Posttranscriptional Regulation in Nervous System Development and Plasticity

Organized by Kenneth S. Kosik, MD and Sourav Banerjee, PhD
Short Course II

Posttranscriptional Regulation in Nervous System Development and Plasticity

Organized by Kenneth S. Kosik, MD, and Sourav Banerjee, PhD
Table of Contents

Introduction

Roles for miRNAs in Timing Developmental Progression Within Nervous Systems
Jay Z. Parrish, PhD .. 7

The Regulation of Synaptic Form and Function by microRNAs
David Van Vactor, PhD, and Elizabeth McNeill, PhD 17

Identification of Novel microRNA Regulatory Proteins in Neurons Using RNAi-Based Screening
Gabriele Siegel and Gerhard Schratt, PhD .. 27

Visualizing mRNA Trafficking and Local Translation Within Individual Neurons
Sang Mok Kim, MS, Patrick B. Chen, and Kelsey Martin, MD, PhD 35

Posttranscriptional Regulation of Intrinsic Plasticity
Kimberly F. Raab-Graham, PhD ... 45

Coordinated Regulation of Synaptic Plasticity by microRNAs
Sourav Banerjee, PhD, Pierre Neveu, PhD, and Kenneth S. Kosik, MD 57

Strategies for Exploring Local Dendritic Protein Synthesis in Synaptic Plasticity and Memory
Michael A. Sutton, PhD ... 67

MicroRNA Regulation of CNS Myelination
Jason C. Dugas, PhD ... 77
Introduction

The emergence of function from a set of molecular parts represents a core challenge in neurobiology. Databases are rapidly filling up with compendia of “omics” information (lists of genes, transcripts, proteins, etc.). Collecting these numerous individual units and using “systems” approaches to deduce function is gradually uncovering the links between the hierarchical levels of biological organization. One system that promises to be particularly informative is the microRNA (miRNA) system of ~21 nucleotide noncoding transcripts. The ~1000 different miRNAs in the mammalian genome form a cytoplasmic layer of posttranscriptional control that is comparable in complexity with the transcriptional control system in the nucleus. Because each miRNA targets many mRNAs, which are often functionally related, miRNA target sets are capable of revealing functional networks of transcripts. Another approach to neuronal systems is taking advantage of the dendrite as distinct cellular compartment. By experimentally capturing proteins and transcripts that are restricted in their localization to the dendrite, one attempts to infer function, particularly functions related to plasticity. Combining miRNA biology with the study of local molecular and physiological activity at the synapse has been a highly productive research vein. However, miRNA biology has opened a much broader window onto the nervous system, and where this system of small RNAs has been most revealing is in nervous system development.

Therefore, using a diversity of model systems, this short course will highlight RNA-mediated regulatory mechanisms involved in fine-tuning the growth and targeting of neuronal dendrites, synapse development, and synaptic plasticity, as well as the development of the neuromuscular junction and lineage decisions in oligodendrocytes. This course will cover many of the most important recent discoveries in this burgeoning area of neurobiology, relevant to both the function and dysfunction of the nervous system. Attendees will be able to discuss their own thoughts informally with speakers in order to shape their current research interest and direction.

Course organizers: Kenneth S. Kosik, MD, Neuroscience Research Institute, University of California, Santa Barbara; Sourav Banerjee, PhD, Neuroscience Research Institute, University of California, Santa Barbara. Faculty: Jason C. Dugas, PhD, Department of Neurobiology, Stanford University School of Medicine; Kelsey C. Martin, MD, PhD, Department of Biological Chemistry, Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles; Jay Z. Parrish, PhD, Department of Biology, University of Washington, Seattle; Kimberly F Raab-Graham, PhD, Center for Learning and Memory, Section of Neurobiology, University of Texas at Austin; Gerhard Schratt, PhD, Interdisciplinary Center for Neurosciences, SFB 488 Junior Group, University of Heidelberg, and Institute for Neuroanatomy, University Hospital of Heidelberg; Michael A. Sutton, PhD, Molecular and Behavioral Neuroscience Institute, Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor; and David Van Vactor, PhD, Department of Cell Biology, Program in Neuroscience, Harvard Medical School.