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Introduction
High-throughput RNA sequencing is providing 
unparalleled resolution of the transcriptome and 
has been especially instrumental in revealing the 
transcriptome’s sequence-level complexity (Core et 
al., 2008; Morin et al., 2008; Trapnell et al., 2009, 
2010; Wang et al., 2009; Guttman et al., 2010; 
Nechaev et al., 2010; Pickrell et al., 2010; Marquez 
et al., 2012). In this chapter, I will discuss some 
of the computational and statistical challenges of 
quantifying the transcriptome from high-throughput 
RNA sequence data. I will also set forth the principles 
of high-dimensional data analysis using quantified 
transcriptomes. RNA sequencing, quantification, 
and data analysis share many of the same problems 
and solutions with microarray-based assays. 
Therefore, I will concentrate on issues more specific 
to RNA sequencing—especially RNA sequencing 
from single cells. I will assume familiarity with the 
overall experimental scheme for massively parallel 
short-sequence reads provided by instruments such 
as Illumina HiSeq (Illumina, San Diego, CA) 
and ABI SOLiD platforms (Applied Biosystems, 
Carlsbad, CA). It should be noted that many of the 
specific experimental, statistical, and computational 
problems are still being actively addressed in the field, 
so best practices for using massive RNA sequencing 
data for functional genomics are expected to 
continue evolving.

Transcript Quantification from 
RNA Sequencing Reads
Aligning the reads to a  
reference genome
When processing short reads from RNA sequencing, 
the key computational step consists of aligning 
the reads to a reference genome. If the sequence 
reads are exact copies of contiguous regions of the 
reference genome, this step is straightforward. 
However, the sequence reads may differ from the 
genomic sequence owing to several factors: errors 
in the sequence chemistry, artifacts created by the 
library construction step (e.g., concatemers or fusion 
of separate molecules), or biological RNA processing 
such as splicing and RNA editing. A more important 
source of variation is found in the polymorphism 
of the reference genome, which is likely to contain 
indels and single nucleotide polymorphisms (SNPs) 
not present in the sequenced strain. Therefore, the 
computational alignment of the reads to the genome 
must take into account such possible variations.

Algorithmic procedures and 
alignment strategies
The standard algorithmic procedure for dealing 
with such variations involves finding the best local 
alignment for subsequences of the reads to the 
subsequences to the genome, and assembling the 
matches while respecting the positional constraints. 
The simplest reasonable algorithm for this 
procedure goes through a number of steps that are 
proportional to the product of the read length and 
the reference genome length. However, while such a 
computation is feasible for any single read, it becomes 
computationally impossible when multiplied for tens 
or hundreds of millions of sequence reads. Therefore, 
available algorithms try to approximate the best 
solutions within a reasonable computing time. The 
main strategies involve indexing the reference 
genome or the read set with various kinds of k-mer 
seeds (the so-called filtration strategy) and using 
special data structures (e.g., suffix arrays) to organize 
all substrings of the sequences (Li and Homer, 2010).

Obtaining high-quality alignment involves tradeoffs 
in processing speed versus accuracy. Various 
strategies center around ways to allow for more 
sensitive alignments without exacting too high a 
computational penalty. One important consideration 
is that algorithms that allow gapped reads can be 
costly for computation. For genomic sequencing, 
an alignment algorithm that does not allow indels 
can generate a large number of false-positive SNPs. 
However, for RNA sequencing, transcript counts 
are the desired output, and false SNPs are not as 
important. Therefore, algorithms that try to increase 
the sensitivity of the alignment, say by allowing 
larger deviations, are more important than those that 
try to increase specificity and accuracy.

