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Introduction

There are a host of molecular triggers that lead to neurological diseases, but one common, underlying 
feature is the dysfunction of mitochondria, leading to a loss of cellular energy and signaling organized 
cell death programs. A common interpretation of these findings is that mitochondrial dysfunction 
is an end-stage phenomenon, not playing a major role in disease pathogenesis. However, this 
misconception has been recently challenged, as the field has developed a more precise understanding 
of the pathways that regulate mitochondrial behavior, function, and turnover. Whether or not these 
organelles are responsible for the initiation of disease, it is now clear that the rapid and dynamic 
response to cellular stress, the ability to reprogram metabolic pathways, and the ability to shape-shift 
and rapidly change their localization will together define the fate of diseased cells. The challenge for 
the neuroscience community is to define the role of mitochondrial metabolic and physical plasticity 
in neurons and glia and the deleterious consequences that arise when these fundamental processes go 
astray. This workshop brings together leaders in the fundamental studies of mitochondrial biology and 
disease to provide insight into the newest areas of research, with the broader aim of positioning these 
new discoveries within the context of neurological disease.

One of the greatest challenges in studying mitochondria is the vast array of cellular functions they 
fulfill. The five invited speakers will focus on distinct aspects of mitochondrial biology, and the 
topics will expand further during the breakout sessions. The lectures will provide a broad base for 
understanding mitochondrial biology: from their bacterial origin as metabolic organelles to exciting 
new concepts on how they behave within the cell.

In the first lecture, Carlos Moraes will focus on primary mitochondrial diseases caused by mutations of 
mitochondrial DNA (mtDNA) or nuclear DNA encoding mitochondrial proteins, providing insights 
into the complexity in their phenotypic presentation.

Later on, Luca Scorrano will explain the exciting world of mitochondrial dynamics, taking us through 
the molecular mechanisms and physiology of mitochondrial fusion, division, and cristae remodeling. 
The mitochondrial network is highly dynamic, yet the field is still learning the functional importance 
of these processes—particularly in complex cells like neurons. 

Erika Holzbaur will address the critical role of mitochondrial motility along cytoskeletal tracks within 
neurons—an essential process that regulates mitochondrial distribution within axons and dendrites. 
Her work in this area has been transformative, providing exciting new insights into the molecular 
defects underlying neurodegenerative diseases like ALS.

A fascinating aspect of mitochondrial biology is the dynamic interaction with other organelles, such 
as endosomes, endoplasmic reticulum (ER), and peroxisomes. Interorganellar contact is emerging as a 
central feature of mitochondrial biology. Eric Schon will focus on the mitochondria–ER interactions 
and their physiological meaning, as these contacts are essential for calcium and lipid homeostasis.  
Dr. Schon has generated new evidence linking ER–mitochondrial contact sites with Alzheimer’s 
disease.

Lastly, as a cellular furnace and iron forge, mtDNA, proteins, and lipids within the mitochondria 
are exposed to highly reactive oxygen and nitrogen species, providing strong evolutionary pressure 
for efficient quality control mechanisms. Richard Youle has transformed our understanding of 
mitochondrial quality control through his work on the molecular mechanisms that drive mitochondrial 
quality control and mitophagy—the targeted degradation of dysfunctional mitochondria. Dr. Youle 
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NOTES discovered that two Parkinson’s disease–related proteins, PINK1 and Parkin, are required to drive this process, 
providing a new understanding of the potential contribution of mitochondrial dysfunction to PD.

The goal of this workshop is for the speakers to engage the audience, leading to lively discussions within the 
afternoon breakout sessions. Additional discussion leaders, who are also leaders in the field, will widen the 
scope of each topic. The afternoon sessions will also include one new topic on the role of mitochondria in 
immune pathways, both adaptive and innate, as this is a very interesting emerging area of research that is 
certain to have a direct impact on neurological disease.

Overall, it is clear that mitochondria are much more than just the powerhouse of the cell, and their roles in 
neurological diseases continue to surprise us. We hope that this workshop will inspire the participants to think 
differently about mitochondria and to find new ways to explore their role in brain development, function, and 
disease.



© 2016 Moraes

Department of Neurology and of Cell Biology 
University of Miami Miller School of Medicine 

Miami, Florida

Mitochondrial Encephalopathies
Carlos T. Moraes, PhD
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Introduction
Mitochondria are essential organelles within the 
cell where most of the energy production occurs 
by the oxidative phosphorylation (OXPHOS) 
system. Components of the OXPHOS system are 
encoded by both the nuclear DNA (nDNA) and the 
mitochondrial DNA (mtDNA); therefore, mutations 
involving either genome can be deleterious to the 
cell. Postmitotic tissues, such as muscle and brain, 
are most sensitive to OXPHOS changes owing to 
their high energy requirements and nonproliferative 
status. The prevalence of OXPHOS diseases is 
estimated to be ⩾1 in 5,000 live births (Skladal et 
al., 2003).

In contrast to the large nuclear genome, which is 
organized into linear chromosomes, the human 
mitochondrial genome is a circular, double-stranded, 
supercoiled molecule comprising 16,569 bp and 
encoding for 37 genes (Fig. 1). MtDNA does not 
contain introns, and the majority of the genome 

is composed by coding regions, with only a small 
noncoding portion (1.1 kb), called the displacement 
loop (D-loop). The D-loop is essential for mtDNA 
replication and transcription because it contains the 
origin of H-strand replication (OH) and the promoter 
regions of the two strands (H-strand promoter [HSP] 
and L-strand promoter [LSP]). The two polycistronic 
RNAs transcribed from the two strands are processed 
to obtain 22 tRNAs molecules and 2 mitochondrial 
rRNA and are translated into 13 proteins (Chinnery 
and Hudson, 2013).

All the proteins encoded by the mtDNA are 
components of the four OXPHOS multi-subunit 
complexes. Complex II is the only exception, as 
all its components are encoded by the nDNA. 
The proteins involved in mtDNA transcription, 
translation, and replication as well as the other 
OXPHOS components, are all encoded by the 
nDNA, so mutations in these nuclear genes can also 
affect the stability of the mtDNA.

Figure 1. Schematic representation of human mitochondrial DNA. The illustration depicts the two mitochondrial rRNA genes, 
the 22 tRNA genes, the 13 genes coding for the subunits of Complexes I, III, IV, and V and the D-loop containing the H-strand 
origin of replication (OH). The red squares indicate the most prevalent mtDNA point mutations and the associated mitochondrial 
diseases. Light blue, subunits of Complex I of the mitochondrial electron transport chain; orange, subunits of cytochrome c oxi-
dase (Complex IV); violet, subunits of the ATP synthase (Complex V); green, the cytochrome b gene, which is part of Complex III; 
black arrowheads, mitochondrial tRNA genes. MIDD, maternally inherited diabetes and deafness; NSHL, nonsyndromic hearing 
loss. Adapted with permission from Pinto M, Moraes CT (2014) Mitochondrial genome changes and neurodegenerative diseases, 
Biochim Biophys Acta 1842:1198–1207, their Fig. 1. Copyright 2014, Elsevier.
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Mitochondrial diseases are in general multi-
symptomatic, with dysfunctions affecting different 
systems and tissues (e.g., loss of muscle coordination, 
muscle weakness, visual problems, hearing problems, 
learning disabilities, heart disease, liver disease, 
kidney disease, gastrointestinal disorders, respiratory 
disorders, neurological problems, diabetes, 
autonomic dysfunction, and dementia). However, 
the most affected tissues are the postmitotic ones, 
such as myocytes and neurons, which have high 
energy requirements.

Features of Pathogenic  
mtDNA Mutations
Multiple copies of mtDNA (~1000) exist in most 
cells, and these levels can vary depending on energy 
demands (Kelly et al., 2012). If all the mtDNA 
molecules present in a cell are identical (all wild-type 
or all carrying a mutation), this condition is known 
as “homoplasmy.” When mtDNA with different 
sequences (pathogenic or not) are present in a single 
cell, the condition is known as “heteroplasmy.” The 
latter is common for pathogenic mutations, as only a 
portion of the cellular mtDNA content is affected.

Heteroplasmy is a major factor that determines the 
clinical severity of mitochondrial diseases because 
mitochondrial function begins to be affected only 
when there is a relative high number of mutated 
mtDNA compared with wild type, usually >70–80% 
(Chinnery et al., 1997; White et al., 1999). This 
phenomenon is known as the “threshold effect” 
(Rossignol et al., 2003), and it can vary depending 
on the mutation, the cell type, the tissue, or even the 
affected individual.

Maternal inheritance is also a very important factor 
to take into consideration during the diagnosis of a 
mitochondrial disease because mtDNA transmission 
occurs only through the mother. MtDNA defects 
can be maternally inherited or sporadic. Point 
mutations are, in general, maternally inherited and 
heteroplasmic, with an estimated incidence of 1:5000 
(Chinnery et al., 2012). They can affect mtDNA 
genes encoding proteins, tRNAs, or rRNAs. MtDNA 
rearrangements, like large-scale deletions, remove 
large portions of the mtDNA, leading to ablation of 
various genes, depending on the site and size of the 
deletion. They are consistently heteroplasmic and 
sporadic, and although their exact mechanism of 
formation is still controversial, it is believed that they 
can derive from errors in replication or inefficiency 
of the mtDNA repair system (Krishnan et al., 2008; 
Chen et al., 2011). The levels of these mitochondrial 
genomes may increase during life in view of the fact 

that deleted mtDNA molecules reportedly have a 
replicative advantage (Cortopassi et al., 1992; Diaz 
et al., 2002).

Mitochondrial Encephalopathies 
Caused by mtDNA Mutations
Patients with mtDNA large deletions commonly show 
one of three classic phenotypes: Pearson syndrome, 
chronic progressive external ophthalmoplegia 
(CPEO), and Kearns–Sayre syndrome (KSS). 
Patients with Pearson marrow–pancreas syndrome 
show a multi-symptomatic disease from birth and 
a 50% survival rate after 4 years of age. The main 
symptoms are sideroblastic anemia and exocrine 
pancreas dysfunction. Those who survive infancy 
are expected to develop KSS (McShane et al., 
1991; Lee et al., 2007; Manea et al., 2009). CPEO 
is characterized by ptosis and ophthalmoplegia, and 
some patients also show proximal muscle weakness. 
Patients with CPEO can have brain, inner ear, 
and retinal disease in later stages of the disease, 
depending on the age of onset and the level of 
heteroplasmy (Aure et al., 2007). Isolated CPEO is 
commonly seen as a milder form of the disease, and 
clinical presentations can involve other muscles or 
symptoms and are sometimes referred to as “CPEO 
plus” (Moraes et al., 1989).

