
from neutral drift) are irreducibly discontinuous and 
likely play a key role in evolutionary optimization 
(Fontana and Schuster, 1998a; Stadler et al., 2001). 
A more in-depth understanding of RNA topologies 
may explain how SNPs in noncoding transcripts 
contribute to phenotypes.

High-Throughput Mapping of  
the Transcriptome
No high-throughput mechanism exists for 
determining RNA topologies. However, the 
technologies to determine RNA transcripts in a 
high-throughput manner, called RNA-Seq or Whole 
Transcriptome Shotgun Sequencing, are flourishing. 
The major platforms, providing what has been called 
deep sequencing or next-generation sequencing, 
are the Illumina Genome Analyzer (Illumina, 
San Diego, CA), ABI Solid Sequencing (Applied 
Biosystems, Carlsbad, CA), and 454 Life Sciences’ 
Sequencing (454 Life Sciences, Branford, CT). 
These technologies offer deep coverage and base-
level resolution from which one can perform several 
tasks: infer differential expression of genes, quantify 
allelic expression, determine differentially expressed 
spliced transcripts, detect noncoding RNAs, editing 
and gene fusions. Although these parameters do not 
capture the entire shape repertoire of RNA, they 
do represent an expansion of genotypic information 
because the deeply sequenced transcriptome is the 
product of both the genome and the epigenome. The 
epigenome controls transcript levels by way of histone 
modifications, DNA methylation, and chromatin 
accessibility as well as translation regulation through 
noncoding RNAs. Therefore, to fully understand 
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NOTESthe significance of the transcriptome, one requires 
knowledge of the underlying genome and epigenome.

The most informative expression sequencing 
techniques use the following:

•	RNA-Seq	libraries	prepared	with	poly(A)	primers	
to obtain mRNAs;

•	RNA-Seq	libraries	prepared	with	random	primers	
to obtain both mRNAs and noncoding transcripts;

•	RNA-Seq	libraries	prepared	from	gel-purified	small	
RNAs to obtain small noncoding transcripts (which 
in the brain are primarily the microRNAs); and

•	RNA	immunoprecipitation	followed	by	sequencing	
(RIP-Seq), to obtain those RNAs that are 
immunoprecipitated with an antibody to an RNA-
binding protein.

Because ribosomal RNA represents more than 90% 
of the RNA within cells, its removal increases the 
capacity to retrieve data from the remaining portion 
of the transcriptome. However, for samples with 
extremely small amounts of RNA (~100 ng) in which 
we could not risk further sample loss with a ribosomal 
removal step, we have sequenced very deeply and 
bioinformatically removed ribosomal sequences.

Aligning transcriptomes to  
genomic databases
Aligning transcriptomes to genomic reference 
databases faces the challenge of aligning transcripts, 
which are usually short reads, when they cross exon 
boundaries. To accomplish this task, specialized 
algorithms for transcriptome alignment have been 
developed, including TopHat (Trapnell et al., 2009) 
and Cufflinks (Trapnell et al., 2010). TopHat is a fast-
splice junction mapper that aligns RNA-Seq reads 
to mammalian-sized genomes using the short-read 
aligner Bowtie. It then analyzes the mapping results 
to identify splice junctions between exons. Cufflinks 
assembles transcripts, estimates their abundances, 
and tests for differential expression and regulation 
in RNA-Seq samples. The program accepts aligned 
RNA-Seq reads, assembles the alignments into a 
parsimonious set of transcripts, and estimates the 
relative abundances of these transcripts based on 
how many reads support each one. To assess relative 
abundance, sequencing reads are often expressed as 
reads per kilobase (RPKMs) of exon model per million 
mapped reads (Mortazavi et al., 2008). These units 
reduce the error associated with unequal reads over all 
the exons of an mRNA. If one is doing paired end-
reads, then the two fragments are counted together.

MicroRNAs are among the various categories of 
transcripts obtained by deep-sequencing techniques 
and are of particular interest to our group. We have 
published a comprehensive deeply annotated set of 
miRNAs from mouse hippocampus and staged sets 
of mouse cells that underwent reprogramming to 
induced pluripotent stem cells (iPSs) (Zhou et al., 
2012). Using a dataset of more than 600 million 
deeply sequenced small RNAs, we annotated the 
stem–loop precursors of the known miRNAs in order 
to identify isomoRs (miRNA-offset RNAs), loops, 
nonpreferred strands, and guide strands. Products 
from both strands were readily detectable for most 
miRNAs. Changes in the dominant isomiR occurred 
among the cell types, as did switches of the preferred 
strand. The terminal nucleotide of the dominant 
isomiR aligned well with the dominant offset 
sequence, suggesting that Drosha cleavage generates 
most miRNA reads without terminal modification. 
Among the terminal modifications detected, most 
were nontemplated mononucleotide or dinucleotide 
additions to the 3'-end.