Increasing alignment specificity
Increasing alignment specificity may involve a 
consideration of the specific sequencing experiment. 
For example, in vitro transcription (IVT)–amplified 
RNA (Van Gelder et al., 1990), used in single-
cell transcriptome analysis, tends to create short 
transcript templates with 5' poly-T leaders in the 
amplified RNA. Many of the fragments in the library 
will keep the 5' poly-T sequence, which needs to be 
trimmed for effective alignment. Aligning across 
potential splice variants also creates challenges, and 
typical strategies involve using known splice signals 
and intron–exon boundaries to increase the reference 
variants. However, using only known gene models 
may impede the detection of novel splice variants.
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NOTES Increasing algorithm sensitivity
One possible solution is to use a hierarchical processing 
strategy where the reads from a sample are processed 
through algorithms of increasing sensitivity. For 
example, the nearly exact reads might be first mapped 
using efficient algorithms, and the remaining reads 
might be processed through increasingly sensitive 
algorithms. The recently developed program RNA-
Seq Unified Mapper (RUM) (Grant et al., 2011) 
utilizes such a strategy. The downside of this strategy 
is that computational time may greatly increase, 
depending on the particular sample. For example, 
processing 100 million 100 bp reads through fastest 
aligners (e.g., BOWTIE and BWA [Burrows–Wheeler 
Aligner]) (Langmead et al., 2009; Li and Durbin, 2009) 
takes ~30 CPU hours on typical computers, whereas 
RUM may take up to 1,500 CPU hours. (Note that 
RUM is just another variation of filtration strategy.) 
Another problem (in addition to computational time) 
is that with increasing sensitivity comes the potential 
increase in false-positive alignments. Because the 
algorithms involve heuristic tradeoffs between 
sensitivity and specificity, the researcher has to make a 
decision between optimizing these two objectives.

Importance for RNA sequencing
The key issue for RNA sequencing is whether 
different alignment strategies produce biased 
samples of true transcripts, regardless of their false-
negative and false-positive rate. In our experience, 
there is a considerable variation in read counts 
mapped to specific transcript models, depending 
on the alignment algorithm used. Unfortunately, 
the particular types and degree of biases are still 
unresolved, and at this time, consistent comparison 
of datasets requires identical processing of the short 
read set (as discussed below under Complexities of 
Quantifying the Transcripts). Lastly, the relatively 
short length of the sequence reads in next-generation 
sequencing (100–150 bp) makes it very difficult 
to consider de novo genomes that do not have a 
reference sequence. The short reads are generally 
too brief to assemble into a unique transcriptome. 
However, recent computational approaches have 
been making progress toward recovering a large 
fraction of the transcriptome from de novo assembly 
(Grabherr et al., 2011). Also, longer reads from 
improved chemistry and coupling of paired-end or 
mate-paired sequencing from multiple insert libraries 
are expected to lead to effective characterization of 
novel transcriptomes in the near future.

Benefits of RNA Sequencing
Sequencing RNA provides three major benefits 
(albeit with caveats to be discussed in the following 

pages): precision, dynamic range, and the ability to 
detect novel transcripts.

Precision
Precision of RNA sequencing comes from the ability 
of a sequence read to uniquely identify the presence 
of a particular transcribed RNA. If we see a sequence 
in the high-throughput data that is sufficiently 
complex that it uniquely maps to the genome, there 
must be at least one RNA molecule that contains 
that sequence in the original library preparation. 
Sequencing chemistry can be surprisingly error-prone 
at the 3'UTR ends, but if a read maps uniquely to the 
genome within a prespecified mismatch tolerance, the 
presence of the molecule can be confirmed with high 
confidence. The only caveat here is contamination, 
which is not specific to the instrument, and the 
possibility of misalignment to a paralogous locus. 
Alignment to a paralogous locus can be a problem, 
especially if the study strain has polymorphisms vis-
à-vis the available reference genome. Therefore, 
when considering singular sequence reads as possible 
evidence of a transcript, it is advisable to carry out 
additional alignment to the reference genome under 
less stringent criteria to confirm unique alignment. 
The numerical precision of the sequencing (i.e., the 
precision of relative counts of transcript molecules) 
depends on many factors that will be discussed 
further below.

Dynamic range
A key advantage of RNA sequencing is that the 
dynamic range of quantification can be modulated 
by the sequencing depth. The total number of 
reads required to recover a rare transcript depends 
on the cell (tissue) type and the distribution of the 
frequency of the transcript—that is, the expected 
frequency of the most highly expressed transcript, the 
expected frequency of the next most highly expressed 
transcript, etc. In various single-cell samples, we find 
a surprising diversity of transcriptome frequency 
distributions. For example, a mouse brown adipose 
cell sample recovers ~6,500 distinct transcripts 
with ~20 million mapped unique reads, whereas 
a rat cortex cell sample recovers ~17,000 distinct 
transcripts with ~10 million mapped unique reads.