Although it is a multisystem disorder, CNS 
involvement is evident in KSS. The syndrome is 
defined by onset before 20 years of age, progressive 
external ophthalmoplegia (PEO), and pigmentary 
retinopathy. Moreover, patients may show cardiac 
conduction block (usually the cause of death in young 
adulthood), elevated CSF protein level, or cerebellar 
ataxia (Moraes et al., 1989). Other neurological 
problems may include proximal myopathy, exercise 
intolerance, ptosis, oropharyngeal and esophageal 
dysfunction, sensorineural hearing loss, and 
dementia.

Besides deletions, almost 600 pathogenic point 
mutations have been identified in the past 25 years, 
involving most of the mtDNA molecule (according 
to MITOMAP, 299 point mutations involving 
tRNA–rRNA and control regions and 274 involving 
OXPHOS proteins) (Lott et al., 2013). The most 
common mitochondrial encephalopathies caused by 
point mutations can be divided into clinical groups: 
Leber hereditary optic neuropathy (LHON); Leigh 
syndrome (LS); mitochondrial encephalomyopathy, 
lactic acidosis, and strokelike episodes (MELAS); 
myoclonic epilepsy with ragged red fibers (MERRF); 
and neuropathy, ataxia, retinitis pigmentosa 
(NARP).
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Approximately 95% of LHON cases show a mutation 
in one of three mtDNA genes: G11778A, G3460A, 
or T14484C, respectively encoding for ND4, ND1, 
and ND6: all subunits of Complex I of the electron 
transport chain (Fig. 1). The main characteristic of 
the disease is a painless, bilateral, subacute or acute 
visual failure, prevalently in young male adults, 
caused by the atrophy of the optic nerve. The 
neurodegeneration is limited to the retinal ganglion 
cell layer, and cell body and axonal degeneration, 
demyelination, and atrophy are observed from the 
optic nerves to the lateral geniculate bodies (Carelli 
et al., 2004).

LS can be caused by different mutations, both 
in mtDNA and in nDNA genes (see below). 
MtDNA mutations, which are commonly present in 
heteroplasmy, can occur in genes encoding for tRNAs 
as well as in genes encoding for Complex I, IV, or V of 
the OXPHOS system (Thorburn and Rahman, 1993; 
Santorelli et al., 1997; Kirby et al., 2003; Martin et 
al., 2005; Sarzi et al., 2007; Marin et al., 2013). The 
heterogenic symptoms include motor and intellectual 
developmental delay, bilateral brainstem disease, basal 
ganglia disease, elevated blood or CSF lactate levels, 
hypotonia, spasticity, chorea and other movement 
disorders, cerebellar ataxia, peripheral neuropathy, and 
respiratory failure secondary to brainstem dysfunction 
(Thorburn and Rahman, 1993).

Approximately 80% of MELAS cases are caused 
by a very common m.3243A>G mutation in the 
mitochondrial tRNALeu(UUR) gene, although other 
mtDNA point mutations also have been associated 
with this phenotype (www.mitomap.org; Lott et al., 
2013). As in the vast majority of the mitochondrial 
diseases, this is a multisystemic disorder, and its 
symptoms vary depending on heteroplasmy status and 
age of onset. Other than mitochondrial myopathy, 
encephalomyopathy, lactic acidosis, and strokelike 
symptoms, patients can show deafness, diabetes, 
migraines, gut immobility, and seizures (Debrosse and 
Parikh, 2012). Multiple strokes affect the patients, 
mainly in the cerebral cortex or in the subcortical 
white matter, causing multifocal necrosis with 
lesions that do not respect vascular territories and are 
often accompanied by profound neuronal cell loss, 
neuronal eosinophilia, astrogliosis, and spongiform 
degeneration (Tanji et al., 2001). A loss of Purkinje 
cells also takes place, causing cerebellar degeneration 
and a particularly prominent calcification in the 
basal ganglia.

In 90% of the cases of MERRF, the mutation 
responsible is the m.8344A>G transition in the 

tRNALys gene (Shoffner et al., 1990) (Fig. 1). 
Myoclonic epilepsy is the main symptom associated 
with this disease, together with the presence of 
clumps of diseased mitochondria accumulation in 
the subsarcolemmal region of the muscle fiber called 
“ragged red fibers.” Other possible symptoms include 
ataxia, neuropathy, and cardiac abnormalities. 
Curiously, many patients with the A8344G mutation 
also show multiple lipomas in the back region 
(Larsson et al., 1995). The main neuropathological 
signs involve the olivocerebellar pathway, with 
severe neuron loss originating from the inferior 
olivary nucleus, Purkinje cells, and dentate nucleus.

Nonsyndromic hearing loss can be caused by 
mutations in mitochondrial tRNAs (Prezant et al., 
1993) (Fig.1). NARP is associated mainly with the 
mutation T8993G (or T8993C) in the mtDNA 
encoding for the MT-ATP6 gene (Fig. 1). This 
disease is characterized by sensory or sensorimotor 
axonal neuropathy, neurogenic muscle weakness, 
ataxia, cerebral or cerebellar atrophy, and retinitis 
pigmentosa. Other atypical neurological symptoms 
include seizures, learning problems, hearing loss, 
progressive external ophthalmoplegia, and anxiety. 
These same mutations, when present at high 
percentages, are also associated with LS (Lake et 
al., 2016).

Mitochondrial Diseases Caused 
by Mutations in nDNA Genes 
Affecting mtDNA Stability
MtDNA changes can be a consequence of 
mutations in nDNA-encoded genes involved in 
the maintenance of mtDNA integrity and mtDNA 
copy number. The most common mutations affect 
POLG, the gene encoding for the catalytic subunit 
of the mitochondrial DNA polymerase gamma, 
and the DNA helicase Twinkle (Spelbrink et al., 
2001; Milenkovic et al., 2013). Both gene products 
are involved in mtDNA replication. Mutations in 
these genes provoke an accumulation of mtDNA 
point mutations, deletions, or depletion, eventually 
leading to different clinical manifestations.

More than 200 mutations in POLG associated with 
mitochondrial diseases have been identified, causing a 
plethora of heterogeneous disorders involving different 
tissues, time of onset, and severity. At least five major 
phenotypes can be distinguished: Alpers–Huttenlocher 
syndrome, childhood myocerebrohepatopathy spec-
trum, myoclonic epilepsy myopathy sensory ataxia, the 
ataxia neuropathy spectrum, and PEO with or without 
sensory ataxic neuropathy and dysarthria (Lamantea 
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et al., 2002; Fratter et al., 2010; Brandon et al., 2013; 
Stumpf et al., 2013).

Recessive mutations in Twinkle protein cause severe, 
early-onset disorders that are also caused by defects 
in mtDNA maintenance, such as infantile-onset 
spinocerebellar ataxia and a hepatocerebral mtDNA 
depletion disorder characterized by severe epilepsy, 
migraine, and psychiatric symptoms (Fratter et al., 
2010).

Several genes coding for proteins associated with 
nucleotide metabolism or transport to mitochondria 
have also been associated with mtDNA depletion 
and severe clinical phenotypes (Martí et al., 2003).

Mitochondrial Encephalopathies 
Caused by Nuclear DNA Defects
Defects in OXPHOS function can also be 
consequences of mutations in the nDNA, where most 
genes encoding for mitochondrial proteins are located. 
Although such defects can have different phenotypes, 
the most common one is LS. As mentioned earlier, LS 
is clinically heterogeneous, but onset occurs usually by 
2 years of age. Patients present with developmental 
delays and regression, hypotonia, ataxia, dystonia, and 
ophthalmological abnormalities. The presentation can 
also be multisystemic; for example, cardiac, hepatic, 
gastrointestinal, and renal tubular dysfunction have 
been observed. Progression is often episodic and 
typically results in death by 3 years of age (Lake et 
al., 2016).

Neurological decline in LS patients is associated with 
the hallmark of the diagnosis: bilateral symmetric 

lesions within the brainstem and basal ganglia. 
Additional neuroradiological abnormalities such 
as white matter involvement and cerebral atrophy 
may also be observed. Thorburn and colleagues 
defined the criteria for diagnosing LS. They required 
that typical neuropathology or neuroradiology be 
accompanied by progressive neurodegeneration 
with (1) clinical evidence of brainstem and/or basal 
ganglia dysfunction; (2) intellectual and motor 
developmental delay; and (3) abnormal energy 
metabolism indicated by a severe defect in OXPHOS 
or pyruvate dehydrogenase complex (PDHc) 
activity, a molecular diagnosis in a gene related to 
mitochondrial energy generation, or elevated serum 
or CSF lactate (Lake et al., 2016).

Biochemical defects in each of the five OXPHOS 
complexes, and the electron carrier coenzyme 
Q10 (CoQ10), have been observed in LS patients, 
although Complex V in LS has been associated 
only with mtDNA mutations. PDHc enables 
the generation of electron donors for OXPHOS; 
therefore, PDHc deficiency also represents a disorder 
of energy generation. Table 1 lists the genes that, 
when mutated, were found to cause LS.

Lessons from Mouse Models of 
Mitochondrial Diseases
Effective treatments for mitochondrial disorders 
are still unavailable, in part because of the poor 
understanding of the pathological mechanisms 
underlying these diseases. Therefore, during the past 
decade, several animal models were developed to 
improve our knowledge of the pathophysiology of 
mitochondrial disorders and to provide a platform 

Table 1. List of nuclear genes causing Leigh syndrome when mutated

Pyruvate dehydrogenase PDHA1, PDHB, PDHX, DLAT, DLD, LIPT1, LIAS, TPK1, SLC19A3, SLC25A19

Complex I NDUFV1, NDUFV2, NDUFS1, NDUFS2, NDUFS3, NDUFS4, NDUFS7, NDUFS8, NDUFA1, 
NDUFA2, NDUFA9, NDUFA10, NDUFA12, NDUFAF2, NDUFAF5, NDUFAF6, FOXRED1

Complex II SDHA, SDHAF1

Coenzyme Q10 PDSS2

Complex III UQCRQ, BCS1L, TTC19

Complex IV NDUFA4, SURF1, COX10, COX15, SCO2, PET100, LRPPRC, TACO1, ETHE1

Mitochondrial DNA maintenance FBXL4, POLG, SUCLA2, SUCLG1

Mitochondrial translation MTTI, MTTK, MTTL1, MTTV, MTTW, MTFMT, GTPBP3, TRMU, EARS2, FARS2, IARS2, 
NARS2, GFM1, GFM2, TSFM, C12orf65, PNPT1

OXPHOS ± PDHc HIBCH, ECHS1, SERAC1, AIFM1

Biotinidase BTD

Adapted with permission from Lake NJ et al. (2016) Leigh syndrome: One disorder, more than 75 monogenic causes, Ann 
Neurol 79:193, their Table 1. Copyright 2015, American Neurological Association. Please refer to this publication for more 
details on the gene names and functions.
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for testing therapeutic interventions. There are now 
several mouse models of OXPHOS defect, which 
were recently reviewed (Torraco et al., 2015).