In addition to these descriptive features, the 
interpretation of the data was enhanced by performing 
RIP-Seq on an Ago-IP fraction. Ago or Argonaut 
proteins are key members of the RNA inhibitory 
silencing complex (RISC), which houses miRNAs 
as they form duplexes with mRNA targets. The 
binding between miRNAs and Ago proteins is very 
tight; therefore, Ago-IP can reveal a set of miRNAs 
associated with the RISC. This approach allowed 
us to predict which miRNA modifications—either 
isomiR modifications or nontemplated additions—
might affect RISC loading. Furthermore, sequence 
variation of the two strands at their cleavage sites 
suggested higher fidelity of Drosha than Dicer.

Preparing iPS-derived neurons
iPSs offer the possibility of analyzing the complete 
transcriptome of any cell type against a specific 
individual’s genetic background. The most common 
approach begins with harvesting skin fibroblasts from 
an individual of interest. A variety of reprogramming 
procedures have been described. These techniques 
are best divided into (1) direct reprogramming to 
the desired cell type and (2) reprogramming first 
to an embryonic stem cell, followed by subsequent 
differentiation to the desired cell type. Although 
some compelling approaches to direct reprogramming 
to neurons have been reported recently (Ring et al., 
2012), we have generally transitioned cells through 
the embryonic stem-cell stage before differentiating 
them to neurons.
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NOTES Although complete control over neuronal fate in 
the dish still requires much further experimental 
work, differentiation procedures are selected based 
on the type of neurons one would like to grow. For 
example, techniques for growing motor neurons from 
stem cells are quite well developed (Soundararajan 
et al., 2006). The procedure involves treatment 
with a sonic hedgehog (Shh) agonist and retinoic 
acid (RA). To obtain a broad distribution of cortical 
neurons, we begin by withdrawing the β-FGF and 
add NT3, BDNF, or GDNF solutions. The cells pass 
through a neurosphere stage as neural precursors 
and get dissociated and plated to undergo neuronal 
differentiation on a laminin-coated surface. We 
have verified the neuronal identity of the cells by 
immunostaining with the following markers: MAP2, 
tau, synapsin, PSD95, as well as GFAP (to detect 
glial cells) and nestin (to detect neuronal precursors). 
We analyzed cultures for the colocalization of the 
presynaptic and postsynaptic markers (synapsin 
and PSD95) and for the polarization of the axonal 
and dendritic markers (tau and MAP2). In addition 
to immunocytochemical validation of neuronal 
identity, we have labeled cells with green fluorescent 
protein (GFP) or dye I to examine spine morphology 
and loaded cells with FM dye to analyze synaptic 
vesicle uptake and release.

Use of iPS-derived neurons to 
enhance the interpretation of 
genomes and transcriptomes
In collaboration with Fen Gao at the University of 
Massachusetts and Yadong Huang at the Gladstone 
Institute, we have prepared and analyzed human iPS 
cells that harbor tau mutations that are associated 
with neurodegenerative diseases. The iPS cells were 
first shown to be bona fide iPS cells based on the 
expression of pluripotency markers. Next, they were 
transformed into neurons (Wilson and Stice, 2006). 
Once the cells were well differentiated, a complete 
transcriptome was obtained. Full genomes were 
obtained on the same individuals.

The analysis of these data sets allows us to make 
several tentative conclusions:

(1) A broad range of neuronal types was present 
in the cultures, based on the expression of the 
various neurotransmitter receptor types, and 
their transcript levels were comparable to that 
in deeply sequenced brain tissue;

(2) Markers for glial cells were detectable but below the 
levels found in comparably analyzed brain tissue;

(3) Very low levels of transcripts related to neuronal 
precursors remained present in the culture;

(4) Potentially deleterious genetic variants in the 
genome, such as SNPs that alter splice sites, could 
be analyzed for their effect on transcription; and

(5) The distribution of a mutant allele could be 
determined as a function of the total reads for 
the transcript containing the variant. In this 
way, we could detect allele bias.

Conclusion
In summary, support for determining the significance of 
genomic variation can come from the transcriptome. 
The difficulty of obtaining tissue-specific gene 
expression in poorly accessible tissues such as the brain 
can be circumvented by using iPS technology and by 
differentiating iPS to specific cell types.
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