We can approximately compute desired sequencing 
depth using a variation of the coupon collector’s 
problem: Given the need to collect N distinct 
coupons in a game, what is the expected number 
of total coupons needed? In the optimal case, in 
which all distinct transcripts have equal abundance 
in the transcriptome, we need ~1.8 million mapped 
reads to recover 10,000 distinct transcripts with 
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NOTES95% confidence (using Markov inequality). In our 
experience, a typical high-throughput sequencing 
experiment yields only 25% high-quality, unique 
paired-end RefSeq mapped reads. Therefore, under 
the optimal scenario, we need ~8 million in total 
read depth to recover 10,000 distinct transcripts 
with high probability. However, as mentioned, 
some transcripts are much more common than 
others, greatly skewing this computation. Assuming 
100,000 total RNA molecules in a cell, and assuming 
only a single molecule of a rare transcript, similar 
computations suggest that we need ~100 million 
total reads to recover all transcripts (including the 
most rare transcript) with high confidence. Optimal 
read yield from Illumina HiSeq Systems is on the 
order of 350 million reads per lane. Therefore, these 
calculations suggest 3-fold multiplexing per lane to 
recover the rarest transcripts.

Ability to detect novel transcripts
As mentioned above, many studies using RNA 
sequencing are reporting novel transcripts. For 
example, using RNA sequencing from mechanically 
dissected dendritic samples, we found that up to 56% 
of the expressed genes in the mouse hippocampal 
cells and 50% of the expressed genes in the rat 
hippocampal cells show evidence of intronic 
sequences in the cytoplasm: cytoplasmic intron-
sequence-retaining transcripts, or CIRTs (Bell et al., 
2010; Buckley et al., 2011).

One characteristic of Illumina’s sequencing 
chemistry is that, for every double-stranded template 
insert, reads are obtained from only the 5'UTR 
ends of the sense and antisense strand. The 3'UTR 
ends of the insert are read only if the insert size is 
smaller than the requested read length (see below). 
This chemistry produces a key asymmetry in the 
mapped reads. A given nucleotide will be covered by 
reads from both the sense and antisense directions 
only if the insert was smaller than the read length 
or the library fragmentation step induced cleavage 
randomly around the nucleotide. This means that if 
a transcript has a definite end (e.g., in the 5'UTR or 
the 3'UTR), the reads from the ends will be mostly 
from a single direction.

Figure 1 shows a moving window plot-of-read density 
for the 3'UTR end of the Grin2b gene from the rat 
hippocampal transcriptome. The red and blue lines 
show read density in each direction. Clearly visible is 
a shift in the density owing to the strand directional 
bias of the Illumina sequencing chemistry. This bias 
can be exploited by computing the differential of the 
read densities in the two directions, shown as black 

lines with blue fill. A sharp peak in the differential 
curve indicates the presence of a natural 3'UTR end 
of the transcript. The horizontal blue bar indicates 
previously annotated coding sequence and 3'UTR 
for this gene (thick and thin bars, respectively). As 
can be seen, these RNA sequence data indicate a 
novel 3'UTR for this gene. We have used this kind 
of computational procedure to map 3'UTR isoforms 
for the rat hippocampal transcriptome.

Figure 2 shows a heatmap of estimated 3'UTR ends, 
where the coordinate 0 indicates the previously 
annotated 3'UTR for these transcripts. We found 
evidence that some genes have more than seven different 
end-isoforms, and two-thirds of the transcriptome show 
novel, previously unannotated 3' UTRs.

Complexities of Quantifying  
the Transcript
Once the short read set has been mapped to the 
reference genome, quantifying the transcript numbers 
has several complexities. We first assume that the 
RNA sample has been prepared to satisfactory quality 

Figure 1. Read-density plot for the Grin2b locus. Blue denotes 
sense direction reads, red denotes antisense direction reads, 
and blue-filled black curved lines denotes differential in the 
two directions.

Figure 2. Heat plot of 3'UTR ends from rat hippocampal tran-
scriptome. Rows indicate different genes. Position zero on the 
x-axis indicates canonical 3'UTR annotation.
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NOTES (i.e., we assume that quality issues not specific to 
RNA sequencing are not part of the problem). The 
RNA pool is typically fragmented, cDNA is created 
to an appropriate size class, and adaptors are ligated 
for library amplification and sequencing.