We have created two neuron-specific mouse 
models of mitochondrial electron transport chain 
deficiencies involving defects in Complex III (CIII) 
or Complex IV (CIV). These conditional knockouts 
(cKOs) were created by in vivo ablation (CamKIIα-
Cre) of the genes coding for the Rieske iron–sulfur 
protein (RISP) and COX10 (cyclo-oxygenase 10), 
respectively. RISP is one of the catalytic subunits of 
CIII, and COX10 is an assembly factor indispensable 
for the maturation of Cox1, one of the catalytic 
subunits of CIV. Although the rates of gene deletion, 
protein loss, and complex dysfunction were similar, 
the RISP cKO survived to 3.5 months of age, whereas 
the COX10 cKO survived for 10–12 months. 
The RISP cKO had a sudden death, with minimal 
behavioral changes. In contrast, the COX10 cKO 
showed a distinctive behavioral phenotype with 
onset at 4 months of age followed by a slower but 
progressive neurodegeneration. Curiously, the 
piriform and somatosensory cortices were more 
vulnerable to the CIII defect, whereas cingulate 
cortex (and to a less extent, piriform cortex) was 
affected preferentially by the CIV defect. In addition, 
the CIII model showed severe and early reactive 
oxygen species damage, a feature not observed until 
very late in the disease course of the CIV model (Diaz 
et al., 2012). These findings illustrate how specific 
respiratory chain defects have distinct molecular 
mechanisms, leading to distinct pathologies, akin to 
the clinical heterogeneity observed in patients with 
mitochondrial diseases.

Mouse models are also useful for evaluating therapies, 
although species-specific responses should always be 
kept in mind. We and others have shown that an 
increase in mitochondrial biogenesis in muscle has 
a strong protective effect in a mouse with a muscle 
CIV defect (Wenz et al., 2008; Viscomi et al., 2011). 
This correlation has been more difficult to obtain 
with CNS defects.

Recently, using a model of Complex I deficiency 
in the CNS (Ndufs4), the group of Vamsi Mootha 
found that chronic hypoxia markedly improved 
survival (Jain et al., 2016). This same model has 
also shown improved survival on administration of 
rapamycin (an mTOR pathway inhibitor), delaying 
the onset of neurological symptoms, reducing 
neuroinflammation, and preventing brain lesions. 
However, the mechanism is not yet understood 
(Johnson et al., 2013).
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Introduction
The active transport of organelles, proteins, and 
RNA along the extended axons of neurons has long 
fascinated scientists. The remarkable fact that the 
axon depends on the biosynthetic and degradative 
activities of the soma, located up to a meter away, 
highlights the importance of active transport. 
Genetic evidence confirms an essential role for 
active transport in the neuron, as defects in many of 
the proteins involved are sufficient to cause either 
neurodevelopmental or neurodegenerative disease.

Metabolic cell-labeling experiments in the 1960s 
demonstrated the rapid movement of newly 
synthesized proteins along the axon. Experiments 
with drugs that disrupt the cellular cytoskeleton 
demonstrated that microtubules are required for 
active transport along the axon (Kreutzberg, 1969). 
Pulse-chase labeling experiments led to the discovery 
of multiple phases of transport (Griffin et al., 1976). 
Organelles were observed to move outward from the 
cell body at “fast” speeds of ≤400 mm/d (~1 μm/s), 
while cytoskeletal proteins and some soluble proteins 
were observed to move via “slow” transport, at 
speeds of <8 mm/day (<0.1 μm/s). Outward-bound, 
anterograde (also known as orthograde) transport 
was most clearly defined by these metabolic labeling 
approaches. However, the retrograde transport of 
organelles from the distal axon back toward the cell 
body was also observed (Griffin et al., 1976). The 
development of live-cell imaging allowed the direct 
observation of organelle motility (Allen et al., 1982; 
Brady et al., 1982). These observations led to the 
discovery of the microtubule motor kinesin (Vale 
et al., 1985), now known as kinesin-1; cytoplasmic 
dynein was discovered soon after (Paschal et al., 
1987). Breakthrough experiments using nerve 
ligation assays identified kinesin as a major motor 
for anterograde transport along the axon (Hirokawa 
et al., 1991) and dynein as the motor for retrograde 
transport (Hirokawa et al., 1990).

Since these initial discoveries, there has been 
considerable progress in understanding the 
mechanisms regulating the transport of organelles, 
including mitochondria, lysosomes, autophagosomes, 
and endosomes, as well as the transport mechanisms 
involved in neurotrophic and injury signaling. 
Together, these studies support a model in which 
the regulation of transport is cargo-specific. The 
complement of motors, adaptors, and scaffolding 
proteins bound to each cargo are organelle-
specific, leading to distinct patterns of motility and 
localization along the axon. Although broad themes 

have emerged, the specific mechanisms regulating the 
transport of each organelle or protein complex may 
be unique. In addition, there is increasing evidence 
for the localized regulation of trafficking in key zones 
along the axon, such as the axon initial segment or 
the axon terminal.

In this chapter, modified from a broader review on 
axonal transport (Maday et al., 2014), we focus on 
the mechanisms regulating mitochondrial motility in 
neurons (Fig. 1).

Molecular Motors Drive Transport 
Along the Neuronal Cytoskeleton
The neuronal cytoskeleton
Microtubules, actin filaments, and intermediate 
filaments all contribute to the morphology and 
function of neurons, but axonal transport depends 
almost entirely on microtubules. Microtubules are 
polarized tubulin polymers with fast-growing plus ends 
and more stable minus ends, organized in a generally 
radial array in the soma with plus ends directed 
toward the cortex. In the axon, parallel microtubules 
form a unipolar array with plus ends oriented outward 
(Burton and Paige, 1981; Stepanova et al., 2003), 
whereas in dendrites, microtubule organization is 
more complex, with microtubules often organized in 
arrays with mixed polarity (Baas et al., 1988; Kwan et 
al., 2008; Kleele et al., 2014).

Microtubule-associated proteins, or MAPs, are 
bound along the length of axonal and dendritic 
microtubules. The canonical role for MAPs is 
to promote microtubule polymerization and 
stabilization; because of the high expression levels of 
MAPs in neurons, microtubules are generally more 
stable in these cells than in other cell types. MAPs 
may also function to regulate transport, as in vitro 
studies indicate they modulate the interaction of 
motors with the microtubule (Vershinin et al., 2007; 
Dixit et al., 2008).

Direct posttranslational modification of tubulin is 
widespread in neurons (Janke and Bulinski, 2011). 
Microtubule modifications directly modulate the 
activities of motor proteins (Sirajuddin et al., 2014), 
potentially contributing to the polarized trafficking of 
motors into axons (Jacobson et al., 2006; Konishi and 
Setou, 2009; Hammond et al., 2010). The nucleotide 
state of microtubules can also affect motor activity 
and contribute to polarized vesicle transport (Nakata 
et al., 2011).
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Kinesin and dynein motors drive 
axonal transport
The kinesin superfamily constitutes 45 genes in the 
human genome, 38 of which are expressed in brain 
(Miki et al., 2001). The neuronal motor proteome 
is more complex than that expressed in most other 
cell types, likely reflecting the enhanced importance 
of regulated and specific intracellular transport in 
neurons with their highly polarized morphology 
(Kuta et al., 2010; Silverman et al., 2010). A 
standardized nomenclature (Lawrence et al., 2004) 
groups kinesin genes into 14 subfamilies that share 
structural and functional similarities; motors from 
the kinesin-1, kinesin-2, and kinesin-3 families all 
contribute to axonal transport dynamics.

Members of the kinesin-1 family drive the transport 
of a wide range of cargos along the axon at velocities 
of ~0.5–1.0 μm/s, including vesicles, organelles, 
proteins, and RNA particles (Hirokawa et al., 2010) 
(Fig. 1). Active kinesin-1 motors are formed from 
a dimer of kinesin heavy chains (encoded by three 
mammalian genes: KIF5A, KIF5B, and KIF5C); a 
dimer of kinesin light chains is often but not always 

part of the complex (Sun et al., 2011) and contributes 
to the autoinhibitory mechanism of the motor.

Kinesin-2 and kinesin-3 motors are also critical for 
normal axonal transport. Kinesin-2 members can 
assemble into either homodimeric or heterotrimeric 
motors (Scholey, 2013), whereas kinesin-3 motors 
undergo cargo-mediated dimerization resulting in the 
formation of highly processive motors when bound 
to intracellular organelles (Soppina et al., 2014). 
Kinesin-2 motors drive the anterograde motility 
of fodrin-positive plasma membrane precursors 
(Takeda et al., 2000), N-cadherin and β-catenin 
(Teng et al., 2005), and choline acetyltransferase 
(Ray et al., 1999) and are associated with Rab7-
positive late endosome–lysosome compartments 
in the neuron (Hendricks et al., 2010; Castle et 
al., 2014). Kinesin-3 motors drive the motility of 
synaptic vesicle precursors and dense core vesicles 
(Hall and Hedgecock, 1991; Okada et al., 1995; Lo 
et al., 2011).

Cytoplasmic dynein is the major motor driving 
retrograde transport. In contrast to the diversity 

Figure 1. Molecular mechanisms of axonal transport. Microtubule motor proteins kinesin and dynein drive the movement of 
organelles including mitochondria, vesicles, RNA granules, and proteins along the axon. Kinesins drive anterograde transport 
outward from the soma, and dynein drives retrograde transport back from the distal axon. However, most cargos likely have both 
motor types bound simultaneously. Mitochondrial motility is regulated by a specific complement of molecular motors, scaffold-
ing proteins, and adaptor proteins. These include kinesin-1, dynein and dynactin, Miro, TRAKs, FEZ1, RanBP2, syntabulin, KBP, 
KIF1Bα, and syntaphilin. Modified with permission from Maday S et al. (2014) Axonal transport: cargo-specific mechanisms of 
motility and regulation, Neuron 84: 294–295, their Fig. 1. Copyright 2014, Elsevier.
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of the kinesin superfamily, the motor subunit of 
cytoplasmic dynein is encoded by a single gene 
(reviewed in Roberts et al., 2013). Two dynein heavy 
chains dimerize by their N-terminal tail domains; 
additional intermediate chains, light intermediate 
chains, and light chains associate with the tails of 
the heavy chains to form a cargo-binding domain. 
Together, these proteins serve as the binding site for 
many of the proteins regulating dynein function in 
the cell. Whereas a single gene encodes the motor 
domain of cytoplasmic dynein, there is more diversity 
in the other subunits of the dynein complex—for 
example, there are two genes encoding dynein 
intermediate chains, one of which is neuron-specific 
(DYNC1I1), and two genes encoding dynein light 
intermediate chains (Kuta et al., 2010). There is 
evidence that these subunits can either coassemble 
(Zhang et al., 2013) or alternatively assemble into 
distinct complexes with specialized functions (Salata 
et al., 2001; Mitchell et al., 2012), which may allow 
for organelle-specific recruitment or regulation.