Bias correction
Fragmentation and cDNA creation bias
Many authors have noted biases in the library resulting 
from both the fragmentation and cDNA creation 
step (Bullard et al., 2010; Hansen et al., 2010). Even 
without the bias, however, longer transcript molecules 
will be sampled more frequently during fragmentation 
and thus be more accurately measured, leading to 
greater statistical power for detecting differential 
expression (Oshlack and Wakefield, 2009). Several 
ad hoc bias correction methods have been suggested, 
but the optimal procedure is still uncertain at this 
point. In our experience, a pile-up visualization of 
the RNA sequencing reads on the genome shows 
clear heterogeneities. These include a large amount 
of reads that locate to a focal region or regions, with 
complete absence of reads despite high coverage in 
other adjacent regions. These kinds of variations are 
difficult to completely control and are likely to lead to 
artifactual theories of the transcriptome.

PCR bias
The PCR step in library construction can also 
lead to counts that are nonlinear in terms of input 
molecules and to a tendency to inflate the counts 
of more frequent molecules. The PCR bias can be 
modeled by noting the reads that map to nearly 
identical locations of the genome.

Associating read counts and 
normalizing read depth
The more critical problem is associating read  
counts to transcript models and normalizing the 
read counts to quantities that are comparable across 
different sequencing libraries. Different RNA preps 
and library preps yield different numbers of total reads 
and mapping reads. Initial attempts at quantification 
divided the reads mapping to a transcript model (e.g., 
RefSeq annotations) by the total number of mapping 
reads and the length of the transcript model. These 
calculations resulted in quantities such as reads per 
kilobase of exon model per million mapped reads 
(RPKM), which is still commonly used. Model-
based methods have been proposed wherein the 
read coverage at any given base pair is assumed to 
be a Poisson sample with an unknown intensity 
parameter that represents the biological transcription 
level. Several variations of the model-based approach 

take into account possible intensity variation across 
a putative transcript molecule owing to such factors 
as fragmentation during library construction and 
convolution of biological variation from different 
samples.

Normalizing for read depth is also not so simple 
because the total mapped reads can be dominated 
by a small number of highly expressed genes. In 
such a case, there will be loss of sampling of more 
moderately expressed genes, distorting the estimate 
of relative expression levels. One simple corrective 
approach that has been suggested is to normalize the 
counts by a quantile of the read counts, such as the 
75% quantile (i.e., every library is normalized such 
that the 75th percentile read count of a gene is 1).

Nonunique mapping reads and 
isoforms
The two largest problems with quantification are 
how to handle nonunique mapping reads and how 
to handle multiple isoforms of a given transcribed 
region of the genome. Nonunique maps can result 
either from redundant sequences of the genome or 
from overlapping transcriptional units. The former 
may be resolved with increasing sequence read 
length, but the latter has a biological origin and 
thus will be difficult to resolve without full-length 
sequencing of the transcript.

Isoforms of a transcript result from alternative 
splicing and lead to dependencies between reads and 
genomic regions: That is, the same read may result 
from multiple transcript molecules. Approaches to 
the isoform problem involve fitting the read data as 
samples from multiple transcript models. The models 
might involve using existing annotations of possible 
transcripts or estimating splice variants de novo by 
generating the best fitting models.

Variations among programs
Even when the algorithms do not try to deconvolute 
the read data into distinct isoforms, considerable 
variations can be found in the quantification because 
different programs handle the multiple reads and 
transcript models (i.e., the unit of quantification) 
differently. An important confounding factor is 
that these problems are sequence-specific and 
therefore affect different genes in different ways. A 
computational analysis of the mouse genome suggests 
that there are fewer than 1,000 possible transcripts 
without problems associated with transcript 
variations and overlapping transcript units.

© 2012 Kim
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NOTESEvolving procedures to address 
complexity
A growing body of literature is addressing these 
quantification complexities, and we expect the 
procedures to evolve (Marioni et al., 2008; Bullard et 
al., 2010; Li et al., 2010; Trapnell et al., 2012). Some 
experimental protocols, such as ABI Solid SAGE 
(Applied Biosystems), attempt to characterize only 
3'UTR tags, but we have found that the resulting 
sequences still contain potential artifacts that 
must be postprocessed. RNA sequences from IVT-
amplified single cells have additional characteristics 
that modulate the quantification process. The IVT 
protocol involves transcript selection (using 3' poly-A 
or other A-rich sequences) and template-shortening 
due to multiple rounds of random hexamer priming. 
The template-shortening makes it less important 
to correct for length of the transcript model, but 
the template selection based on poly-A sequence 
requires one to consider the relationship of any other 
A-rich regions cis to the putative transcripts.