Most dynein functions in the cell require the dynein 
activator, dynactin. Dynactin is a highly conserved 
multiprotein complex (Schroer, 2004) essential for 
normal neuronal function (LaMonte et al., 2002; 
Moughamian and Holzbaur, 2012). The base of 
dynactin is formed from a 37-nm-long actin-like 
polymer. Projecting from this base is a dimer of the 
subunit p150Glued (Holzbaur et al., 1991), which 
binds directly to dynein intermediate chain (Karki 
and Holzbaur, 1995; Vaughan and Vallee, 1995) and 
to microtubules via a cytoskeletal-associated protein 
glycine-rich (CAP-Gly) domain (Waterman-Storer 
et al., 1995). In neurons, the CAP-Gly domain of 
dynactin has a key role in the initiation of retrograde 
transport in the distal axon (Lloyd et al., 2012; 
Moughamian and Holzbaur, 2012).

The properties of kinesin and dynein motors have 
been explored in vitro at the single-molecule level. 
Kinesin-1 motors move in a highly processive manner 
toward the plus end of the microtubule, taking 8 nm 
steps in a straight path along a single protofilament. 
A single kinesin-1 motor has a stall force of 5–6 pN 
(Svoboda and Block, 1994), sufficient to move an 
organelle through the cytoplasm. Kinesin-2 motors 
have a stall force of similar magnitude (5 pN) but 
exhibit force-dependent detachment from the 
microtubule (Schroeder et al., 2012) that may affect 
interactions with other motors.

Studies with purified mammalian dynein indicate 
that dynein is a fast motor, with velocities of 0.5–1.0 
μm/s. Unlike the highly processive unidirectional 

motility of kinesin-1, kinesin-2, and kinesin-3 
motors, single mammalian dynein motors take 
frequent backsteps and sidesteps during movement 
along the microtubule (Mallik et al., 2005; Ross et 
al., 2006). However, either the coordinated activities 
of multiple dynein motors (Mallik et al., 2005) or the 
binding of activators such as BICD2 (McKenney et 
al., 2014; Schlager et al., 2014) convert dynein to a 
unidirectional and highly processive motor. Dynein 
is a much weaker motor than kinesin-1 or kinesin-2, 
with a stall force of ~1 pN (Mallik et al., 2004; 
Schroeder et al., 2010).

Although these observations might suggest that 
dynein is a less effective motor than kinesin, both 
the flexible nature of dynein and its ability to move 
backwards and sideways along a microtubule may 
allow the motor to function effectively in teams 
(Mallik et al., 2013) and to navigate around obstacles 
along its path (Dixit et al., 2008). In contrast, 
kinesin-1 motors are much less capable of effectively 
working in teams (Mallik et al., 2013) and are more 
likely than dynein to detach from the microtubule 
track when encountering obstacles (Vershinin et al., 
2007; Dixit et al., 2008).

Opposing motors bind simultaneously 
to cargos along the axon
Many axonal cargos have multiple motor types 
bound simultaneously. For example, late endosomes/
lysosomes copurify with kinesin-1, kinesin-2, and 
dynein motors (Hendricks et al., 2010). Even cargos 
that move processively in a single direction over long 
distances, such as autophagosomes, copurify with 
opposing dynein and kinesin motors (Maday et al., 
2012). Quantitative analyses and live-cell trapping 
experiments suggest that 1–2 kinesins and 6–12 
dyneins act together to move a single organelle along 
the microtubule (Hendricks et al., 2010, 2012; Rai 
et al., 2013).

Thus, it is essential to consider how multiple 
motors—and multiple types of motors—may interact 
either cooperatively or competitively to yield 
effective motility. Multiple models have been put 
forth (Gross, 2004, 2007; Welte, 2004; Muller et al., 
2008; Fu and Holzbaur, 2014). The simplest model 
posits an unregulated tug-of-war between opposing 
kinesin and dynein motors. In a contrasting model, 
motors are coordinately regulated so that only a 
single motor type is active at any given time.

The autoinhibition of kinesin-1 is key to the 
regulated trafficking of many organelles. The binding 
of kinesin tail to the motor domain blocks motor 
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by specific binding partners such as the scaffolding 
proteins JIP1 (c-Jun N-terminal kinase–interacting 
protein 1) and JIP3 (Blasius et al., 2007; Sun et al., 
2011; Fu and Holzbaur, 2013). In the mechanisms 
explored in detail to date, tight regulation of 
kinesin-1 activation by scaffolding proteins allows for 
sustained axonal transport of organelles in either the 
anterograde or retrograde directions. The regulation 
of other kinesin subfamilies is less well studied.

Regulation of dynein motors is also important to 
maintain axonal transport. Lis1 is a critical and 
conserved effector of dynein function. Structural 
studies indicate that Lis1 binds directly to the dynein 
motor domain and uncouples ATP hydrolysis from 
force production, leading to sustained attachment 
of the motor to the microtubule (Huang et al., 
2012). Although induction of tight binding might 
be expected to block effective transport, instead it 
has been found that depletion of Lis1 inhibits the 
dynein-driven transport of late endosomes and 
lysosomes along the axon (Pandey and Smith, 2011; 
Moughamian et al., 2013) as well as mitochondrial 
motility within axons (Shao et al., 2013). Nde1 (also 
known as NudE) and Ndel1 (also known as NudE-
like or NudEL) form a complex with Lis1 and are 
similarly required for normal axonal transport of at 
least some dynein cargos (Pandey and Smith, 2011; 
Shao et al., 2013).

The Bicaudal D homolog (BICD) proteins are also 
key dynein effectors. BICD1 and BICD2 recruit 
dynein–dynactin to Rab6-positive Golgi and 
cytoplasmic vesicles (Matanis et al., 2002) as well 
as mRNAs including FMRP (Fragile X mental 
retardation protein) (Bianco et al., 2010). BICD1 
was also shown to control the trafficking of activated 
neurotrophin receptors to degradation routes in order 
to balance the neuronal response to neurotrophin 
stimulation (Terenzio et al., 2014).

Multiple additional mechanisms have been proposed 
to regulate motor activity on cargos moving along 
the axon. Rab GTPases have been shown to regulate 
motor recruitment to several cargos (Akhmanova 
and Hammer, 2010). Scaffolding proteins are also 
key: huntingtin is involved in the regulation of 
BDNF-positive vesicles (Gauthier et al., 2004) and 
autophagosomes (Wong and Holzbaur, 2014); JIP1 is 
involved in the regulation of APP (amyloid precursor 
protein)–positive vesicles; JIP3 regulates the injury-
signaling pathway in mammalian cells and lysosomal 
motility in zebrafish (Drerup and Nechiporuk, 2013); 

and the Miro–TRAK (mitochondrial Rho GTPase–
trafficking protein, kinesin-binding) complex 
regulates motors bound to mitochondria (Macaskill 
et al., 2009a; Wang and Schwarz, 2009). Finally, 
there is evidence implicating upstream kinases in the 
regulation of transport including Cdk5, JNK (c-Jun 
N-terminal kinase), and p38 MAPK (mitogen-
activated protein kinase) (Horiuchi et al., 2007; 
Pandey and Smith, 2011; Fu and Holzbaur, 2013; 
Morfini et al., 2013; Klinman and Holzbaur, 2015), 
but the mechanisms involved have not yet been fully 
elucidated.

Both common themes and  
cargo-specific mechanisms operate 
in the axonal transport of diverse 
axonal cargos
Live-cell and in vivo imaging of fluorescently 
tagged organelles moving along axons has revealed 
a surprising diversity in the movement of specific 
populations, indicating that the regulation of the 
motors that drive transport likely occurs primarily 
at the level of the organelle rather than reflecting 
an overall regulatory environment within the axon. 
Although the observed patterns of motility are 
diverse, some common themes are emerging:

1. Motors remain stably associated with a cargo 
during transport along the axon, even when 
they are inactive.

2. Only a small complement of motors is necessary 
to effectively move even large (>1 μm) 
organelles along the microtubule. These motors 
function in groups that usually include opposing 
motor activities.

3. Motors are regulated by mechanisms that may 
include Rab-specific recruitment, upstream 
regulation by kinases and phosphatases, and 
scaffolding proteins that control motor activity.

4. Mutations in motors, their adaptors, or their 
regulators can lead to neurodegeneration or 
neuronal cell death, consistent with an essential 
role for axonal transport in maintaining 
neuronal homeostasis.

Despite these common themes, accumulating 
evidence suggests that the motility of each cargo 
actively transported along the axon is regulated by 
a distinct mechanism. Here, we focus specifically on 
the mechanisms regulating mitochondrial motility in 
neurons.

© 2016 Holzbaur
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Mitochondrial Transport
Localized regions within the neuron, such as growth 
cones and synapses, experience significant energy 
demands. This requirement for ATP cannot be 
sustained by diffusion from the cell soma and must 
be handled locally within the neuron. Mitochondria, 
the organelles responsible for ATP production 
and intracellular calcium buffering, are actively 
shuttled and positioned within the neuron to 
meet the localized needs of the cell (Fig. 1). Thus, 
mitochondrial motility facilitates a dynamic response 
to balance environmental demands. In axons of 
hippocampal neurons grown in vitro, ~20–30% of 
mitochondria are motile, moving equally in both 
anterograde and retrograde directions; the remaining 
~70–80% are stationary (Hollenbeck and Saxton, 
2005). In vivo, axonal mitochondria are ~10% motile 
and exhibit a greater bias in flux in the anterograde 
direction than seen in neurons in culture; ~70% are 
anterograde and ~30% are retrograde (Pilling et al., 
2006; Misgeld et al., 2007).

Mitochondrial transport is regulated by neuronal 
activity (Sajic et al., 2013). Elevated intracellular 
calcium levels resulting from enhanced synaptic 
activity arrest mitochondrial motility in a highly 
localized fashion, since mitochondria as little as 15 μm 
away from the stimulation site remain motile (Li et 
al., 2004; Macaskill et al., 2009a; Wang and Schwarz, 
2009). Passing mitochondria become immobilized in 
areas of locally high Ca2+ at active synapses where 
demands for energy and calcium buffering are high. 
The distribution of mitochondria at synapses in turn 
affects synaptic transmission and strength. Stable 
positioning of mitochondria at presynaptic boutons 
maintains a steady release of synaptic vesicles (SVs), 
resulting in steady amplitudes of EPSCs (Sun et al., 
2013).