While these complexities may make RNA 
sequencing data seem hopelessly difficult to obtain, 
two facts should be recognized:

(1) Early microarray data required considerable 
research to arrive at uniform protocols for its 
usage; and

(2) Many of the complexities affect bias in transcript 
quantification, which may not be critical for 
most analyses.

Bias in the estimate of transcript levels can affect 
absolute quantification but will not affect analysis of 
differential expression or variational analysis (e.g., 
the variation associated with single cells).

There are two important caveats to consider going 
forward:

(1) If we find a significant difference between two 
samples, the difference may be the result of reads 
from overlapping maps. In this situation, the 
biological genesis of the difference may require 
further dissection that takes into account 
possibilities of splice isoforms, independent 
overlapping transcript units, and other sources 
of variation; and

(2) All quantitative comparisons across different 
samples need to be processed through the 
same computational pipeline; thus, it will be 
important to make the primary short-read data 
available for independent analyses.

Characterizing Transcriptome 
Variation
Jointly with the laboratory of Jim Eberwine, we have 
been characterizing transcriptome variations across 
individual cells of various cell types, especially CNS 
cells in rat and mouse. We typically collect RNA 
through mechanical isolation from dispersed primary 
cell culture. It is then amplified by IVT protocols, 
sequenced using the HiSeq platform (Illumina), 
mapped with the RUM pipeline, and quantified 
using custom programs. Once the transcriptome is 
quantified, the resulting data consist of a vector of 
numbers, representing the normalized read counts. 
The number of different transcripts depends on the 
experiment, but for the single cells we have assayed, 
the transcriptome ranges from ~6,000 to 14,000 
different quantified units. We typically analyze the 
log transform of the read counts both because the 
RNA library is PCR amplified and because the RNA 
samples represent relative densities of RNA rather 
than absolute numbers. From here on, I assume that 
the data from each sample are represented by log-
normalized read counts, which are equated to a vector 
in high-dimensional space (i.e., the dimensions 
correspond to distinct transcripts). Therefore, a 
dataset of multiple transcriptomes comprises a set of 
points in this high-dimensional space, which I will 
call the RNA state space (Kim and Eberwine, 2010).

Clustering analysis
It is now routine to perform clustering analysis of 
transcriptome data from multiple samples, typically 
with an accompanying heatmap representation of 
gene expression levels. Clustering analysis generally 
falls into the class of machine learning algorithms 
called “unsupervised learning.” That is, the 
algorithms assume no prior information about the 
points but instead try to use the spatial distribution 
of the points to group them into clusters. The general 
idea is that biologically natural groups (such as 
distinct cell types and functionally coherent tissues) 
form spatial clumps in the high-dimensional space.

A whole constellation of algorithms exists, and these 
algorithms differ mainly as to how they interpret 
the spatial distribution (e.g., whether they consider 
certain directions more important than others) and 
how they impose prior ideas about the structure of 
spatial distribution (e.g., whether the distribution 
has a hierarchical organization). In terms of analyzing 
variation, clustering algorithms are useful for revealing 
distinct spacings or gaps between points and summarizing 
high-dimensional relationships that might be difficult to 
intuitively understand. Their downside is that different 
algorithms and measures of space within the RNA-state 

Computational Analysis of RNA-Seq Data: From Quantification to High-Dimensional Analysis

© 2012 Kim



40

NOTES space can result in very different clusters, and there 
is very little guidance on the “correct” procedure.* 
Nonetheless, clustering the points gives important 
information on the degree of data heterogeneity, and we 
typically use the technique to complement other kinds 
of high-dimensional analysis.

Dimension-reduction techniques
A major problem with high-dimensional data is 
the number of dimensions itself. This is especially 
exacerbated in transcriptome data, where the number 
of variables (i.e., the different transcripts) vastly 
outnumbers the number of observations (e.g., cells, 
tissues, and experiments). This mismatch potentially 
leads to greatly overfitting complex models to sparse 
data. For example, given enough dimensions, one 
could easily come up with diagnostic markers for any 
reasonable classification of the input data.

Several important techniques have been developed 
to mediate this problem which typically involve 
either dimension reduction or methods to limit 
model complexity. Dimension reduction usually 
involves projecting the original high-dimensional 
data to lower dimensions. Projections involve taking 
the original high-dimensional points and projecting 
their positions onto some geometric object within 
that space, for example, a line. In fact, each individual 
coordinate can be seen as a particular projection onto 
a particular set of orthogonal lines.

Singular value decomposition and principle 
component analysis
Singular Value Decomposition (SVD) and the related 
Principle Component Analysis (PCA) have been 
used extensively in transcriptome analysis. In these 
techniques, an orthogonal set of linear projections 
are constructed in which each projection is, in 
effect, the line closest to the current distribution of 
points. These techniques transform coordinates into 
orthogonal coordinate axes, where each dimension 
can be ordered in terms of how much of the original 
dispersal pattern is captured on respective projections. 
This allows both visualization and dimensional 
reduction. For example, with the assumption that 
biologically meaningful transcriptome variation is 
found only in a small number of dimensions, the 
original data can be reduced to the projection in the 
PCA directions, and all subsequent analysis can be 
limited to the reduced dimensions. The caveat is that 

PCA directions typically tend to involve a very large 
number of genes, and therefore, the interpretation 
can become strained in terms of individual genes.

Linear discriminant analysis
A useful dimension-reduction technique is Linear 
Discriminant Analysis (LDA), in which the 
projections to lines maximize the separation between 
a priori classes of points. Figure 3 shows a three-
dimensional projection of a single-cell transcriptome 
from eight different cell types (shown in different 
colors) using PCA projections (Fig. 3A) and LDA 
projections (Fig. 3B). As can be seen in this picture, 
the LDA projections emphasize the separation of 
the different a priori classified cell types. In effect, 
each dimension in the LDA projections is a weighted 
combination of the expression level of genes that 
best separate the cell types.

Partial Least Squares
Another projection technique is Partial Least Squares 
(PLS). PLS projection is useful if there is another 
continuous response variable that is assumed to be 
a function of the transcriptome, e.g., cell size, cell 
physiology, or signaling output. The projection tries to 
find a set of orthogonal lines (directions) in the RNA-
state space that best explains the response variable.

Nonlinear projections
Lastly, projections do not have to be linear (i.e., 
project to lines). For example, we might imagine 
that, given enough data points, the transcriptome 
from single hippocampal cells forms nonlinear curves 
in the transcriptome space (say, because the RNA 
products have to form dimers and satisfy quadratic 
stoichiometric relationships). Techniques such as 
Locally Linear Embedding (LLE) (Roweis and Saul, 
2000) aim to detect and characterize such nonlinear 
geometric distributions.

Deriving transcriptomes from single 
cell types
The distribution of transcriptomes for single cells 
or tissues within the RNA-state space may have 
complex structures. One way to think about single-
cell transcriptomes is that particular levels of RNA 
expression are maintained for a given cell because 
certain RNA molecules are required to satisfy the 
stoichiometric relationship of functional reactions 
involved in the cell’s phenotypic function. For example, 
a neuron might require the maintenance of certain 
ratios of different glutamate receptors. The collective 
effect of such stoichiometric constraints limits the 
viable points in the RNA-state space for a particular 
cell type. If there are 10,000 different transcripts in the 

© 2012 Kim

*It is important to note here that algorithmic “learning” from high-
dimensional data is generally a difficult problem because it involves 
inferring potentially complex models of the data ab initio rather than 
fitting the data into simple models such as differential gene expression. 
Thus, statistics and mathematics used in many approaches have consid-
erable degrees of freedom in determining the significance of any result. 
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Figure 3. Three-dimensional projection of high-dimensional single-cell transcriptome data from 8 different cell types. a, PCA axis 
projection; b, LDA axis projection. The axes of both figures are abstract, and the numerical values represent linear combinations 
of the original variables. The values have no direct interpretation in terms of original data values. The PCA axes are meant to 
emphasize the overall variation, while the LDA axes emphasize the distinction between groups.
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NOTES cell, then each constraint reduces the viable dimension 
by one. If there are 10,000 constraints, then we might 
expect the transcriptome to maintain a particular set 
of expressions, i.e., be concentrated around a single 
point. If there are fewer than 10,000 constraints, then 
the transcriptome has multiple degrees of freedom 
and the single-cell transcriptomes might form a broad 
distribution, as seen in Figure 3.

Given enough data (i.e., transcriptomes from multiple 
single cells of the same type), it might be feasible 
to characterize the viable functional transcriptome 
states of a particular cell type using these projection 
techniques. It may also be possible to identify the 
physiological constraints for these cells’ function. In 
the last part of the talk, I will present some potential 
models for analyzing such single-cell variation data.
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