Mitochondrial distribution is also coupled to the 
balance between mitochondrial fission and fusion. 
Mutations in the mitochondrial fission protein 
DRP1 (dynamin-related protein-1) result in the 
accumulation of mitochondria in the soma of both 
Drosophila motor neurons (Verstreken et al., 2005) 
and cultured hippocampal neurons (Li et al., 2004). 
The resulting decrease in mitochondrial density at 
presynaptic terminals of the neuromuscular junction 
impairs SV release, a defect rescued with exogenous 
ATP (Verstreken et al., 2005).

The calcium-dependent arrest of mitochondrial 
motility is mediated by Miro (Fransson et al., 
2003; Guo et al., 2005). Miro has two Ca2+ binding  

EF-hand domains and two GTPase domains, and 
binds the kinesin-1 adaptors TRAK1 and TRAK2, 
also known as Milton in Drosophila (Fransson et al., 
2006; Macaskill et al., 2009b). Ca2+ binding to Miro 
induces mitochondrial arrest; however, controversy 
still surrounds the mechanism. One model proposes 
that high levels of calcium promote binding of Miro1 
to the motor domain of kinesin-1, thereby sterically 
inhibiting access to the microtubule (Wang and 
Schwarz, 2009). A second model posits that elevated 
calcium levels cause the dissociation of kinesin-1 
from mitochondria and the Miro–TRAK complex 
(Macaskill et al., 2009a). Differences between 
axonal versus dendritic modes of regulation may 
underlie some of these observations. Syntaphilin 
is enriched on stationary mitochondria in the 
axon, and knockout mice show enhanced axonal 
mitochondrial motility, with no effect observed on 
the motility of dendritic mitochondria (Kang et al., 
2008). Calcium promotes binding of syntaphilin to 
both microtubules and kinesin-1, thereby decreasing 
the ATPase rate of kinesin-1 and acting as a brake 
on motility (Chen and Sheng, 2013), but only in 
the axon. Thus, the differing models may reflect cell-
compartment-specific regulatory mechanisms for 
mitochondrial movement.

In addition to the Miro–TRAK complex, syntabulin 
(Cai et al., 2005), FEZ1 (fasciculation and elongation 
protein ζ-1) (Fujita et al., 2007; Ikuta et al., 2007), 
and RanBP2 (Ran-binding protein 2) (Cho et al., 
2007; Patil et al., 2013) have all been shown to recruit 
kinesin-1 to mitochondria to regulate mitochondrial 
motility. Whether these proteins can interact with 
the Miro1 complex or act independently remains to 
be established. However, in the absence of kinesin-1, 
a small population of mitochondria is still motile 
(Pilling et al., 2006), indicating that other kinesins 
also drive mitochondrial motility. There is evidence 
that both KIF1Bα (kinesin superfamily protein 1B 
alpha) (Nangaku et al., 1994) and KLP6 (kinesin-
like protein 6) (Tanaka et al., 2011) contribute to 
the intracellular transport of mitochondria.

The role of dynein in mitochondrial trafficking is 
less well studied. Mutations in kinesin-1 and the 
Ca2+-dependent inactivation of kinesin-1 arrest 
mitochondrial motion in both anterograde as well as 
retrograde directions (Pilling et al., 2006; Macaskill 
et al., 2009a; Wang and Schwarz, 2009; Chen 
and Sheng, 2013), suggesting that the activity of 
oppositely directed motors is coordinated (Pilling 
et al., 2006). The TRAK proteins interact with 
the dynein–dynactin complex and may modulate 
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of Miro affects both anterograde and retrograde 
transport (Russo et al., 2009), also consistent with 
an integrated regulatory mechanism.

The Energy Requirements of 
Axonal Transport
Axonal transport is an energetically costly process as 
molecular motors hydrolyze ATP to carry out the work 
of stepping along microtubules. The conventional 
kinesin-1 motor consumes one molecule of ATP 
for every 8 nm step taken (Hackney, 1994). 
Measurements to date indicate a typical vesicle has 
one to two kinesins bound and exerting force at any 
one time (Soppina et al., 2009; Hendricks et al., 
2010, 2012; Encalada et al., 2011; Rai et al., 2013). 
Taking the example of an average axon in the rat 
cortex, 40 mm in length, a single vesicle traversing 
this axon in the anterograde direction would require 
~5 × 106 ATP molecules to do so (assuming no tug-
of-war or switch events occur, which can be frequent 
in vivo) (Soppina et al., 2009; Hendricks et al., 2010). 
In the 1-m-long axons of human motor neurons, the 
minimum ATP consumed per anterograde transport 
event reaches ~1.25 × 108 ATP molecules.

Unlike the consistent unidirectional stepping of 
kinesin-1 motors, the step size of single cytoplasmic 
dynein motors purified from mammalian brain ranges 
from 8 to 32 nm in length and can include backsteps 
(Mallik et al., 2004; Ross et al., 2006). However, 
recent in vitro and in vivo measurements show that 
dynein acts in teams of 6–12 motors per vesicle to 
produce persistent retrograde motility, and under 
these conditions, motor teams show a step size of 
8 nm (Soppina et al., 2009; Hendricks et al., 2010; 
Rai et al., 2013). Thus, a single vesicle traversing a 
human motor neuron from neuromuscular junction 
back to the soma would require a minimum of ~7.5 × 
108 ATP molecules.

Strikingly, however, the amount of ATP hydrolyzed 
during axonal transport is relatively inconsequential 
compared with the amount of ATP consumed by 
those same neurons to fire action potentials and 
maintain resting potentials. A single action potential 
propagated along a 40-mm-long axon would require 
~1 × 108 ATP molecules, and thus, axonal transport 
likely amounts to a fraction of the 25% of energy 
allocated to the housekeeping budget of the gray 
matter (Harris and Attwell, 2012).

One mechanism proposed to specifically address the 
energy demands of axonal transport is based on the 

finding that glycolytic enzymes are bound to the 
surface of vesicles moving along the axon and can 
serve as an independent source of ATP for the motors 
driving transport of these vesicles (Zala et al., 2013). 
The identification of an energy source independent 
of mitochondria that can power vesicular transport 
is intriguing and may allow cargos to transit any 
gaps in ATP gradients between unevenly dispersed 
mitochondria along the axon (Macaskill and Kittler, 
2010; Zala et al., 2013). However, it remains unclear 
whether onboard energy production by glycolysis is 
required for axonal transport in vivo, as the energetic 
lives of glia and neurons are intimately linked (Saab 
et al., 2013). Glia supply neurons with lactate under 
conditions of glucose shortage, bypassing glycolysis 
in the axon. Indeed, myelinated axons can survive 
for extended periods with only lactate, whereas fast 
axonal transport would be predicted to stop under 
these conditions if solely dependent on glycolysis. 
Further, there are several forms of axonal transport 
that do not involve vesicular membranes, including 
slow axonal transport and the movement of RNA 
granules. Without an onboard ATP supplier, these 
transport processes would experience regions of slow 
to no motility in the hypothesized low-ATP regions. 
Alternatively, diffusion may be sufficient to maintain 
consistent levels of ATP along the axon. In either 
case, an onboard mechanism of glycolysis might 
become more relevant in situations of fast action 
potential firing—a high-energy task that increases 
local ATP demands, potentially restricting the ATP 
available for housekeeping tasks.

Common Themes and Outstanding 
Questions
The compartmentalized nature of neurons requires 
active mechanisms of transport to distribute organelles 
to localized regions of demand. The differing patterns 
of motility observed for distinct organelles may reflect 
underlying functional differences. For example, 
mitochondrial motility facilitates distribution 
to sites of need, where these organelles become 
tethered to supply local needs for energy production 
and calcium buffering. Similarly, the bidirectional 
movement of mRNA granules may effectively 
distribute these particles to sites of local synthesis. 
Other organelles, such as signaling endosomes, must 
relay information across the extended distance of the 
axon and thus undergo long journeys with highly 
processive, unidirectional motility to efficiently 
move from distal axon to cell soma. And degradative 
organelles such as autophagosomes must efficiently 
clear damaged organelles and aggregated proteins, 
recycling components back to the cell body for reuse.

© 2016 Holzbaur



27

NOTES

Mitochondrial Motility in Neurons

Many major outstanding questions remain 
unanswered. How is organelle movement in the axon 
choreographed? How is the complement of motors 
associated with each organelle regulated? Further 
work is also required to uncover regional-specific 
differences in organelle transport within the neuron. 
Advances in imaging technology will continue to 
facilitate the study of these pathways and provide 
insights into the alteration of these pathways in stress 
and disease. A growing number of human diseases, 
both neurodevelopmental and neurodegenerative, 
are caused by mutations in the axonal transport 
machinery. Further, axonal transport is misregulated 
in many of the major neurodegenerative diseases 
affecting human populations, including ALS and 
Alzheimer’s, Huntington’s, and Parkinson’s diseases 
(Millecamps and Julien, 2013). Thus, continued 
research into the molecular mechanisms involved 
in axonal transport and its regulation should provide 
new insights pointing toward the development of 
novel therapeutic approaches in future.
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NOTESIntroduction
Beginning in grade school, and continuing on 
through high school and college, the approach to 
teaching and understanding the structure of the 
eukaryotic cell has been dominated by what one 
might call the “pigeonhole” view. That is, the cell 
is presented not as a holistic entity but rather as an 
object containing a set of independent subcellular 
elements—e.g., the nucleus, the Golgi body, the 
endoplasmic reticulum, peroxisomes, endosomes, 
lysosomes, and mitochondria—each with its own 
unique place within the cell and each with its own 
function. This view is so entrenched that we have 
even anthropomorphized many of these functions: 
the nucleus is the cell’s “information center,” the 
mitochondrion is the “powerhouse of the cell,” the 
lysosome is the cell’s “garbage disposal and recycling 
center,” and so forth.

The reality, of course, is much more complicated. 
Indeed, each subcellular compartment has its own 
role to play, but to work properly both in space and 
in time, the individual function of each organelle 
has to be coordinated with that of every other 
organelle. Moreover, our description of organelles 
with individual functions obscures the fact that 
organelles can have multiple overlapping and/or 
complementary functions. For example, cholesterol 
biosynthesis requires the interplay of at least five 
organelles (the plasma membrane [PM], endoplasmic 
reticulum [ER], Golgi, mitochondria, and nucleus), 
whereas calcium trafficking requires at least three 
(PM, ER, and mitochondria).

Nowhere is this interdependence seen more clearly 
than in the multiple functions of the ER, which 
makes physical connections with the nucleus (as 
the nuclear envelope), peroxisomes (in the “pre-
peroxisomal” compartment), the Golgi body (at 
ER exit sites), the plasma membrane (at plasma 
membrane–associated membranes), and lipid 
droplets, among other locations (Lynes and Simmen, 
2011; English and Voeltz, 2013). One other 
important ER connection point, and one that will 
inform the rest of this review, is the association of 
ER with mitochondria, at mitochondria-associated 
ER membranes (MAMs). The role of the MAM as 
a discrete yet highly dynamic entity in its own right, 
and its intimate association with neurodegenerative 
disease, have been revealed only in the past decade 
or so. We will focus here on the relationship of MAM 
to the pathogenesis of Alzheimer’s disease (AD).

Mitochondria-Associated  
ER Membranes
MAM is a subdomain of the ER that communicates 
with mitochondria, both biochemically and 
physically (Rusinol et al., 1994; Csordas et al., 2006; 
Hayashi et al., 2009; Raturi and Simmen, 2013). It is 
a distinct biochemical/biophysical entity within the 
overall ER network: as opposed to “free ER,” “MAM 
ER” is a lipid-raft-like domain rich in cholesterol and 
sphingomyelin (Hayashi and Fujimoto, 2010; Area-
Gomez et al., 2012) and is enriched in a number 
of specific proteins with specific functions. Among 
these are proteins involved in calcium homeostasis, 
e.g., IP3 (inositol 1,4,5-triphosphate) receptors 
(Mendes et al., 2005; Szabadkai et al., 2006); in 
cholesterol metabolism, e.g., acyl-CoA:cholesterol 
acyltransferase 1 (ACAT1) (Rusinol et al., 1994); 
in phospholipid metabolism, e.g., phosphatidylserine 
synthase (Vance et al., 1997; Stone and Vance, 2000); 
in lipid transfer between mitochondria and ER, e.g., 
fatty acid transfer protein 4 (Jia et al., 2007); and in 
the maintenance of mitochondrial morphology, e.g., 
dynamin-related protein 1 (Friedman et al., 2011). 
In addition, other proteins stabilize and regulate the 
apposition of ER to mitochondria at an interorganellar 
distance of ~10–30 nm (Csordas et al., 2006). These 
proteins include phosphofurin acidic cluster sorting 
protein 2 (Simmen et al., 2005) and mitofusin 2 
(de Brito and Scorrano, 2008), although their exact 
“tethering” mechanism is unknown.

Alzheimer’s Disease and the 
Amyloid Cascade Hypothesis
AD is the most common neurodegenerative 
dementia of aging (Querfurth and LaFerla, 2010). 
It is defined by its distinct neuropathology, namely, 
the accumulation in the brain of extracellular 
plaques composed predominantly of β-amyloid 
(Aβ) and of intracellular tangles consisting of 
hyperphosphorylated forms of the microtubule-
associated protein tau (Querfurth and LaFerla, 2010).

Familial AD (FAD) affects ~1% of all AD patients. 
It is inherited as an autosomal-dominant trait and 
is caused by mutations in genes specifying one of 
three proteins: presenilin-1 (PS1), presenilin-2 
(PS2), and the amyloid precursor protein (APP). 
The presenilins are aspartyl proteases that form the 
enzymatically active core of the γ-secretase complex 
that, together with β-secretase 1 (BACE1), processes 
APP to produce Aβ. Cleavage of the ~700-aa APP 
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NOTES by BACE1 produces a 99-aa C-terminal fragment 
(C99), which is then cleaved by γ-secretase to 
produce an “APP intracellular domain (~50 aa)” 
and a set of Aβ fragments that average ~40 aa in 
the normal situation and ~42 aa in AD. In sporadic 
AD (SAD), which comprises ~99% of cases, the 
mechanistic connection to Aβ formation and to its 
deposition in plaques is less clear. Although this form 
of AD is sporadic, there are genetic risk factors that 
predispose an individual to the disease. Foremost 
among them is the ε4 allele of apolipoprotein E 
(ApoE4), which is a component of lipoproteins 
associated with intercellular cholesterol trafficking 
(Huang, 2010; Holtzman et al., 2012). The reason 
for the elevated risk conferred by ApoE4 as compared 
with the more common ApoE3 allele is unknown.

The pathogenetic mechanisms underlying AD are 
also unknown. However, the fact that mutations 
in PS1 and PS2 (which process APP) and in APP 
itself (a substrate of the γ-secretase complex that 
contains those presenilins) in FAD became the 
basis of the most dominant and commonly accepted 
hypothesis to explain AD pathogenicity, namely, the 
“amyloid cascade” (Hardy and Higgins, 1992). In 
brief, the hypothesis proposes that the disease arises 
when, as noted above, APP is cleaved aberrantly 
by γ-secretase to produce a range of Aβ fragments 
that average not ~40 aa in length, but ~42 aa, with 
a concomitant increase in the ratio of Aβ42:Aβ40. 
Whereas “normal” Aβ40 is essentially soluble, “AD-
associated” Aβ42 is fibrillogenic and accumulates 
in the plaques. This extraneuritic amyloid is toxic 
and promotes tau hyperphosphorylation, leading 
to the neurofibrillary tangles; both the plaques and 
the tangles promote cell death, thereby causing the 
disease (Hardy and Higgins, 1992; Selkoe, 2011).

The amyloid cascade hypothesis is attractive 
not only because it helps explain findings from 
many different approaches to the disease but also 
because it explains why mutations in both APP 
and the presenilins cause FAD. However, besides 
the problem of trying to explain plaque formation 
in SAD, the amyloid cascade hypothesis does not 
address other features of AD that have received less 
attention in the field (Schon et al., 2010, 2013). 
These include altered metabolism of fatty acid 
(Fraser et al., 2010), glucose (Hoyer et al., 1988; Liu 
et al., 2009), cholesterol (Stefani and Liguri, 2009), 
and phospholipid (Pettegrew et al., 2001); perturbed 
calcium homeostasis (Bezprozvanny and Mattson, 
2008); and mitochondrial dysfunction (Wang et al., 
2009). Notably, these “other” features of AD are the 

very ones that are in large part regulated by proteins 
enriched in the MAM.

The MAM Hypothesis
Based on the striking coincidence between the 
symptomatology of AD and the functions associated 
with MAM, we hypothesized that there might be a 
cause-and-effect relationship between the two. In 
fact, we and others found that the presenilins (Area-
Gomez et al., 2009; Newman et al., 2014)—and 
γ-secretase activity itself (Area-Gomez et al., 2009; 
Schreiner et al., 2015)—are located mainly at the 
MAM. Moreover, the demonstration that MAM is 
an intracellular lipid raft (Hayashi and Fujimoto, 
2010; Area-Gomez et al., 2012) is consistent with 
the finding that the lipid rafts in which PS1 and 
γ-secretase activity reside (Vetrivel et al., 2004) are 
located not only at the cell surface (Marambaud et 
al., 2002; Area-Gomez et al., 2009) but also inside 
the cell, at the MAM.

Moreover, MAM function is also altered in AD. For 
example, it is well known that calcium homeostasis, 
which is essentially a MAM-mediated process 
(Hayashi et al., 2009; Csordas et al., 2010; Patergnani 
et al., 2011), is altered in patients with AD (Peterson 
and Goldman, 1986; Sims et al., 1987; Gibson et al., 
1997; Mattson, 2010; Supnet and Bezprozvanny, 
2010; Liang et al., 2015) and in PSEN1-mutant mice 
(Sun et al., 2014). Similarly, mitochondrial dynamics 
(e.g., organellar fission, fusion, and localization) and 
bioenergetics have been shown to be altered in AD 
(Peterson and Goldman, 1986; Gibson and Huang, 
2004; Stokin et al., 2005; Wang et al., 2008; Ferrer, 
2009; Riemer and Kins, 2013).

Other aspects of MAM function have received less 
attention, but these, too, are perturbed in AD. These 
include altered phospholipid profiles (Pettegrew et al., 
2001) and altered cholesterol metabolism (Stefani 
and Liguri, 2009), both of which are increased 
significantly in PS-mutant cells and in fibroblasts 
from AD patients (Area-Gomez et al., 2012). Altered 
phospholipid profiles were measured by the trafficking 
of phosphatidylserine from the ER to mitochondria 
via the MAM (Voelker, 2005), and altered cholesterol 
metabolism was measured by the conversion of free 
cholesterol to cholesteryl esters by the MAM-localized 
enzyme ACAT1 (Rusinol et al., 1994). The finding 
of increased ACAT1 activity in AD cells (Area-
Gomez et al., 2012) is particularly noteworthy because 
ACAT1 activity has been shown to be required for the 
production of Aβ (Puglielli et al., 2001, 2004), albeit 
via a currently unknown mechanism.
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Notably, upregulated MAM-mediated phospholipid 
and cholesterol metabolism was observed not only in 
FAD cells containing presenilin mutations but also 
in fibroblasts from FAD patients with mutations in 
APP, and even more strikingly, in cells from SAD 
patients in which the presenilin and APP genes are 
presumably normal (Area-Gomez et al., 2012). 
These data imply that increased ER–mitochondrial 
communication and upregulated MAM function 
may be present in essentially all AD patients, and 
that perturbed MAM behavior likely occurs before 
plaque and tangle formation.

The centrality of altered MAM behavior to AD 
pathogenesis was recently underscored by studies of 
the effects of ApoE4 on MAM function (Tambini 
et al., 2016). As noted above, the ε4 allele of ApoE 
is the single most important genetic risk factor for 
developing SAD (Holtzman et al., 2012). Strikingly, 
cells treated with lipoproteins containing ApoE4 
upregulated MAM function to a significantly greater 
degree than did those containing ApoE3 (Tambini 
et al., 2016). Notably, these effects were apparently 
the result of the role of ApoE as a component of 
lipoproteins, not as the free, unlipidated protein 
(Tambini et al., 2016); these findings imply that 
the deleterious effects of ApoE4 on MAM function 
derived from its function in lipoprotein-mediated 
cholesterol trafficking and metabolism. Thus, 
ApoE4’s contribution to disease risk in AD may, in 
fact, be caused by its effects on MAM function via 
perturbed cholesterol homeostasis. In support of this 
view, we note that genetic variants in a number of 
cholesterol metabolism–related genes (Wollmer, 
2010), such as ABCA7 (Steinberg et al., 2015), 
which is required for cholesterol and phospholipid 
mobilization (Abe-Dohmae et al., 2004), predispose 
an individual to developing AD.

Conclusion and Implications
Taken together, these observations support a view of 
AD pathogenesis that differs from that offered by the 
amyloid cascade hypothesis. Rather than being the 
result of cellular toxicity due to the accumulation 
of plaques and tangles, we hypothesize that the 
development and progression of the disease result from 
increased ER–mitochondrial communication. This 
increase, in turn, affects numerous cellular functions, 
both directly (e.g., via increased ACAT1 activity 
and cholesterol ester synthesis) and indirectly (e.g., 
via increased lipid droplet formation). The increased 
ER–mitochondrial apposition and increased MAM 
function are consistent with the features described 
earlier: aberrant phospholipid profiles; the perturbed 

cholesterol homeostasis; the changes in mitochondrial 
function, morphology, and distribution; the increased 
calcium trafficking between the two organelles; and 
the elevated ratio of Aβ42:Aβ40. Thus, we propose 
that the functional cause of AD is increased ER–
mitochondrial communication and upregulated 
MAM function. However, the biochemical cause of 
this ER–mitochondrial hyperconnectivity, and how 
APP processing plays a role in this process, remain 
to be elucidated.

Acknowledgments
This work was supported by the U.S. National 
Institutes of Health (Grant K01 AG045335 to 
E.A.-G.), the U.S. Department of Defense (Grant 
W911F-15-1-0169 to E.A.S.), and the J. Willard and 
Alice S. Marriott Foundation (to E.A.S.).
 

References
Abe-Dohmae S, Ikeda Y, Matsuo M, Hayashi M, 

Okuhira K, Ueda K, Yokoyama S (2004) Human 
ABCA7 supports apolipoprotein-mediated release 
of cellular cholesterol and phospholipid to generate 
high density lipoprotein. J Biol Chem 279:604–611.

Area-Gomez E, de Groof AJ, Boldogh I, Bird TD, 
Gibson GE, Koehler CM, Yu WH, Duff KE, Yaffe MP,  
Pon LA, Schon EA (2009) Presenilins are enriched 
in endoplasmic reticulum membranes associated 
with mitochondria. Am J Pathol 175:1810–1816.

Area-Gomez E, Del Carmen Lara Castillo M, 
Tambini MD, Guardia-Laguarta C, de Groof AJC,  
Madra M, Ikenouchi J, Umeda M, Bird TD,  
Sturley SL, Schon EA (2012) Upregulated function 
of mitochondria-associated ER membranes in 
Alzheimer disease. EMBO J 31:4106–4123.

Bezprozvanny I, Mattson MP (2008) Neuronal 
calcium mishandling and the pathogenesis of 
Alzheimer’s disease. Trends Neurosci 31:454–463.

Csordas G, Renken C, Varnai P, Walter L, Weaver D,  
Buttle KF, Balla T, Mannella CA, Hajnoczky G 
(2006) Structural and functional features and 
significance of the physical linkage between ER 
and mitochondria. J Cell Biol 174:915–921.

Csordas G, Varnai P, Golenar T, Roy S, Purkins G,  
Schneider TG, Balla T, Hajnoczky G (2010) 
Imaging interorganelle contacts and local calcium 
dynamics at the ER–mitochondrial interface. Mol 
Cell 39:121–132.

de Brito OM, Scorrano L (2008) Mitofusin 2 tethers 
endoplasmic reticulum to mitochondria. Nature 
456:605–610.

Alzheimer’s Disease: Mitochondrial Contact Sites and Function



38

NOTES English AR, Voeltz GK (2013) Endoplasmic 
reticulum structure and interconnections with 
other organelles. Cold Spring Harb Perspect Biol 
5:a013227.

Ferrer I (2009) Altered mitochondria, energy 
metabolism, voltage-dependent anion channel, 
and lipid rafts converge to exhaust neurons in 
Alzheimer’s disease. J Bioenerget Biomembr 
41:425–431.

Fraser T, Tayler H, Love S (2010) Fatty acid 
composition of frontal, temporal and parietal 
neocortex in the normal human brain and in 
Alzheimer’s disease. Neurochem Res 35:503–513.

Friedman JR, Lackner LL, West M, DiBenedetto JR, 
Nunnari J, Voeltz GK (2011) ER tubules mark sites 
of mitochondrial division. Science 334:358–362.

Gibson GE, Huang H-M (2004) Mitochondrial 
enzymes and endoplasmic reticulum calcium stores 
as targets of oxidative stress in neurodegenerative 
diseases. J Bioenerget Biomembr 36:335–340.

Gibson GE, Vestling M, Zhang H, Szolosi S, Alkon D,  
Lannfelt L, Gandy S, Cowburn RF (1997) 
Abnormalities in Alzheimer’s disease fibroblasts 
bearing the APP670/671 mutation. Neurobiol 
Aging 18:573–580.

Hardy JA, Higgins GA (1992) Alzheimer's disease: 
the amyloid cascade hypothesis. Science 256:184–
185.

Hayashi T, Fujimoto M (2010) Detergent-resistant 
microdomains determine the localization of 
sigma-1 receptors to the endoplasmic reticulum-
mitochondria junction. Mol Pharmacol 77:517–
528.

Hayashi T, Rizzuto R, Hajnoczky G, Su TP (2009) 
MAM: more than just a housekeeper. Trends Cell 
Biol 19:81–88.

Holtzman DM, Herz J, Bu G (2012) Apolipoprotein E  
and apolipoprotein E receptors: normal biology 
and roles in Alzheimer disease. Cold Spring Harb 
Perspect Med 2:a006312.

Hoyer S, Oesterreich K, Wagner O (1988) Glucose 
metabolism as the site of the primary abnormality 
in early-onset dementia of Alzheimer type? J 
Neurol 235:143–148.

Huang Y (2010) Aβ-independent roles of 
apolipoprotein E4 in the pathogenesis of 
Alzheimer’s disease. Trends Mol Med 16:287–294.

Jia W, Moulson CL, Pei Z, Miner JH, Watkins PA 
(2007) Fatty acid transport protein 4 is the principal 
very long chain fatty acyl-CoA synthetase in skin 
fibroblasts. J Biol Chem 282:20573–20583.

Liang J, Kulasiri D, Samarasinghe S (2015) Ca2+ 

dysregulation in the endoplasmic reticulum related 
to Alzheimer’s disease: a review on experimental 
progress and computational modeling. Biosystems 
134:1–15.

Liu F, Shi J, Tanimukai H, Gu J, Gu J, GrundkeIqbal I,  
Iqbal K, Gong CX (2009) Reduced O-GlcNAcylation 
links lower brain glucose metabolism and tau 
pathology in Alzheimer’s disease. Brain 132:1820–
1832.

Lynes EM, Simmen T (2011) Urban planning of 
the endoplasmic reticulum (ER): how diverse 
mechanisms segregate the many functions of the 
ER. Biochim Biophys Acta 1813:1893–1905.

Marambaud P, Shioi J, Serban G, Georgakopoulos A, 
Sarner S, Nagy V, Baki L, Wen P, Efthimiopoulos S,  
Shao Z, Wisniewski T, Robakis NK (2002) A 
presenilin-1/γ-secretase cleavage releases the 
E-cadherin intracellular domain and regulates 
disassembly of adherens junctions. EMBO J 
21:1948–1956.

Mattson MP (2010) ER calcium and Alzheimer’s 
disease: in a state of flux. Science Signal 3:pe10.

Mendes CC, Gomes DA, Thompson M, Souto NC, 
Goes TS, Goes AM, Rodrigues MA, Gomez MV, 
Nathanson MH, Leite MF (2005) The type III 
inositol 1,4,5-trisphosphate receptor preferentially 
transmits apoptotic Ca2+ signals into mitochondria. 
J Biol Chem 280:40892–40900.

Newman M, Wilson L, Verdile G, Lim A, Khan I,  
Moussavi Nik SH, Pursglove S, Chapman G, 
Martins RN, Lardelli M (2014) Differential, 
dominant activation and inhibition of Notch 
signalling and APP cleavage by truncations 
of PSEN1 in human disease. Hum Mol Genet 
23:602–617.

Patergnani S, Suski JM, Agnoletto C, Bononi A, 
Bonora M, De Marchi E, Giorgi C, Marchi S,  
Missiroli S, Poletti F, Rimessi A, Duszynski J, 
Wieckowski MR, Pinton P (2011) Calcium signaling 
around mitochondria associated membranes 
(MAMs). Cell Commun Signal 9:19.

© 2016 Schon



39

NOTESPeterson C, Goldman JE (1986) Alterations in 
calcium content and biochemical processes in 
cultured skin fibroblasts from aged and Alzheimer 
donors. Proc Natl Acad Sci USA 83:2758–2762.

Pettegrew JW, Panchalingam K, Hamilton RL, 
McClure RJ (2001) Brain membrane phospholipid 
alterations in Alzheimer’s disease. Neurochem Res 
26:771–782.

Puglielli L, Konopka G, Pack-Chung E, Ingano LA, 
Berezovska O, Hyman BT, Chang TY, Tanzi RE, 
Kovacs DM (2001) Acyl-coenzyme A:cholesterol 
acyltransferase modulates the generation of the 
amyloid β-peptide. Nat Cell Biol 3:905–912.

Puglielli L, Ellis BC, Ingano LA, Kovacs DM 
(2004) Role of acyl-coenzyme A:cholesterol 
acyltransferase activity in the processing of the 
amyloid precursor protein. J Mol Neurosci 24:93–
96.

Querfurth HW, LaFerla FM (2010) Alzheimer’s 
disease. N Engl J Med 362:329–344.

Raturi A, Simmen T (2013) Where the endoplasmic 
reticulum and the mitochondrion tie the knot: 
the mitochondria-associated membrane (MAM). 
Biochim Biophys Acta 1833:213–224.

Riemer J, Kins S (2013) Axonal transport and 
mitochondrial dysfunction in Alzheimer’s disease. 
Neurodegener Dis 12:111–124.

Rusinol AE, Cui Z, Chen MH, Vance JE (1994) 
A unique mitochondria-associated membrane 
fraction from rat liver has a high capacity for 
lipid synthesis and contains pre-Golgi secretory 
proteins including nascent lipoproteins. J Biol 
Chem 269:27494–27502.

Schon EA, Area-Gomez E (2010) Is Alzheimer’s 
disease a disorder of mitochondria-associated 
membranes? J Alzheimers Dis 20:S281–S292.

Schon EA, Area-Gomez E (2013) Mitochondria-
associated ER membranes in Alzheimer disease. 
Mol Cell Neurosci 55:26–36.

Schreiner B, Hedskog L, Wiehager B, Ankarcrona M  
(2015) Amyloid-β peptides are generated in 
mitochondria-associated endoplasmic reticulum 
membranes. J Alzheimers Dis 43:369–374.

Selkoe DJ (2011) Alzheimer’s disease. Cold Spring 
Harb Perspect Biol 3:a004457.

Simmen T, Aslan JE, Blagoveshchenskaya AD, Thomas 
L, Wan L, Xiang Y, Feliciangeli SF, Hung CH,  
Crump CM, Thomas G (2005) PACS-2 
controls endoplasmic reticulum–mitochondria 
communication and Bid-mediated apoptosis. 
EMBO J 24:717–729.

Sims NR, Finegan JM, Blass JP (1987) Altered 
metabolic properties of cultured skin fibroblasts in 
Alzheimer’s disease. Ann Neurol 21:451–457.

Stefani M, Liguri G (2009) Cholesterol in Alzheimer’s 
disease: unresolved questions. Curr Alzheimer Res 
6:15–29.

Steinberg S, Stefansson H, Jonsson T, Johannsdottir H,  
Ingason A, Helgason H, Sulem P, Magnusson OT, 
Gudjonsson SA, Unnsteinsdottir U, Kong A,  
Helisalmi S, Soininen H, Lah JJ; DemGene, 
Aarsland D, Fladby T, Ulstein ID, Djurovic S, 
Sando SB, et al. (2015) Loss-of-function variants 
in ABCA7 confer risk of Alzheimer’s disease. Nat 
Genet 47:445–447.

Stokin GB, Lillo C, Falzone TL, Brusch RG, 
Rockenstein E, Mount SL, Raman R, Davies P, 
Masliah E, Williams DS, Goldstein LSB (2005) 
Axonopathy and transport deficits early in the 
pathogenesis of Alzheimer’s disease. Science 
307:1282–1288.

Stone SJ, Vance JE (2000) Phosphatidylserine 
synthase-1 and -2 are localized to mitochondria-
associated membranes. J Biol Chem 275:34534–
34540.

Sun S, Zhang H, Liu J, Popugaeva E, Xu N-J, Feske S,  
White CL 3rd, Bezprozvanny I (2014) Reduced 
synaptic STIM2 expression and impaired store-
operated calcium entry cause destabilization of 
mature spines in mutant presenilin mice. Neuron 
82:79–93.

Supnet C, Bezprozvanny I (2010) Neuronal calcium 
signaling, mitochondrial dysfunction, and Alzheimer’s 
disease. J Alzheimers Dis 20 Suppl 2:S487–S498.

Szabadkai G, Bianchi K, Varnai P, De Stefani D, 
Wieckowski MR, Cavagna D, Nagy AI, Balla T, 
Rizzuto R (2006) Chaperone-mediated coupling 
of endoplasmic reticulum and mitochondrial Ca2+ 

channels. J Cell Biol 175:901–911.

Tambini MD, Pera M, Kanter E, Yang H, Guardia-
Laguarta C, Holtzman D, Sulzer D, Area-Gomez E, 
Schon EA (2016) ApoE4 upregulates the activity 
of mitochondria-associated ER membranes. EMBO 
Rep 17:27–36.

Alzheimer’s Disease: Mitochondrial Contact Sites and Function

© 2016 Schon



40

NOTES

© 2016 Schon

Vance DE, Walkey CJ, Cui Z (1997) 
Phosphatidylethanolamine N-methyltransferase 
from liver. Biochim Biophys Acta 1348:142–150.

Vetrivel KS, Cheng H, Lin W, Sakurai T, Li T, 
Nukina N, Wong PC, Xu H, Thinakaran G (2004) 
Association of γ-secretase with lipid rafts in post-
Golgi and endosome membranes. J Biol Chem 
279:44945–44954.

Voelker DR (2005) Bridging gaps in phospholipid 
transport. Trends Biochem Sci 30:396–404.

Wang X, Su B, Siedlak SL, Moreira PI, Fujioka H, 
Wang Y, Casadesus G, Zhu X (2008) Amyloid-β 
overproduction causes abnormal mitochondrial 
dynamics via differential modulation of 
mitochondrial fission/fusion proteins. Proc Natl 
Acad Sci USA 105:19318–19323.

Wang X, Su B, Zheng L, Perry G, Smith MA, Zhu X  
(2009) The role of abnormal mitochondrial 
dynamics in the pathogenesis of Alzheimer’s 
disease. J Neurochem 109:153–159.

Wollmer MA (2010) Cholesterol-related genes 
in Alzheimer’s disease. Biochim Biophys Acta 
1801:762–773.



© 2016 Youle

Surgical Neurology Branch 
National Institute of Neurological Disorders and Stroke 

National Institutes of Health 
Bethesda, Maryland

Role of Mitochondrial  
Quality Control in Parkinsonism
Alicia M. Pickrell, PhD, Chiu-Hui Huang, PhD,  

and Richard J. Youle, PhD





43

NOTES

Role of Mitochondrial Quality Control in Parkinsonism

Introduction
Mutations in genes encoding PINK1 and Parkin 
cause early-onset familial Parkinson’s disease (PD). 
Consistent with genetic studies in Drosophila 
indicating that PINK1 functions upstream of Parkin 
in the same pathway (Clark et al., 2006; Park et 
al., 2006; Poole et al., 2008), biochemical and cell 
biology studies have shown that PINK1 recruits 
Parkin to damaged mitochondria, where Parkin can 
induce selective autophagy of damaged mitochondria 
(mitophagy) (Narendra et al., 2008, 2010; Geisler et 
al., 2010; Vives-Bauza et al., 2010). PINK1 is a kinase 
that phosphorylates Parkin and triggers Parkin, an 
E3 ubiquitin ligase, to associate with mitochondria 
and ubiquitinate scores of substrates on the surface of 
mitochondria (Sarraf et al., 2013). These substrates, 
linked with both K48 and K63 ubiquitin chains, 
recruit adaptors such as p62, NBR1, Optineurin, 
and NDP52 to mitochondria that are key for 
initiating autophagosome recognition of damaged 
mitochondria (Wong and Holzbaur, 2014; Lazarou 
et al., 2015). Chemical uncouplers (Narendra et al., 
2008), mitochondrial DNA (mtDNA) mutations 
(Suen et al., 2010), or even unfolded proteins (Jin 
and Youle, 2013) can induce Parkin translocation 
and mitophagy.

In Vivo Support for the 
Mitochondrial Quality Control 
Hypothesis
The hypothesis which holds that insufficient 
mitophagy may cause disease phenotypes in patients 
with mutations in PINK1 and Parkin was initially 
based on results in cultured cells (Narendra et al., 
2008). However, this model has been recently 
supported by in vivo results in Drosophila (Vincow et 
al., 2013) and murine models (Fig. 1) (Pickrell et al., 
2015).

We have found that Parkin protects dopaminergic 
neurons in mice from damage caused by mtDNA 
mutations. Polymerase gamma (POLG) is 
responsible for the replication of mtDNA. Mutator 
mice express a proofreading-deficient POLG that 
causes a progressive accumulation of mtDNA 
mutations throughout the body (Trifunovic et al., 
2004; Kujoth et al., 2005). This leads to a premature 
aging phenotype characterized by early hair loss, 
anemia, osteoporosis, sarcopenia, cardiomyopathy, 
and decreased lifespan resulting from the decline 
of mitochondrial function (Trifunovic et al., 2004; 
Kujoth et al., 2005). Mutator mice have a loss of 
oxidative phosphorylation activity in the CNS, but 

do not display signs of neurodegeneration (Kujoth 
et al., 2005; Ross et al., 2010; Dai et al., 2013). We 
crossed this aging mouse model to a Parkin knockout 
(KO) mouse background. Although the Parkin 
KO mouse has a minor phenotype and no loss of 
dopaminergic neurons, we found a substantial loss of 
dopaminergic neurons in Mutator mice in the absence 
of endogenous Parkin (Fig. 1). Mutator mice had no 
loss of TH+ neurons at 52 weeks of age, whereas the 
Mutator Parkin KO mice showed a decrease of ~40% 
of TH+ neurons in both substantia nigra (SN) and 
ventral tegmental area (VTA) regions.

We performed the pole test, which is sensitive and 
specifically indicative of nigrostriatal dysfunctions 
(Matsuura et al., 1997), on 52-week-old Mutator 
and Mutator Parkin KO mice. Mutator Parkin KO 
mice latency times before descending the pole were 
significant longer than those of either Mutator, Parkin 
KO, or control (wild-type [WT]) mice, suggesting 
that the loss of TH+ axons and neurons at this 
age (Fig. 1C) caused a behavioral deficit in motor 
coordination. Levodopa (L-DOPA) treatment was 
able to completely reverse this climbing defect of the 

© 2016 Youle

Figure 1. Dopaminergic neurons degenerate and cause a 
movement disorder after the loss of endogenous Parkin in a 
mouse model of mitochondrial dysfunction. A, Representative 
images of the SN detected in midbrain sections after staining 
with anti-TH antibodies. Scale bar, 500 μm. B, The estimated 
number of TH+ neurons in the SN and VTA, and Nissl+ neurons 
in the SN in 48- to 52-week-old mice. n = 4/group. C, La-
tency time (s) recorded for 48- to 52-week-old mice perform-
ing the pole test. n = 6–8/group. D, Latency time (s) recorded 
for 56-week-old Mutator Parkin KO mice performing the pole 
test. Each mouse was scored for a baseline performance for 
comparison after L-DOPA treatment. n = 4/group. Reprinted 
with permission from Pickrell AM, et al. Endogenous Parkin 
preserves dopaminergic substantia nigral neurons following 
mitochondrial DNA mutagenic stress. Neuron 87:373; their 
Figs. 1A, B, G, and H. Copyright 2015, Elsevier.
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impairment resulted from the loss of dopaminergic 
neurons (Fig. 1D). These results show that in whole-
body Parkin KO mice, whole-body mtDNA mutation 
accumulation causes a specific defect in the midbrain 
dopaminergic cells. They also show that endogenous 
Parkin protects neurons in vivo from a mitochondria-
specific deficit induced by the mutant mtDNA 
polymerase.

Implications for Therapy  
in Humans
Genetic studies have shown that increasing the 
expression of Parkin can rescue mice from 6-OHDA 
(Vercammen et al., 2006; Yasuda et al., 2011) and 
MPTP-induced dopaminergic neuron loss (Yasuda 
et al., 2011) and rescue Drosophila from aging and 
associated proteotoxicity (Pimenta de Castro et 
al., 2012; Rana et al., 2013). Consistent with its 
role in stress mitigation, Parkin gene expression 
is upregulated by the unfolded protein response 
transcriptional factor, ATF4 (Bouman et al., 2011). 
Thus, increasing PINK1 or Parkin expression or 
activity in humans might foster mitochondrial 
quality control and have therapeutic benefits for 
patients with mtDNA mutation diseases, PD, or 
other diseases linked to mitochondrial dysfunction.

Animal studies corroborate cell-culture models 
suggesting that one key role that PINK1 and Parkin 
normally play is to mediate mitochondrial quality 
control, and that individuals with mutations in 
PINK1 and Parkin may develop parkinsonism 
because of a deficit in this pathway. Moreover, 
drugging this pathway to augment mitochondrial 
quality control may eventually help patients with 
inherited mtDNA mutations, metabolic disorders 
such as type 2 diabetes, and possibly forms of PD. 
Understanding the molecular deficits leading to 
inherited forms of PD also could yield insights into 
the etiology of sporadic PD.
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